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Abstract: End-to-end control for robot manipulation and grasping is emerging
as an attractive alternative to traditional pipelined approaches. However, end-to-
end methods tend to either be slow to train, exhibit little or no generalisability,
or lack the ability to accomplish long-horizon or multi-stage tasks. In this paper,
we show how two simple techniques can lead to end-to-end (image to velocity)
execution of a multi-stage task, which is analogous to a simple tidying routine,
without having seen a single real image. This involves locating, reaching for, and
grasping a cube, then locating a basket and dropping the cube inside. To achieve
this, robot trajectories are computed in a simulator, to collect a series of control
velocities which accomplish the task. Then, a CNN is trained to map observed
images to velocities, using domain randomisation to enable generalisation to real
world images. Results show that we are able to successfully accomplish the task
in the real world with the ability to generalise to novel environments, including
those with dynamic lighting conditions, distractor objects, and moving objects,
including the basket itself. We believe our approach to be simple, highly scalable,
and capable of learning long-horizon tasks that have until now not been shown
with the state-of-the-art in end-to-end robot control.
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1 Introduction

An emerging trend for robot manipulation and grasping is to learn controllers directly from raw
sensor data in an end-to-end manner. This is an alternative to traditional pipelined approaches which
often suffer from propagation of errors between each stage of the pipeline. End-to-end approaches
have had success both in the real world [1, 2, 3] and in simulated worlds [4, 5, 6, 7]. Learning
end-to-end controllers in simulation is an attractive alternative to using physical robots due to the
prospect of scalable, rapid, and low-cost data collection. However, these simulation approaches are
of little benefit if we are unable to transfer the knowledge to the real world. What we strive towards
are robust, end-to-end controllers that are trained in simulation, and can run in the real world without
having seen a single real world image.

In this paper, we accomplish the goal of transferring end-to-end controllers to the real world and
demonstrate this by learning a long-horizon multi-stage task that is analogous to a simple tidying
task, and involves locating a cube, reaching, grasping, and locating a basket to drop the cube in. This
is accomplished by using demonstrations of linear paths constructed via inverse kinematics (IK) in
the Cartesian space, to construct a dataset that can then be used to train a reactive neural network
controller which continuously accepts images along with joint angles, and outputs motor velocities.
We also show that task performances improves with the addition of auxiliary outputs (inspired by [8,
9]) for positions of both the cube and gripper. Transfer is made possible by simply using domain
randomisation [10, 11], such that through a large amount of variability in the appearance of the
world, the model is able to generalise to real world environments. Figure 1 summarises the approach,
whilst our video demonstrates the success of the final controller in the real world 1.

1Video: https://youtu.be/X3SD56hporc
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Figure 1: Our approach uses simulation to collect a series of control velocities to solve a multi-stage
task. This is used to train a reactive neural network controller which continuously accepts images
and joint angles, and outputs motor velocities. By using domain randomisation, the controller is
able to run in the real world without having seen a single real image.

Our final model is not only able to run on the real world, but can accomplish the task with variations
in the position of the cube, basket, camera, and initial joint angles. Moreover, the model shows
robustness to distractors, lighting conditions, changes in the scene, and moving objects (including
people).

2 Related Work

End-to-end methods for control are often trained using Reinforcement Learning (RL). In the past
few years, classic RL algorithms have been fused with function approximators, such as neural net-
works, to spawn the domain of deep reinforcement learning, which is capable of playing games such
as Go [12] and Atari [13] to a super-human level. There have been advances in applying these tech-
niques to both simulated robotic platforms [4, 5], and real-world platforms [14], but fundamental
challenges remain, such as sample inefficiency, slow convergence, and the algorithm’s sensitivity to
hyperparameters. There have been attempts at transferring trained polices from the real world fol-
lowing training in simulation, but these attempts have either failed [5], or required additional training
in the real world [15]. Although applying RL can work well for computer games and simulations,
the same cannot be said as confidently for real-world robots, where the ability to explore sufficiently
can become intractable as the complexity of the task increases. To counter this, imitation learning
can be used by providing demonstrations in first [16, 17, 18] or third [19] person perspective. Our
method uses the full state of the simulation to effectively produce first-person demonstrations for
supervision without the need for exploration.

A different approach for end-to-end control is guided policy search (GPS) [20, 21], which has
achieved great success particularly in robot manipulation [1, 2, 3]. Unlike most RL methods, these
approaches can be trained on real world robotic platforms, but therefore have relied on human in-
volvement which limits their scalability. To overcome human involvement, GPS has been used with
domain adaptation of both simulated and real world images to map to a common feature space for
pre-training [22]; however, this still requires further training in the real world. In comparison, our
method has never seen a real world image before, and learns a controller purely in simulation.

