
Aggressive Deep Driving: Combining Convolutional
Neural Networks and Model Predictive Control

Paul Drews
School of ECE

Georgia Inst. of Technology
pdrews3@gatech.edu

Grady Williams
College of Computing

Georgia Inst. of Technology
gradyrw@gatech.edu

Brian Goldfain
College of Computing

Georgia Inst. of Technology
bgoldfain3@gatech.edu

Evangelos A. Theodorou
School of Aerospace Engineering

Georgia Inst. of Technology
evangelos.theodorou@gatech.edu

James M. Rehg
College of Computing

Georgia Inst. of Technology
rehg@gatech.edu

Abstract: We present a framework for vision-based model predictive control
(MPC) for the task of aggressive, high-speed autonomous driving. Our approach
uses deep convolutional neural networks to predict cost functions from input
video which are directly suitable for online trajectory optimization with MPC.
We demonstrate the method in a high speed autonomous driving scenario, where
we use a single monocular camera and a deep convolutional neural network to
predict a cost map of the track in front of the vehicle. Results are demonstrated on
a 1:5 scale autonomous vehicle given the task of high speed, aggressive driving.

Keywords: convolutional neural networks, model predictive control, autonomous
driving

1 Introduction

A basic challenge in autonomous driving is to couple perception and control in order to achieve a
desired vehicle trajectory in the face of uncertainty about the environment. Existing commercial
solutions for driver assistance and vehicle autonomy utilize relatively simple models of vehicle dy-
namics, and emphasize the integration of multiple sensing modalities to characterize the vehicle’s
environment. Several examples of this approach can be found in the perception and control archi-
tectures utilized in the DARPA Grand Challenge Competitions [1, 2, 3].

While many challenging problems remain in order to achieve safe and effective autonomous driving
in urban environments, this paper is focused on the task of aggressive driving, which requires a
tight coupling between control and perception. We define aggressive driving as a vehicle operating
close to the limits of handling, often with high sideslip angles, such as may be required for collision
avoidance or racing. There has recently been some prior work on aggressive driving using a 1:5
scale vehicle [4, 5]. This work resulted in an open source vehicle platform which we have also
adopted in this paper. A disadvantage of this prior work is its reliance on high-quality GPS and
IMU for position estimation and localization, which limits the applicability of the method. In this
paper, we present an approach to autonomous racing in which vehicle control is based on computer
vision sensing, using only monocular camera images acquired from a dirt track in a rally car racing
environment. We address the challenge of learning visual models which can be executed in real-time
to support high-speed driving. We make the following contributions:

• A novel deep learning approach for analyzing monocular video and generating real-time
cost maps for model predictive control which can drive an autonomous vehicle aggressively

• Analysis of the benefits of different representations for the cost maps, with the demonstra-
tion that direct prediction of a bird’s eye view cost map gives the best performance

• A method for automatic image annotation to support large-scale human-in-the-loop training
of deep neural networks for autonomous driving

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.



Figure 1: (left) Image plane cost map regression. Camera image and position on a world map are
combined to label driveability of image pixels. (right) A top down projection of the cost map can be
used as a training target.

In order to use model predictive control, we need a cost function to minimize. One portion of this
function predicts cost of being in a position relative to the front of the vehicle, similar in concept to
an occupancy map. As shown in Figure 1, our framework is able to take as input a single monocular
camera image and output a cost map of the area in front of the vehicle. This cost map image is fed
directly into a model predictive control algorithm, with no pre-processing steps necessary. Because
the cost map learned by the neural network is independent of the control task being performed, we
can use any driving data, including human data, as training data and still generalize to different
tasks. Additionally, because we learn an interpretable intermediate representation, it is much easier
to diagnose failure cases.

1.1 Related Work

Several approaches have been taken to solve the problem of aggressive autonomous driving, and
autonomous driving in general. In [6], an analytic approach is explored. The performance limits
of a vehicle are pushed using a simple model-based feedback controller and extensive pre-planning
to follow a racing line around a track. More recently, [7] showed the benefits of model predictive
control on a 1:10 scale vehicle following waypoints through a challenging obstacle course. [5] also
shows some of the benefits of model predictive control in an outdoor, dirt environment. However,
these approaches all rely on highly accurate position from an external source such as GPS or motion
capture.

