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Abstract: In order for a robot to be a generalist that can perform a wide range
of jobs, it must be able to acquire a wide variety of skills quickly and efficiently
in complex unstructured environments. High-capacity models such as deep neural
networks can enable a robot to represent complex skills, but learning each skill
from scratch then becomes infeasible. In this work, we present a meta-imitation
learning method that enables a robot to learn how to learn more efficiently, allow-
ing it to acquire new skills from just a single demonstration. Unlike prior methods
for one-shot imitation, our method can scale to raw pixel inputs and requires data
from significantly fewer prior tasks for effective learning of new skills. Our exper-
iments on both simulated and real robot platforms demonstrate the ability to learn
new tasks, end-to-end, from a single visual demonstration.
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1 Introduction

Enabling robots to be generalists, capable of performing a wide variety of tasks with many objects,
presents a major challenge for current methods. Learning-based approaches offer the promise of a
generic algorithm for acquiring a wide range of skills. However, learning methods typically require
a fair amount of supervision or experience per task, especially for learning complex skills from raw
sensory inputs using deep neural network models. Moreover, most methods provide no mechanism
for using experience from previous tasks to more quickly solve new tasks. Thus, to learn many
skills, training data would need to be collected independently for each and every task. By reusing
data across skills, robots should be able to amortize their experience and significantly improve data
efficiency, requiring minimal supervision for each new skill. In this paper, we consider the question:
how can we leverage information from previous skills to quickly learn new behaviors?

Figure 1: The robot learns to place
a new object into a new container
from a single demonstration.

We propose to combine meta-learning with imitation, enabling a
robot to reuse past experience and, as a result, learn new skills
from a single demonstration. Unlike prior methods that take the
task identity [1, 2, 3, 4] or a demonstration [5] as the input into
a contextual policy, our approach learns a parameterized policy
that can be adapted to different tasks through gradient updates,
effectively learning to imitation learn. As a result, the set of
skills that can be learned is more flexible while using fewer over-
all parameters. For the first time, we demonstrate that vision-
based policies can be fine-tuned end-to-end from one demonstra-
tion, using meta-learning as a pre-training procedure that uses
demonstrations on a diverse range of other environments.

The primary contribution of this paper is to demonstrate an ap-
proach for one-shot imitation learning from raw pixels. We eval-
uate our approach on two simulated planar reaching domains, on
simulated pushing tasks, and on visual placing tasks on a real
robot (See Figure 1). Our approach is able to learn visuomotor policies that can adapt to new
task variants using only one visual demonstration, including settings where only a raw video of the

*denotes equal contribution

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.



demonstration is available without access to the controls applied by the demonstrator. By employ-
ing a parameter-efficient meta-learning method, our approach requires a relatively modest number
of demonstrations for meta-learning and scales to raw pixel inputs. As a result, our method can
successfully be applied to real robotic systems.

2 Related Work

We present a method that combines imitation learning [6] with meta-learning [7] for one-shot learn-
ing from visual demonstrations. Efficient imitation from a small number of demonstrations has
been successful in scenarios where the state of the environment, such as the poses of objects, is
known [8, 9, 10, 11]. In this work, we focus on settings where the state of the environment is un-
known, where we must instead learn from raw sensory inputs. This removes the need for pre-defined
vision systems while also making the method applicable to vision-based non-prehensile manipula-
tion in unknown, dynamic environments. Imitation learning from raw pixels has been widely studied
in the context of mobile robotics [12, 13, 14, 15]. However, learning from demonstrations has two
primary challenges when applied to real-world settings. The first is the widely-studied issue of
compounding errors [16, 17, 15], which we do not address in this paper. The second is the need
for a large number of demonstrations for each task. This latter limitation is a major roadblock for
developing generalist robots that can learn a wide variety of tasks through imitation. Inverse rein-
forcement learning [18] can reduce the number of demonstrations needed by inferring the reward
function underlying a set of demonstrations. However, this requires additional robot experience to
optimize the reward [19, 20, 21]. This experience typically comes in the form of trial-and-error
learning or data for learning a model.