One approach to scale up available training data is to continuously collect data over long periods
of time using one [23] or multiple robots [24, 25]. This was the case for [24], where 14 robots
were run for a period of 2 months and collected 800, 000 grasp attempts by randomly performing
grasps. A similar approach was used to learn a predictive model in order to push objects to desired
locations [25]. Although the results are impressive, there is some doubt in scalability with the high
purchase cost of robots, in addition to the question of how you would get data for more complex
and long-horizon tasks. Moreover, these solutions typically cannot generalise to new environments
without also training them in that same environment.

2



Figure 2: A collection of generated environments as part of our domain randomisation method.

There also exist a number of works that do not specifically learn end-to-end control, but do in fact
use simulation to learn behaviours with the intention to use the learned controller in the real world.
Such works include [26], which uses depth images from simulated 3D objects to train a CNN to
predict a score for every possible grasp pose. This can then be used to locate a grasp point on novel
objects in the real world. Another example is [27], where deep inverse models are learned within
simulation to perform a back-and-forth swing of a robot arm using position control. For each time
step during testing, they query the simulated control policy to decide on suitable actions to take in
the real world.

Transfer learning is concerned with transferring knowledge between different tasks or scenarios.
Works such as [28, 29] show skill transfer within simulation, whereas we concentrate on simulation-
to-real transfer. In [10], the focus is on learning collision-free flight in simulated indoor environ-
ments using realistic textures sampled from a dataset. They show that the trained policy can then be
directly applied to the real world. Their task differs to ours in that they do not require hand-eye coor-
dination, and do not need to deal with a structured multi-stage task. Moreover, rather than sampling
from a dataset of images, ours are procedurally generated, which allows for much more diversity.
During development of our work, a related paper emerged which uses the domain randomisation [11]
method in a similar manner to us, except that the focus is on pose estimation rather than end-to-end
control. We operate at the lower level of velocity control, to accomplish a multi-stage task which re-
quires not only pose estimation, but also target reaching and grasping. In addition, we show that our
learned controller can work in a series of stress tests, including scenes with dramatic illumination
changes and moving distractor objects.

3 Approach
Our aim is to create an end-to-end reactive controller that does not require real-world data to train,
and is able to learn complex behaviours in a short period of time. To achieve this, we generate
a large number of trajectories in simulation, together with corresponding image observations, and
then train a controller to map observed images to motor velocities, which are effected through a PID
controller. Through the use of domain randomisation during the data generation phase, we are able
to run the controller in the real world without having seen a single real image. We now describe in
detail the dataset generation and training method.

3.1 Data Collection

The success of this work comes down to the way in which we generate the training data (Figure 2).
Our approach uses a series of linear paths constructed in the Cartesian space via inverse kinematics
(IK) in order to construct the task sequence. At each simulation step, we record motor velocities,
joint angles, gripper actions (open or close command), cube position, gripper position, and camera
images. We split the task into 5 stages, and henceforth, we refer to the sequence of stages as an
episode. At the start of each episode, the cube and basket is placed randomly within an area that is
shown in Figure 3. We use the V-REP [30] simulator during all data collection.
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Figure 3: Variations in the positioning of the cube, basket, and camera, during both training and
testing. In all three images, the yellow area represents the possible locations of the cube, and the
green areas represent the possible locations of the basket. (a) shows variations of the camera pose,
illustrated by the orange cuboid. (b) shows an example view from the camera in simulation. (c)
shows an example view from the camera in the real world. Note that the yellow, green, and orange
shapes are purely for visualisation here, and are not seen during training or testing.

In the first stage of the task, the arm is reset to an initial configuration. We place a waypoint above
the cube and plan a linear path which we then translate to motor velocities to execute. Once this
waypoint has been reached, we execute the second stage, where by a closing action on the gripper
is performed. The third stage sets a waypoint a few inches above the cube, and we plan and execute
a linear path in order to lift the cube upwards. The fourth stage places a waypoint above the basket,
where we plan and execute a final linear path to take the grasped cube above the basket. Finally,
the fifth stage simply performs a command that opens the gripper to allow the cube to fall into the
basket. A check is then carried out to ensure that the location of the cube is within the basket;
if this is the case, then we save the episode. We do not consider obstacle avoidance in this task,
and so episodes that cannot find a linear set of paths due to obstacles are thrown away. The data
generation method can be run on multiple threads, which allows enough data for a successful model
to be collected within a matter of hours, and increasing the number of threads would further reduce
this time further.