There are several ways to approach this problem. Many SLAM approaches that use cameras [8, 9],
LIDAR [10], or other sensor combinations [11] can provide accurate position. These systems typi-
cally provide position relative to a generated map. However, this approach can be very challenging
when localizing in a map created in significantly different conditions [12]. Because a large map
needs to be created, and position calculated relative to this map, these methods tend to be computa-
tionally expensive. An alternative method to providing absolute position uses deep neural networks
to directly regress a position estimate in an area previously visited [13]. However, this method of
localization is not yet sufficiently accurate to be directly used for control. Our method does not
require any type of absolute position.

Instead of relying on accurate localization, one can instead derive actions from images in an end-
to-end trained system, bypassing the need for explicit position information. In [14], a strong case
is made for end to end learning, or behavior reflex control in the context of autonomous driving.
This work follows from seminal work by Dean Pomerleau in the Alvin project [15]. In [16], a
neural network is trained as a policy from images to manipulator arm torques using guided policy
search. Because these solutions do not separate image understanding and control, it is very difficult
to generalize to new dynamics or control objectives.

An alternative to end-to-end systems learns a drivability function directly from image data that can
be used by a lower level controller. By utilizing accurate short range data provided by stereo vision,

2



Figure 2: Network architecture with input and training targets. Left: Neural network architecture
used to produce top down cost maps. Right: example input image, image plane training target and
top down training target, respectively

[17] learns a neural network to predict far-field traversibility from images, which is then fed into
a separate planning and control framework. However, this approach requires significant geometric
image pre-processing, and the resultant map is suited to planning, not high speed control. More
recently, [18] directly learns affordances necessary for autonomous driving by a low level controller.
However, these learned affordances are not rich enough for a model predictive control framework
such as [5]. In [19], a neural network is able to produce an image plane driveability map. However,
this method requires the use of additional obstacles sensors such as LIDAR.

Semantic segmentation may also be used to obtain driveability information from an image. Lately,
deep neural network architectures have achieved excellent results on semantic segmentation datasets
such as [20] and [21]. These models aim to produce a per-pixel labeling of an input image. Many
techniques to improve the accuracy of these models, such as conditional random fields (CRFs) [22]
and dilated convolutions [23] have advanced the state of the art in this field.

2 Approach

Our approach combines a high performance control system based on Model Predictive Control
(MPC), with deep Convolutional Neural Networks (CNNs) for real-time scene understanding. We
show that fully convolutional networks have the ability to go beyond the standard semantic image
segmentation paradigm, and can generate a top-down view of the cost surface in front of the vehicle,
even generalizing to portions of the track which are outside the camera’s field of view, given a single
video frame taken from the driver’s perspective.

Model predictive control is an effective control approach for aggressive driving [4, 5]. It is based on
optimizing a cost function that defines where on a track surface the vehicle should drive. The cost
surface must therefore encode the current and future positions of the road, obstacles, pedestrians,
and other vehicles. This presents a major barrier for using MPC in novel environments since creating
a cost function requires analyzing the local environment of the vehicle on-the-fly. Our solution is
to train a deep neural network to transform visual inputs from a single monocular camera to a cost
function in a local robot-centric coordinate system. In our implementation, the cost function takes
the form of an occupancy-grid style cost map, as shown in Figure 2. The network is trained so that
the cost is lowest at the center of the track, and higher further from the center. This cost map can
then be directly fed into a model predictive control algorithm.

By factoring the control and perception tasks, we can take advantage of the strengths and mitigate
the weaknesses of both deep visual learning and MPC. The perception task of mapping images
to cost functions is invariant to the control policy, which means that data can be collected from
many different (off-policy) sources. This mitigates the main difficulty in deep learning, which is
collecting large amounts of data. However, we are still able to use deep learning for on-the-fly scene
understanding. In the case of model predictive control, we are able to operate without an explicitly
programmed cost function, enabling its usage in potentially novel environments. However, we are
still able to utilize MPC for the difficult problem of online optimization with non-linear dynamics
and costs.