In this work, we drastically reduce the number of demonstrations needed for an individual task by
sharing data across tasks. In particular, our goal is to learn a new task from a single demonstration
of that task by using a dataset of demonstrations of many other tasks for meta-learning. Sharing
information across tasks is by no means a new idea, e.g. by using task-to-task mappings [22], gat-
ing [23], and shared features [24]. These multi-task robotic learning methods consider the problem
of generalization to new tasks from some specification of that task. A common approach, often
referred to as contextual policies, is to provide the task as an input to the policy or value function,
where the task is represented as a goal or demonstration [1, 2, 4, 3, 5]. Another approach is to train
controllers for a variety of tasks and learn a mapping from task representations to controller param-
eters [10, 25, 26]. In this work, we instead use meta-learning to enable the robot to quickly learn
new tasks with gradient-based policy updates. In essence, we learn policy parameters that, when
finetuned on just one demonstration of a new task, can immediately learn to perform that task. This
enables the robot to learn new tasks end-to-end with extreme efficiency, using only one demonstra-
tion, without requiring any additional mechanisms such as contexts or learned update functions.

3 Meta-Imitation Learning Problem Formulation

In this section, we introduce the visual meta-imitation learning problem, where a vision-based policy
must adapt to a new task from a single demonstration. We also summarize a prior meta-learning
method that we will extend into a meta-imitation learning algorithm in Section 4.

3.1 Problem Statement

Our goal is to learn a policy that can quickly adapt to new tasks from a single demonstration of
that task. To remove the need for a large amount of task-specific demonstration data, we propose to
reuse demonstration data from a number of other tasks to enable efficient learning of new tasks. By
training for adaptation across tasks, meta-learning effectively treats entire tasks as datapoints. The
amount of data available for each individual task is relatively small. In the context of robotics, this
is precisely what we want for developing generalist robots – the ability to provide a small amount of
supervision for each new task that the robot should perform. In this section, we will formally define
the one-shot imitation learning problem statement and introduce notation.

We consider a policy π that maps observations o to predicted actions â. During meta-learning, the
policy is trained to adapt to a large number of tasks. Formally, each imitation task Ti = {τ =
{o1,a1, . . . ,oT ,aT } ∼ π?i ,L(a1:T , â1:T ), T} consists of demonstration data τ generated by an
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Algorithm 1 Meta-Imitation Learning with MAML
Require: p(T ): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Sample demonstration τ = {o1,a1, ...oT ,aT } from Ti
6: Evaluate∇θLTi(fθ) using τ and LTi in Equation (2)
7: Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(fθ)
8: Sample demonstration τ ′i = {o′1,a′1, ...o′T ,a′T } from Ti for the meta-update
9: end for

10: Update θ ← θ − β∇θ
∑
Ti∼p(T ) LTi(fθ′i) using each τ ′i and LTi in Equation 2

11: end while
12: return parameters θ that can be quickly adapted to new tasks through imitation.

expert policy π?i and a loss function L used for imitation. Feedback is provided by the loss function
L(a1, ...,aT , â1, ..., âT ) → R, which might be mean squared error for continuous actions, or a
cross-entropy loss for discrete actions.

In our meta-learning scenario, we consider a distribution over tasks p(T ). In the one-shot learning
setting, the policy is trained to learn a new task Ti drawn from p(T ) from only one demonstration
generated by Ti. During meta-training, a task Ti is sampled from p(T ), the policy is trained using
one demonstration from an expert π?i on Ti, and then tested on a new demonstration from π?i to deter-
mine its training and test error according to the loss L. The policy π is then improved by considering
how the test error on the new demonstration changes with respect to the parameters. Thus, the test
error on sampled demonstration from π?i serves as the training error of the meta-learning process.
At the end of meta-training, new tasks are sampled from p(T ), and meta-performance is measured
by the policy’s performance after learning from one demonstration. Tasks used for meta-testing are
held out during meta-training.