Using this approach, it is already possible to train a suitable neural network to learn visuomotor
control of the arm and perform the task to succeed 100% of the time when tested in simulation.
However, we are concerned with applying this knowledge to the real world so that it is able to
perform equally as well as it did in simulation. By using domain randomisation, we are able to
overcome the reality-gap that is present when trying to transfer from the synthetic domain to the real
world domain. For each episode, we list the environment characteristics that are varied, followed by
an explanation of why we vary them:

• The colour of the cube, basket, and arm components are sampled from a normal distribu-
tion, with the mean set as close to the estimated real world equivalent; though these could
also be sampled uniformly.

• The position of the camera, light source (shadows), basket, and cube are sampled uniformly.
Orientations are kept constant.

• The height of the arm base from the table is sampled uniformly from a small range.
• The starting joint angles are sampled from a normal distribution with the mean set to the

configuration in Figure 3.
• We make use of Perlin noise [31] composed with functions (such as sine waves) to generate

textures, which are then applied to the table and background of the scene.
• We add random primitive shapes as distractors, with random colours, positions, and sizes

sampled from a uniform distribution.

A selection of these generated environments can be seen in Figure 2. We chose to vary the colours
and positions of the objects in the scene as part of a basic domain randomisation process. Slightly
less obvious is varying the height of the arm base; this is to avoid the network learning a controller
for a set height, that we cannot guarantee is the true height in the real world. In order to successfully
run these trained models in the real world, we also must account for non-visual issues, such as the
error in the starting position of the joints when run on the real world. Although we could send the
real world arm to the same starting position as the synthetic arm, in practice the joint angles will
be slightly off, and this could be enough to put the arm in configurations that are unfamiliar and
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Figure 4: Our network architecture continuously maps sequences of the past 4 images and joint
angles to motor velocities and gripper actions, in addition to 2 axillary outputs: the 3D cube position
and 3D gripper position. These axillary outputs are not used during testing, but are instead present
to help the network learn informative features.

lead to compounding errors along its trajectory. It is therefore important that the position of the
robot at the start of the task is perturbed during data generation. This leads to controllers that are
robust to compounding errors during execution, since a small mistake on the part of the learned
controller would otherwise put it into states that are outside the distribution of the training data.
This method can also be applied to the generated waypoints, but in practice this was not needed.
We use procedural textures rather than plain uniform textures, to achieve sufficient diversity which
encompasses background textures of the real world.

3.2 Network Architecture

The network, summarised in Figure 4, consists of 8 convolutional layers each with a kernel size
of 3 × 3, excluding the last, which has a size of 2 × 2. Dimensionality reduction is performed at
each convolutional layer by using a stride of 2. Following the convolutional layers, the output is
concatenated with the joint angles and then fed into an LSTM module (we discuss the importance
of this in the results). Finally, the data goes through a fully-connected layer of 128 neurons before
heading to the output layer. We chose to output velocities, effected via a PID controller, rather than
to output torques directly, due to the difficulty in transferring complex dynamics from simulation.

The network outputs 6 motor velocities, 3 gripper actions, and 2 auxiliary outputs: cube position and
gripper position. We treat the 3 gripper actions as a classification problem, where the outputs are
{open, close, no-op}. During testing, the auxiliary outputs are not used at any point, but are present
to aid learning and conveniently help debug the network. By rendering a small marker at the same
positions as the auxiliary outputs, we are able to observe where the controller estimates the cube is,
in addition to where it estimates the gripper is, which can be helpful during debugging.

Our loss function LTotal is a combination of the mean squared error of the velocities (V ) and gripper
actions (G), together with the gripper position (GP ) auxiliary and cube position (CP ) auxiliary,
giving

LTotal = LV + LG + LGP + LCP . (1)

We found that simply weighting the loss terms equally resulted in effective and stable training. The
model was trained with the Adam optimiser [32] with a learning rate of 10−4.

4 Experiments

In this section we present results from a series of experiments, not only to show the success of
running the trained models in different real world settings, but also to show what aspects of the
domain randomisation are most important for a successful transfer. Figure 5 shows an example of
the controller’s ability to generalise to new environments in the real world, although many more are
shown in the video2. We focused our experiments to answer the following questions:

1. How does performance vary as we alter the dataset size?

2Video: https://youtu.be/X3SD56hporc
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Figure 5: A sequence of images showing the network’s ability to generalise. Whilst a person is
standing in the view of the camera, the robot is able to grasp the cube and proceed to the basket.
As the arm progresses towards the basket, the person moves the basket to the other side of the
arm. Despite this disruption, the network alters its course and proceeds to the new location. During
training, the network had never seen humans, moving baskets, or this particular table.