2.1 Model Predictive Path Integral Control

Model predictive control works by interleaving optimization and execution: first an open loop con-
trol sequence is optimized, then the first control in that sequence is executed by the vehicle, and
then state feedback is received and the whole process repeats. This sequence is shown graphically
in Figure 3. We use model predictive path integral control (MPPI), which is a sampling based,

3



derivative free, approach to model predictive control which has been successfully applied to aggres-
sive autonomous driving using learned non-linear dynamics [4]. At each time-step, MPPI samples
thousands of trajectories from the system dynamics, and each one of these trajectories is evaluated
according to its expected cost. A planned control sequence is then updated using a cost-weighted
average over the sampled trajectories.

Sample Trajectories

Update Control Plan

Execute first control, receive state feedback.

Repeat

Figure 3: Model Predictive
Path Integral Control algo-
rithm. Trajectories are sam-
pled and updated using a
GPU, and the first control ex-
ecuted.

Mathematically, let our current planned control sequence be
(u0, u1, . . . uT−1) = U ∈ Rm×T , where m is 2 and T is 60 in
our case. Let (E1, E2 . . . EK) be a set of random control sequences,
with each Ek =

(
ε0k, . . . ε

T−1
k

)
and each εtk ∼ N (ut,Σ). Then the

MPPI algorithm updates the control sequence as:

η =

K∑
k=1

exp

(
− 1

λ

(
S(Ek) + γ

T−1∑
t=0

uTt Σ−1εtk

))
(1)

U =
1

η

K∑
k=1

[
exp

(
− 1

λ

(
S(Ek) + γ

T−1∑
t=0

uTt Σ−1εtk

))
Ek

]
(2)

where η is a normalizing constant for updated control sequence U .
The parameters λ and γ determine the selectiveness of the weighted
average and the importance of the control cost respectively. The
function S(E) takes an input sequence and propagates it through
the dynamics to find the resulting trajectory, and then computes the
(state-dependent) cost of that trajectory sequence, which we denote
as C(x0, x1, . . . xT ) =

∑T
t=0 q(xt). In this paper we only use an

instantaneous running cost (there is no terminal cost), and we sam-
ple trajectories on a GPU using the dynamics model from [4]. The
instantaneous running cost is the following:

q(x) = w ·

(
CM (px, py), (vx − vdx)2, 0.9tI,

(
vy
vx

)2
)

(3)

where term (1),CM (px, py), is the output of the neural network which gives the track-cost associated
with being at the body frame position (px, py). The other terms are (2) A cost for achieving a desired
speed vdx, (3) an indicator variable which is turned on if the track-cost, roll angle, or heading velocity
become too high, and (4) is a penalty on the slip angle of the vehicle. The coefficient vector was
w = (100, 4.25, 10000, 1.75). Note that the three terms which are not learned (2,3, and 4) are trivial
to compute given the vehicle’s state-estimate, while the cost map requires analysis of the vehicle’s
environment. In previous work [4], the cost map was obtained from a pre-defined map of the track
combined with GPS localization, which does not generalize to other terrains.

2.2 Convolutional Neural Network Architecture

In this work, we use a CNN to generate costs based on future positions from a single monocular
image. Our CNN architecture is constrained to run in real time on the low power Nvidia GTX750Ti
available on our platform, and it produces a dense cost map output. We found that a fully convo-
lutional network that outputs a dense cost map with large input receptive fields produces the most
accurate result. We trained this architecture to output two different types of predictions (as shown
in Figure 1), these are (1) a top-down cost map that can be used directly by MPPI, and (2) an
image-plane labeling of pixels that must be projected onto the ground before use.

We experimentally evaluate both the top down and image plane methods with two different neu-
ral network structures. The image plane network takes in 640x480 input images and passes them
through several convolution layers and 2 pooling layers, followed by a set of 6 dilated convolution
layers. The top down network uses a smaller structure, as shown in Figure 2. The dilated convolu-
tions allow each output pixel the full input image as its receptive field while maintaining a reasonable
(128x160) output size. This significantly improves the output quality of the network. The cost-map
is then taken directly as the output of the final layer without applying normalization.