3.2 Background: Model-Agnostic Meta-Learning

In our approach to visual meta-imitation learning, we will use meta-learning to train for fast adap-
tation across a number of tasks by extending model-agnostic meta-learning (MAML) [27] to meta-
imitation learning from visual inputs. Previously, MAML has been applied to few-shot image recog-
nition and reinforcement learning. The MAML algorithm aims to learn the weights θ of a model
fθ such that standard gradient descent can make rapid progress on new tasks T drawn from p(T ),
without overfitting to a small number of examples. Because the method uses gradient descent as the
optimizer, it does not introduce any additional parameters, making it more parameter-efficient than
other meta-learning methods. When adapting to a new task Ti, the model’s parameters θ become θ′i.
In MAML, the updated parameter vector θ′i is computed using one or more gradient descent updates
on task Ti, i.e. θ′i = θ − α∇θLTi(fθ). For simplicity of notation, we will consider one gradient
update for the rest of this section, but using multiple gradient updates is a straightforward extension.

The model parameters are trained by optimizing for the performance of fθ′i with respect to θ across
tasks sampled from p(T ), corresponding to the following problem:

min
θ

∑
Ti∼p(T )

LTi(fθ′i) =
∑

Ti∼p(T )

LTi(fθ−α∇θLTi (fθ)) (1)

Note that the meta-optimization is performed over the parameters θ, whereas the objective is com-
puted using the updated parameters θ′. In effect, MAML aims to optimize the model parameters
such that one or a small number of gradient steps on a new task will produce maximally effective
behavior on that task. The meta-optimization across tasks uses stochastic gradient descent (SGD).

4 Meta-Imitation Learning with MAML

In this section, we describe how we can extend the model-agnostic meta-learning algorithm
(MAML) to the imitation learning setting. The model’s input, ot, is the agent’s observation at
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time t, e.g. an image, whereas the output at is the action taken at time t, e.g. torques applied to the
robot’s joints. We will denote a demonstration trajectory as τ := {o1,a1, ...oT ,aT } and use a mean
squared error loss as a function of policy parameters φ as follows:

LTi(fφ) =
∑

τ(j)∼Ti

∑
t

‖fφ(o(j)
t )− a

(j)
t ‖22. (2)

We will primarily consider the one-shot case, where only a single demonstration τ (j) is used for the
gradient update. However, we can also use multiple demonstrations to resolve ambiguity.

For meta-learning, we assume a dataset of demonstrations with at least two demonstrations per task.
This data is only used during meta-training; meta-test time assumes only one demonstration for each
new task. During meta-training, each meta-optimization step entails the following: A batch of tasks
is sampled and two demonstrations are sampled per task. Using one of the demonstrations, θ′i is
computed for each task Ti using gradient descent with Equation 2. Then, the second demonstration
of each task is used to compute the gradient of the meta-objective by using Equation 1 with the loss
in Equation 2. Finally, θ is updated according to the gradient of the meta-objective. In effect, the pair
of demonstrations serves as a training-validation pair. The algorithm is summarized in Algorithm 1.

The result of meta-training is a policy that can be adapted to new tasks using a single demonstration.
Thus, at meta-test time, a new task T is sampled, one demonstration for that task is provided, and the
model is updated to acquire a policy for that task. During meta-test time, a new task might involve
new goals or manipulating new, previously unseen objects.

4.1 Two-Head Architecture: Meta-Learning a Loss for Fast Adaptation
In the standard MAML setup, outlined previously, the policy is consistent across the pre- and post-
gradient update stages. However, we can make a modification such that the parameters of the final
layers of the network are not shared, forming two “heads,” as shown in Figure 2. The parameters
of the pre-update head are not used for the final, post-update policy, and the parameters of the post-
update head are not updated using the demonstration. But, both sets of parameters are meta-learned
for effective performance after adaptation. Interestingly, this two head architecture amounts to using
a different inner objective in the meta-optimization, while keeping the same outer objective. To see
this, let us denote y

(j)
t as the set of post-synamptic activations of the last hidden layer, and W and b

as the weight matrix and bias of the final layer. The inner loss function is then given by:

L∗Ti(fφ) =
∑

τ(j)∼Ti

∑
t

‖Wy
(j)
t + b− a

(j)
t ‖22, (3)

where W and b, the weights and bias of the last layer, effectively form the parameters of the meta-
learned loss function. We use the meta-learned loss function L∗Ti to compute the adapted parameter
θ′i of each task Ti, via gradient descent. Then, the meta-objective becomes:

min
θ,W,b

∑
Ti∼p(T )

LTi(fθ′i) =
∑

Ti∼p(T )

LTi(fθ−α∇θL∗Ti (fθ)). (4)

This provides the algorithm more flexibility in how it adapts the policy parameters to the expert
demonstration, which we found to increase performance in a few experiments (see Appendix A.3).
However, the more interesting implication of using a learned loss is that we can omit the actions
during 1-shot adaptation, as we discuss next.

4.2 Learning to Imitate without Expert Actions
Conventionally, a demonstration trajectory consists of pairs of observations and actions, as we dis-
cussed in Section 4. However, in many scenarios, it is more practical to simply provide a video of
the task being performed, e.g. by a human or another robot. One step towards this goal, which we
consider in this paper, is to remove the need for the robot arm trajectory and actions at test time.1
Though, to be clear, we will assume access to expert actions during meta-training. Without access to
expert actions at test time, it is unclear what the loss function for 1-shot adaptation should be. Thus,
we will meta-learn a loss function, as discussed in the previous section. We can simply modify the
loss in Equation 3 by removing the expert actions:

L∗Ti(fφ) =
∑

τ(j)∼Ti

∑
t

‖Wy
(j)
t + b‖22,

1We leave the problem of domain shift, i.e. between a video of a human and the robot’s view, to future work.
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Figure 2: Diagrams of the policy architecture with a bias transformation (top and bottom) and two heads
(bottom). The green arrows and boxes indicate weights that are part of the meta-learned policy parameters θ.

This corresponds to a learned quadratic loss function on the final layer of activations, with parame-
tersW and b. Though, in practice, the loss function could be more complex. With this loss function,
we can learn to learn from the raw observations of a demonstration using the meta-optimization
objective in Equation 4, as shown in our experiments in Sections 6.2 and 6.3.

5 Model Architectures for Meta-Imitation Learning
We use a convolutional neural network (CNN) to represent the policy, similar to prior vision-based
imitation and meta-learning methods [13, 27]. The policy observation includes both the camera im-
age and the robot’s configuration, e.g. the joint angles and end-effector pose. In this section, we
overview the policy architecture, but leave the details to be discussed in Section 6. The policy con-
sists of several strided convolutions, followed by ReLU nonlinearities. The final convolutional layer
is transformed into spatial feature points using a spatial soft-argmax [28, 29] and concatenated with
the robot’s configuration. The result is passed through a set of fully-connected layers with ReLU
nonlinearities. Because the data within a demonstration trajectory is highly correlated across time,
batch normalization was not effective. Instead, we used layer normalization after each layer [30].

Although meta-imitation learning can work well with standard policy architectures such as the one
described above, the optimal architecture for meta-learning does not necessarily correspond to the
optimal architecture for standard supervised imitation learning. One particular modification that
we found improves meta-learning performance is to concatenate a vector of parameters to a hidden
layer of post-synaptic activations, which leads to what we will refer to as a bias transformation. This
parameter vector is treated the same as other parameters in the policy during both meta-learning and
test-time adaptation. Formally, let us denote the parameter vector as z, the post-synaptic activations
as x, and the pre-synaptic activations at the next layer as y. A standard neural network architecture
sets y = Wx + b, for bias b and weight matrix W . The error gradient with respect to the standard
bias dL

db equals the error gradient with respect to y, dLdy . Thus, a gradient update of the standard bias
is directly coupled with the update to the weight matrix W and parameters in earlier layers of the
network. The bias transformation, which we describe next, provides more control over the updated
bias by eliminating this decoupling. With a bias transformation, we set y =W1x+W2z+ b, where
W = [W1,W2] and b are the weight matrix and bias. First, note that including z and W2 simply
corresponds to a reparameterization of the bias, b̃ = W2z + b, since neither W2z nor b depend on
the input. The error gradient with respect to z and W2 are: dL

dW2
= dL

dy z
T and dL

dz = WT
2
dL
dy . After

one gradient step, the updated transformed bias is: b̃′ = (W2 − αdLdy z
T )(z− αWT

2
dL
dy ) + b− αdLdy .