Using these two network architectures, we are able to maintain low latency and a frame rate of about
10 Hz for the image plane network and 40Hz (full camera frame rate) for the top down network.

4



Input images come directly from a PointGrey Flea3 color camera at 1280x1024 resolution. These
images are downsampled to 640x512, the dataset mean is subtracted, and each pixel is divided by
the dataset standard deviation. During training, the 160x128 pixel output is compared with the pre-
computed ground truth cost maps obtained from GPS data. It was found that an L1 pixel-wise loss
produced a cleaner final cost map than L2 loss. This loss is only computed for points within 10
pixels of the edge of the track in the ground truth image to avoid training the network to output
large sections of blank space. The network was trained using the Adam [24] optimization algorithm
in Tensorflow [25]. A mini-batch size of 10 images was used during training, and a small random
perturbation to the white balance of each image (multiplying each channel by a normally distributed
random variable between 0.9 and 1.1) was also applied. For all networks, best driving performance
was achieved with training stopped at or near 100,000 iterations. This coincided with the point
where testing loss on a held out dataset plateaued.

2.3 Ground truth generation

In order to learn a pixel-wise regression function capable of producing traversal costs at every pixel,
training data is needed on the order of 100s of thousands of frames. Labeling all of this data by hand
is laborious, slow, and prone to errors. However, the 1:5 scale AutoRally vehicle (Fig. 4) that we
use in our experiments, and many autonomous and commercial vehicles are equipped with position
sensors and cameras that can associate each image with a full state estimate, including orientation
and position. Combined with a surveyed map of a track registered to GPS coordinates, these can be
used to create hundreds of thousands of labeled images without any manual labeling of individual
images.

By calibrating the transformation between the IMU (where position and orientation estimates are
calculated) and the camera, a homography matrix can be computed that transforms the surveyed
track map from world coordinates to image plane coordinates:

H = kT car
im Tworld

car (4)

Where Tworld
car is the position of the car in world coordinates (estimated at the IMU), T car

im is the
transformation between the IMU and camera reference frames, and k is the camera intrinsics matrix.
Given this, points in the ground coordinate frame can be projected into the image using:

pim = Ĥpworld; Ĥ =

[
H11 H12 H14

H21 H22 H24

H31 H32 H34

]
(5)

where pim and pworld are homogeneous points. Using this scheme, ground truth images can be
produced for each image in our training set. This mapping is not perfect due to small errors in
time synchronization and violations of the assumption that the camera is a constant height above the
ground. However, despite these small errors, the reprojected cost maps are very good, and networks
are able to learn from them. To produce ground truth images for the top down network, a 160x128
section of the cost map directly in front of the vehicle (in vehicle centric coordinates) is used.

Using this method, we created approximately 300,000 images with corresponding ground truth cost
maps. These training images were taken from 64 different runs spanning 9 different days over the
course of 8 months. It includes substantial variability in lighting conditions, people and equipment
present at the collection site, and poses of the camera on the track. This data is split into approx-
imately 250,000 training images and 50,000 test images (selected as full sequences, not randomly
sampled from all images).

2.4 Implementation

In order to truly test the performance of a neural network designed for autonomous driving, it must
be implemented and tested on a physical platform. In our case, we choose the AutoRally platform
(see Figure 4). This is based on a 1:5 scale RC chassis capable of aggressive maneuvers and a top
speed of nearly 60 miles per hour. During testing, all sensing and computation is performed on
the vehicle in real time, including neural network forward inference and model predictive control

5



Figure 4: Testing setup and example output images. Left: Oval dirt test track where all test data was
taken. Center: Photo of vehicle during testing. Right: Neural network input, top down output, and
image plane output.

computation. Point Grey cameras are used to collect images, and perception and control is computed
on the onboard Nvidia GTX750Ti GPU.