Thus, a gradient update to the transformed bias can be controlled more directly by the values of W2

and z, whose values do not directly affect the gradients of other parameters in the network. To see
one way in which the network might choose to control the bias, consider the setting where z and b
are zero. Then, the updated bias is: b̃′ = −αW2W

T
2
dL
dy −α

dL
dy . In summary, the bias transformation

increases the representational power of the gradient, without affecting the representation power of
the network itself. In our experiments, we found this simple addition to the network made gradient-
based meta-learning significantly more stable and effective. We include a diagram of the policy
architecture with the bias transformation in Figure 2.
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Figure 3: Example tasks from the policy’s perspective. In the top row, each pair of images shows the start
and final scenes of the demonstration. The bottom row shows the corresponding scenes of the learned policy
roll-out. Left: Given one demonstration of reaching a target of a particular color, the policy must learn to reach
for the same color in a new setting. Center: The robot pushes the target object to the goal after seeing a demon-
stration of pushing the same object toward the goal in a different scene. Right: We provide a demonstration of
placing an object on the target, then the robot must place the object on the same target in a new setting.

6 Experiments
The goals of our experimental evaluation are to answer the following questions: (1) can our method
learn to learn a policy that maps from image pixels to actions using a single demonstration of a
task? (2) how does our meta-imitation learning method compare to prior one-shot imitation learning
methods with varying dataset sizes? (3) can we learn to learn without expert actions? (4) how well
does our approach scale to real-world robotic tasks with real images?

We evaluate our method on one-shot imitation in three experimental domains. In each setting, we
compare our proposed method to a subset of the following methods:

• random policy: A policy that outputs random actions from a standard Normal distribution.

• contextual policy: A feedforward policy, which takes as input the final image of the demonstra-
tion, to indicate the goal of the task, and the current image, and outputs the current action.

• LSTM: A recurrent neural network which ingests the provided demonstration and the current
observation, and outputs the current action, as proposed by Duan et al. [5].

• LSTM+attention: A recurrent neural network using the attention architecture proposed by Duan
et al. [5]. This method is only applicable to non-vision tasks.

The contextual policy, the LSTM policies, and the proposed approach are all trained using the same
datasets, with the same supervision. All policies, including the proposed approach, were meta-
trained via a behavioral cloning objective (mean squared error) with supervision from the expert
actions, using the Adam optimizer with default hyperparameters [31].

6.1 Simulated Reaching

The first experimental domain is a family of planar reaching tasks, as illustrated in Figure 3, where
the goal of a particular task is to reach a target of a particular color, amid two distractors with
different colors. This simulated domain allows us to rigorously evaluate our method and compare
with prior approaches and baselines. We consider both vision and non-vision variants of this task,
so that we can directly compare to prior methods that are not applicable to vision-based policies.
See Appendix A.1 for more details about the experimental setup and choices of hyperparameters.

We evaluate each method on a range of meta-training dataset sizes and show the one-shot imita-
tion success rate in Figure 4. Using vision, we find that meta-imitation learning is able to han-
dle raw pixel inputs, while the LSTM and contextual policies struggle to learn new tasks using
modestly-sized meta-learning datasets. In the non-vision case, which involves far fewer parameters,
the LSTM policies fare much better, particularly when using attention, but still perform worse than
MIL. Prior work demonstrated these approaches using 10,000 or more demonstrations [5]. There-
fore, the mediocre performance of these methods on much smaller datasets is not surprising. We
also provide a comparison with and without the bias transformation discussed in Section 5. The
results demonstrate that MIL with the bias transformation (bt) can perform more consistently across
dataset sizes.
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Figure 4: One-shot success rate on test tasks as a function of the meta-learning dataset size in the simulated
domains. Our meta-imitation learning approach (MIL) can perform well across a range of dataset sizes, and can
more effectively learn new tasks than prior approaches that feed in the goal image (contextual) or demonstration
(LSTM) as input. A random policy achieves 25.7% reaching success and 0.45% pushing success. For videos
of the policies, see the supplementary video3.

6.2 Simulated Pushing
method video+state

+action
video
+state video

LSTM

1-
sh

ot 78.38% 37.61% 34.23%
contextual n/a 58.11% 56.98%
MIL (ours) 85.81% 72.52% 66.44%
LSTM

5-
sh

ot 83.11% 39.64% 31.98%
contextual n/a 64.64% 59.01%
MIL (ours) 88.75% 78.15% 70.50%

Table 1: One-shot and 5-shot simulating pushing suc-
cess rate with varying demonstration information pro-
vided at test-time. MIL can more successfully learn
from a demonstration without actions and without robot
state and actions than LSTM and contextual policies.

The goal of our second set of experiments is
to evaluate our approach on a challenging do-
main, involving 7-DoF torque control, a 3D
environment, and substantially more physical
and visual diversity across tasks. The experi-
ment consists of a family of simulated table-top
pushing tasks, illustrated in Figure 3, where the
goal is to push a particular object with random
starting position to the red target amid one dis-
tractor. We designed the pushing environment
starting from the OpenAI Gym PusherEnv, us-
ing the MuJoCo physics engine [32, 33]. We modified the environment to include two objects, vision
policy input, and, across tasks, a wide range of object shapes, sizes, textures, frictions, and masses.
We selected 116 mesh shapes from thingiverse.com, 105 meshes for meta-training and 11 for
evaluation. The meshes include models of chess pieces, models of animals like teddy bears and
pufferfish, and other miscellaneous shapes. We randomly sampled textures from a set of over 5,000
images and used held-out textures for meta-testing. A selection of the objects and textures are shown
in Figure 5. For more experimental details, hyperparameters, and ablations, see Appendix A.2.

The performance of one-shot pushing with held-out objects, shown in Figure 4, indicates that MIL
effectively learned to learn to push new objects, with 85.8% one-shot learning success using the
largest dataset size. Furthermore, MIL achieves, on average, 6.5% higher success than the LSTM-
based approach across dataset sizes. The contextual policy struggles, likely because the full demon-
stration trajectory information is informative for inferring the friction and mass of the target object.

In Table 1, we provide two additional evaluations, using the largest dataset size. The first evaluates
how each approach handles input demonstrations with less information, e.g. without actions and/or
the robot arm state. For this, we trained each method to be able to handle such demonstrations, as
discussed in Section 4.2. We see that the LSTM approach has difficulty learning without the expert
actions. MIL also sees a drop in performance, but one that is less dramatic. The second evaluation
shows that all approaches can improve performance if five demonstrations are available, rather than
one, despite all policies being trained for 1-shot learning. In this case, we averaged the predicted
action over the 5 input demonstrations for the contextual and LSTM approaches, and averaged the
gradient for MIL.

6.3 Real-World Placing

The goal of our final experiment is to evaluate how well a real robot can learn to learn to interact with
new, unknown objects from a single visual demonstration. Handling unseen objects is a challenge
for both learning-based and non-learning-based manipulation methods, but is a necessity for robots
to be capable of performing diverse tasks in unstructured real-world environments. In practice, most
robot learning approaches have focused on much more narrow notions of generalization, such as a

3For video results and code, see https://sites.google.com/view/one-shot-imitation
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subset of training objects test objects subset of training objects test objects
Figure 5: Training and test objects used in our simulated pushing (left) and real-world placing (right) ex-
periments. Note that we only show a subset of the ∼100 training objects used for the pushing and placing
experiments, and a subset of the textures and object scales used for training and testing robot pushing.

varied target object location [28] or block stacking order [5]. With this goal in mind, we designed
a robotic placing experiment using a 7-DoF PR2 robot arm and RGB camera, where the goal is to
place a held item into a target container, such as a cup, plate, or bowl, while ignoring two distractors.
We collected roughly 1300 demonstrations for meta-training using a diverse range of objects, and
evaluated one-shot learning using held-out, unseen objects (see Figure 5). The policy is provided
a single visual demonstration of placing the held item onto the target, but with varied positions of
the target and distractors, as illustrated in Figure 3. Demonstrations were collected using human
teleoperation through a motion controller and virtual reality headset [34], and each demo included
the camera video, the sequence of end-effector poses, and the sequence of actions – the end-effector
linear and angular velocities. See Appendix A.3 for more explanation of data collection, evaluation,
and hyperparameters.