Forward inference through the network is handled asynchronously, and the cost maps are fed to the
MPPI control algorithm at approximately 10Hz for the image plane network and 40Hz for the top
down network. The MPPI controller runs at 40Hz. Velocity and acceleration information is obtained
from the on-board GPS-IMU system, but absolute position is not used. We use GPS derived velocity
for experimental simplicity, however this velocity could be derived from visual odometry in a purely
vision based system. For the top down case, the camera orientation (from the IMU) is used to
generate a homography transform. The neural network output and associated homography matrix
are used by the MPPI algorithm to plan and execute controls until another cost image is available.

3 Experimental Results

In order to evaluate the performance of the proposed system, we tasked the CNN-MPPI algorithm
with driving around a roughly elliptical dirt track, using the same 1/5 scale vehicle hardware as
[5, 4]. This enables us to compare lap times and speeds achieved with the same controller using a
ground truth cost-map. This provides a metric, independent of network validation error, of how well
the neural network performs in a real world scenario. Additionally, we compare the performance of
the convolutional neural networks (mean L1 pixel distance) on a held out validation data set (from
an unseen testing day) to gain some insight into performance discrepancies and failure modes.

3.1 Network Performance

The accuracy of the neural networks is computed as the L1 distance between the ground truth and the
training target on a holdout dataset, taken on a different day than the training data, of approximately
4000 images. In order to achieve a more meaningful metric, we report only the error for pixels
where we there is track (i.e. anywhere the ground truth training image is not white). We use this
convention in all neural network training we report and report this as: score = (1− error).

The top down network, which maps input images to a top down (bird’s eye) cost map achieved a
score of 0.92. The image plane network, which maps input images to an image plane cost map
achieved a score of 0.82. In addition the having a lower score than the top down network, the image
plane cost map must also be projected onto the ground plane causing significant distortion.

3.2 Ablation and Simulation Results

We performed an ablation study in order to identify the features of the input images that play the
strongest role in the generation of the cost map. We first obtain as a baseline the cost map which
is generated by the network from the full input image. We then ”zero out” a block of pixels at a
certain location and size by replacing all pixels within the window with the mean pixel value from
the entire dataset. After mean subtraction, this block will have the value zero and will therefore not
contribute to the network activations. We systematically examine the influence of different parts
of the image on the prediction performance by scanning the window over the entire input image,
thereby generating a set of ablation images with zeroed out blocks at different locations. For each
ablated image, we compute an accuracy measure (average L1 distance for track pixels). We then
construct a sensitivity map by creating an image from these accuracy measures, which each accuracy

6



(a) Ablation study (b) Track images and screenshots

Figure 5: Ablation study and simulation results. (a) In the ablation study, a square window of the
input image is replaced with the corresponding square of the dataset mean image. Examples shown
of two input image with ablation heatmaps. It is clear in both cases that the inside of the corner is the
most important feature for determining track shape, and most image clutter is ignored. (b) TORCS
simulation tracks, with example training track in upper left and unseen test tracks. Track overview
maps show a great deal of corner variety, and screenshots show texture variety.

value is stored at the corresponding location where a block was ablated. Figure 5 shows sensitivity
maps for representative input images. All sensitivity maps are normalized with zero error as black
and largest recorded error as white.

In order to test the capability and generalization of this network, we train the network structure
from Figure 2 on a dataset of images and corresponding cost maps collected from the TORCS open
source driving simulator. We collect approximately 250,000 images taken from several hours of
autonomous and manual driving on 4 representative tracks as training. We then validate this network
by calculating validation error and tasking the network with completing several laps of three other,
unseen tracks. These tracks include similar features, but have new layouts as seen in Figure 5(b).
The validation error on the first track is 0.962, significantly better than the trivial output of entirely
non-track (white) pixels of 0.896. The system is able to complete the top right and bottom left track
of Figure 5(b). The bottom right track produced excellent error (0.961) but required intervention to
drive the full track due to errors in one or two corners.

This study demonstrates that the network has learned to use intuitively reasonable input features in
real world experiments, and can generalize to unknown scenes in the simulation case. The network
can tolerate the removal of small track regions due to ablation and still produce usable cost maps.