The results, in Table 2, show that the MIL policy can learn to localize the previously-unseen tar-
get object and successfully place the held item onto the target with 90% success, using only a

method test performance
LSTM 25%
contextual 25%
MIL 90%
MIL, video only 68.33%

Table 2: One-shot success rate of plac-
ing a held item into the correct container,
with a real PR2 robot, using 29 held-out test
objects. Meta-training used a dataset with
∼ 100 objects. MIL, using video only re-
ceives the only video part of the demonstra-
tion and not the arm trajectory or actions.

single visual demonstration with those objects. We found
that the LSTM and contextual policies were unable to lo-
calize the correct target object, likely due to the modestly-
sized meta-training dataset, and instead placed onto an ar-
bitrary object, achieving 25% success. Using the two-head
approach described in 4.2, we also experimented with only
providing the video of the demonstration, omitting the
robot end-effector trajectory and controls. MIL can also
learn to handle this setting, although with less success,
suggesting the need for more data and/or further research.
We include videos of all placing policies in the supple-
mentary video4.

7 Discussion and Future Work

We proposed a method for one-shot visual imitation learning that can learn to perform tasks using
visual inputs from just a single demonstration. Our approach extends gradient-based meta-learning
to the imitation learning setting, and our experimental evaluation demonstrates that it substantially
outperforms a prior one-shot imitation learning method based on recurrent neural networks. The
use of gradient-based meta-learning makes our approach more efficient in terms of the number of
demonstrations needed during meta-training, and this efficiency makes it possible for us to also
evaluate the method using raw pixel inputs and on a real robotic system.

The use of meta-imitation learning can substantially improve the efficiency of robotic learning meth-
ods without sacrificing the flexibility and generality of end-to-end training, which is especially valu-
able for learning skills with complex sensory inputs such as images. While our experimental evalu-
ation uses tasks with limited diversity (other than object diversity), we expect the capabilities of our
method to increase substantially as it is provided with increasingly more diverse demonstrations for
meta-training. Since meta-learning algorithms can incorporate demonstration data from all available
tasks, they provide a natural avenue for utilizing large datasets in a robotic learning context, making
it possible for robots to not only learn more skills as they are acquire more demonstrations, but to
actually become faster and more effective at learning new skills through the process.

4For video results and code, see https://sites.google.com/view/one-shot-imitation
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A Additional Experimental Details

In this section, we provide additional experimental details for all experiments, including information
regarding data collection, evaluation, and training hyperparameters.

A.1 Simulated Reaching

Experimental Setup: In both vision and no-vision cases of this experiment, the input to the policy
includes the arm joint angles and the end-effector position. In the vision variant, the 80 × 64 RGB
image is also provided as input. In the non-vision version, the 2D positions of the objects are fed
into the policy, but the index of the target object within the state vector is not known and must be
inferred from the demonstration. The policy output corresponds to torques applied to the two joints
of the arm. A policy roll-out is considered a success if it comes within 0.05 meters of the goal within
the last 10 timesteps, where the size of the arena is 0.6× 0.6 meters.

To obtain the expert policies for this task, we use iLQG trajectory optimization to generate solutions
for each task (using knowledge of the goal), and then collect several demonstrations per task from
the resulting policy with injected Gaussian noise. At meta-test time, we evaluate the policy on 150
tasks and 10 different trials per task (1500 total trials) where each task corresponds to a held-out
color. Note that the demonstration provided at meta-test time usually involves different target and
distractor positions than its corresponding test trial. Thus, the one-shot learned policy must learn
to localize the target using the demonstration and generalize to new positions, while meta-training
must learn to handle different colors.

Hyperparameters: For all vision-based policies, we use a convolutional neural network policy
with 3 convolution layers each with 40 3×3 filters, followed by 4 fully-connected layers with hidden
dimension 200. For this domain only, we simply flattened the final convolutional map rather than
transforming it into spatial feature points. The recurrent policies additionally use an LSTM with 512
units that takes as input the features from the final layer. For non-vision policies, we use the same
architecture without the convolutional layers, replacing the output of the convolutional layers with
the state input. All methods are trained using a meta batch-size of 5 tasks. The policy trained with
meta-imitation learning uses 1 meta-gradient update with step size 0.001 and bias transformation
with dimension 10. We also find it helpful to clip the meta-gradient to lie in the interval [−20, 20]
before applying it. We use the normal single-head architecture for MIL as shown in Figure 2.

A.2 Simulated Pushing

Experimental Setup: The policy input consists of a 125 × 125 RGB image and the robot joint
angles, joint velocities, and end-effector pose. A push is considered a success if the center of the
target object lands on the red target circle for at least 10 timesteps within a 100-timestep episode.
The reported pushing success rates are computed over 74 tasks with 6 trials per task (444 total trials).

We acquired a separate demonstration policy for each task using the trust-region policy optimization
(TRPO) algorithm. The expert policy inputs included the target and distractor object poses rather
than vision input. To encourage the expert policies to take similar strategies, we first trained a single
policy on a single task, and then initialized the parameters of all of the other policies with those from
the first policy. When initializing the policy parameters, we increased the variance of the converged
policy to ensure appropriate exploration.

Hyperparameters: For all methods, we use a neural network policy with 4 strided convolution
layers with 16 5× 5 filters, followed by a spatial softmax and 3 fully-connected layers with hidden
dimension 200. For optimization, each method use a meta-batch size of 15 tasks. MIL uses 1 inner
gradient descent step with step size α = 0.01, inner gradient clipping within the range [−10, 10],
and bias transformation with dimension 20. We also use an additional bias transformation that is
concatenated to the image at each time step with the same size as the input image. The LSTM policy
uses 512 hidden units.

Because this domain is significantly more challenging than the simulating reaching domain, we
found it important to use the two-head architecture described in section 4.2. We include an ablation
of the two-head architecture in Table 3, demonstrating the benefit of this choice.
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method 1-head 2-head
MIL with 1-shot 80.63% 85.81%
MIL with 5-shot 82.63% 88.75%

Table 3: Ablation test on 1-head and 2-head architecture for simulated pushing as shown in Figure 2,
using a dataset with 9200 demonstrations for meta-learning. Using two heads leads to significantly
better performance in this domain.

A.3 Real-World Placing

Experimental Setup: The videos in the demo are composed of a sequence of 320 × 240 RGB
images from the robot camera. We pre-process the demonstrations by downsampling the images by
a factor of 2 and cropping them to be of size 100× 90. Since the videos we collected are of variable
length, we subsample the videos such that they all have fixed time horizon 30.

To collect demonstration data for one task, we randomly select one holding object and three placing
containers from our training set of objects (see the third image of Figure 5), and place those three
objects in front of the robot in 8 random positions. In this way, we collect 1293 demonstrations,
where we use 96 of them as validation set and the rest as the training set.

During policy evaluation, we evaluate the policy with 18 tasks and 4 trials per task (72 total trials)
where we use 1 placing target and 1 holding object from the test set for each task. In addition, we
manually code an ”open gripper” action at the end of the trajectory, which causes the robot to drop
the holding object. We define success as whether or not the held object landed in or on the target
container after the gripper is opened.

Hyperparameters: We use a neural network policy with 3 strided convolution layers and 2 non-
strided convolutions layers with 64 3×3 filters, followed by a spatial softmax and 3 fully-connected
layers with hidden dimension 100. We initialize the first convolution layer from VGG-19 and keep
it fixed during meta-training. Following prior work [34], we change the objective to be a mixture of
`1 and `2 loss, where `2 loss is scaled down by 100, and add an auxiliary loss that regresses from
the learned features at the first time step to the 2D position of the target container. We determine
the position of the target container from the end-effector position at the final timestep of the demon-
stration; this does not require additional supervision beyond the demonstration. Additionally, we
also feed the predicted 2D position of the target into the fully-connected layers of the network. MIL
uses a meta-batch size of 12 tasks, 5 inner gradient descent steps with step size 0.005, inner gradient
clipping within the range [−30, 30], and bias transformation with dimension 20. We also use the
single-head architecture for MIL just as what we do for simulated reaching. The LSTM policy uses
512 hidden units.
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