3.3 Driving Performance

Our goal in learning to regress cost maps from images is to plan and execute high speed driving
maneuvers. In order to test this end goal, we autonomously drive a 1/5 scale AutoRally vehicle at
increasingly aggressive speeds around a flat dirt track. Each method uses the same controller and
vehicle physics model, cameras, and track. The form of the controller’s cost remains the same,
although some parameters such as exploration variance and relative cost weights are tuned slightly
to optimize performance. To find the limits of each method, we slowly increased the target speed
from 5m/s. If the vehicle was able to performing 10 laps without intervention, the condition was
considered a success. If intervention was required, the condition was considered to have failed.
Note that the friction limits of the vehicle going around the tracks turns are around 5.5 m/s, so
the control algorithm has to intelligently moderate both the steering and throttle in order to navigate
successfully. While this single track is a limited environment, there is still significant clutter (such as
changing lighting conditions and moving distractors), making this a challenging vision problem. In
addition, due to the speeds the vehicle is traveling, small network errors can lead quickly to overall
system failure. As with many machine learning systems, our system is sensitive to the training data.
Our dataset contains more counterclockwise examples than clockwise examples, possibly explaining
the higher failure rate while traveling clockwise.

Using the top down network produced significantly more robust, consistent, and overall faster runs
than the image plane network. Using the image plane network, it was only occasionally possible to
produce runs of 10 consecutive laps (at the slowest speed). Most of the runs lasted between 1 and
5 laps before intervention was required. Usually, this was due to the network not identifying a turn,

7



Table 1: Testing statistics for image plane (IP) and top down (TD) networks, 10 lap runs

Method Counterclockwise travel Clockwise travel
Avg. Lap (s)) Top Speed (m/s) Avg. Lap (s) Top Speed (m/s)

(TD) 5 m/s 16.98 4.37 18.09 4.99
(TD) 6 m/s 12.19 6.38 failure failure
(TD) 7 m/s 10.84 6.91 11.27 6.51
(TD) 8 m/s 10.13 7.47 failure failure
(IP) 6 m/s 14.48 5.67 failure failure

[4] 9.74 8.44 N/A N/A
[5] N/A N/A 10.04 7.98

which would result in the vehicle driving to the end of the track and stopping. Figure 4 demonstrates
the difference between the two approaches as the vehicle approaches a turn, the top-down network
produced much cleaner and crisper cost maps in corners where only a small portion of the track is
visible.

Table 1 summarizes lap times and top speeds for our networks and the the method in [5, 4]. In
addition, Figure 6 shows some representative trajectories. In [4], using GPS localization in a pre-
defined map, the vehicle and controller were able to achieve an average lap time of 9.74 seconds,
only 0.39 seconds faster than the best setting of our method which only uses a single monocular
image, body frame velocity, and inertial data as input. The image plane regression network was able
to achieve a maximum average lap time of 14.48 seconds over 10 laps, 4.74 seconds slower. This
difference is due to the top-down network producing crisper output cost maps, as well as its ability
to predict beyond the field of view.

4 Conclusions

Figure 6: GPS plots of vehicle trajec-
tory with top-down network at 5 m/s
and 8 m/s target speeds. Notice how the
method is able to reject strong distur-
bances at the limits of vehicle handling.

In this work, we present field experiments demonstrating
novel capabilities of fully convolutional neural networks
combined with sampling based model predictive control.
We compare two output targets for the neural network, a
cost map projected into the image plane and a top down
view of the cost map, and find that the top down network
only loses 4% lap time over using GPS without need-
ing any absolute position information. We compare them
both on a sample of a held-out dataset and in full system
experiments driving an autonomous vehicle.

The ability of this network to predict around corners be-
yond the camera field of view was critical in performance
for the controller. The model predictive controller only
uses information that it can see in the output of the neural
network, and plans ahead 1.5 seconds to produce a control
signal. This 1.5 second time horizon leads to extremely
timid behavior in the case of the image plane regression
network because the available look ahead distance is very
short. This was not the case with the network that directly
regressed the top-down view, and was a large contribution
to its success in vehicle performance.

Additionally, the top-down network tends to produce a
map with a defined centerline that is still good for planning, even if the exact location of the track is
incorrect. This allows the MPPI algorithm to continue planning feasible paths until another image
is processed, hopefully rectifying the errors.

8



Acknowledgments

This work was made possible by the ARO through DURIP award W911NF-12-1-0377, NSF award
NRI-1426945, and support from BMW award UR:KAN KA-SVT (Agreement No. 821). Thanks
also to Dominic Pattison and Justin Zheng for their help making real-world testing possible.

References
[1] M. Montemerlo et al. Junior: The stanford entry in the urban challenge. Journal of Field

Robotics, 25(9):569–597, 2008. ISSN 1556-4967. doi:10.1002/rob.20258. URL http://dx.
doi.org/10.1002/rob.20258.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer, et al. Autonomous driving in urban environments: Boss and the ur-
ban challenge. Journal of Field Robotics, 25(8):425–466, 2008.

[3] Urmson et al. Tartan racing: A multi-modal approach to the darpa urban challenge. 2007.

[4] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In International Confer-
ence on Robotics and Automation (ICRA), 2017.

[5] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1433–1440, May 2016. doi:10.1109/ICRA.2016.7487277.

[6] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana, C. Gerdes, D. Langer,
M. Hernandez, B. Mller-Bessler, and B. Huhnke. Up to the limits: Autonomous audi tts.
In 2012 IEEE Intelligent Vehicles Symposium, pages 541–547, June 2012. doi:10.1109/IVS.
2012.6232212.

[7] N. Keivan and G. Sibley. Realtime Simulation-in-the-Loop Control for Agile Ground Vehi-
cles, pages 276–287. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-
662-43645-5. doi:10.1007/978-3-662-43645-5 29. URL http://dx.doi.org/10.1007/
978-3-662-43645-5_29.

[8] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular slam. In Euro-
pean Conference on Computer Vision, pages 834–849. Springer, 2014.

[9] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and accurate monocular
slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[10] J. Zhang and S. Singh. Loam: Lidar odometry and mapping in real-time. In Robotics: Science
and Systems, volume 2, 2014.

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shot-
ton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and track-
ing. In Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on,
pages 127–136. IEEE, 2011.

[12] C. Beall and F. Dellaert. Appearance-based localization across seasons in a metric map. 6th
PPNIV, Chicago, USA, 2014.

[13] A. Kendall and R. Cipolla. Modelling uncertainty in deep learning for camera relocalization.
Proceedings of the International Conference on Robotics and Automation (ICRA), 2016.

[14] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[15] D. A. Pomerleau. Alvinn, an autonomous land vehicle in a neural network. Technical report,
Carnegie Mellon University, Computer Science Department, 1989.

9

http://dx.doi.org/10.1002/rob.20258
http://dx.doi.org/10.1002/rob.20258
http://dx.doi.org/10.1002/rob.20258
http://dx.doi.org/10.1109/ICRA.2016.7487277
http://dx.doi.org/10.1109/IVS.2012.6232212
http://dx.doi.org/10.1109/IVS.2012.6232212
http://dx.doi.org/10.1007/978-3-662-43645-5_29
http://dx.doi.org/10.1007/978-3-662-43645-5_29
http://dx.doi.org/10.1007/978-3-662-43645-5_29


[16] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1–40, 2016.

[17] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, and Y. Le-
Cun. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics,
26(2):120–144, 2009.

[18] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2722–2730, 2015.

[19] D. Barnes, W. Maddern, and I. Posner. Find your own way: Weakly-supervised segmentation
of path proposals for urban autonomy. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 203–210, May 2017. doi:10.1109/ICRA.2017.7989025.

[20] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik. Semantic segmentation
using regions and parts. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3378–3385. IEEE, 2012.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440, 2015.

[22] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic im-
age segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014.

[23] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014. URL http://arxiv.org/abs/1412.6980.

[25] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL http://tensorflow.org/. Software available from tensorflow.org.

10

http://dx.doi.org/10.1109/ICRA.2017.7989025
http://arxiv.org/abs/1412.6980
http://tensorflow.org/

	Introduction
	Related Work

	Approach
	Model Predictive Path Integral Control
	Convolutional Neural Network Architecture
	Ground truth generation
	Implementation

	Experimental Results
	Network Performance
	Ablation and Simulation Results
	Driving Performance

	Conclusions