2. How robust is the trained controller to new environments?
3. What is most important to randomise during domain randomisation?
4. Does the addition of auxiliary outputs improve performance?
5. Does the addition of joint angles as input to the network improve performance?

Figure 6: Controller evaluation ex-
ample. Green signifies a success,
whilst red signifies a failure. In this
case, success would be 91%.

Experimental Setup We first define how we evaluate the
controller in both the simulation and real world. We place
the cube using a grid-based method, where we split the area
in which the cube was trained into a grid of 10cm × 10cm
cells. Using the grid, the cube can be in one of 16 positions,
and for each position we run a trial twice with the basket on
each side of the arm, resulting in 32 trials; therefore, all of
our results are expressed as a percentage based on 32 trials.
This number of trails is sufficient for a trend to emerge, as
shown later in Figure 7. In Figure 6, we summarise the test-
ing conditions, where each square represents a position, and
the two triangles represent whether the basket was on the left
or right side of the robot at that position.

Figure 7: How dataset size effects performance in
both simulation and real world.

Altering Dataset Size To answer the first
question of how the dataset size effects perfor-
mance, we train several instances of the same
network on dataset sizes ranging from 100,000
to 1 million images. Figure 7 shows the success
rates in both simulation and real world, for the
task in an environment with no distractors (such
as in Figure 3). The graph shows that a small
dataset of 200,000 images achieves good per-
formance in simulation, but 4 times more data
is needed in order to achieve approximately the
same success rate in the real world. Interest-
ingly, both simulation and real world achieve
100% for the first time on the same dataset size
(1 million).
Robustness to New Environments We now turn our attention to Figure 8 and Table 1, which
provide a summary of our results for the remaining research questions. First, we discuss the results
in the top half of Table 1, where we evaluate how robust the network is to changes in the testing
environment. Successes are categorised into cube vicinity (whether the gripper’s tip reached within
≈ 2cm of the cube), cube grasped (whether the gripper lifted the cube off the table), and full task
(whether the cube was reached, grasped, and dropped into the basket). The first two results show our
solution achieving 100% when tested in both simulation and the real world. Although the network
was trained with distractors, it was not able to achieve 100% with distractors in the real world. Note
that the controller does not fail once the cube has been grasped, but rather fails during the reaching
or grasping. The majority of failures in this case where when the cube was closest to the distractors
in the scene. In the moving scene test, a person waved their arm back and forth such that each frame
saw the arm in a different location. Reaching was not affected in this case, but grasping performance

6



Figure 8: Images (a) to (e) are taken from the real world, whilst images (f) to (j) are taken from
simulation. The real world images show the testing scenarios from Table 1, whilst the simulated
images shows samples from the training set from Table 1.

was. The moving camera test was performed by continuously raising and lowering the height of the
tripod where the camera was mounted within a range of 2 inches during each episode. Although
never experiencing a moving scene or camera motion during training, overall task success remained
high at 81% and 75% respectively. To test invariance to lighting conditions, we aimed a bright
spotlight at the scene and then moved the light as the robot moved. The results show that the arm
was still able to recognise the cube, achieving a 84% cube vicinity success rate, but accuracy in the
grasp was affected, resulting in the cube only being grasped 56% of the time. This was also the case
when we replaced the cube with one that was half the length of the one seen in training. The 89%
vicinity success in comparison to the 41% grasp success shows that this new object was too different
to perform an accurate grasp, and the gripper would often only brush the cube. Interestingly, when
the cube was replaced with a novel object such as a stapler or wallet, the task was occasionally
successful. One explanation for this behaviour could be down to a clear colour discontinuity in
comparison to the background in the area in which the cube is normally located.

Ablation Study The bottom half of Table 1 focuses on the final 3 questions regarding which
aspects are important to randomise during simulation, and whether auxiliary tasks and joint angles
improve performance. Firstly, we wish to set a baseline which shows that naively simulating the
real world is difficult for getting high success in the real world. We generated a dataset based on a
scene with colours close to the real world. The baseline is unable to succeed at the overall task, but
performs well at reaching. This conclusion is in line with other work [5, 6]. It is clear that having no
domain randomisation does not transfer well for tasks that require accurate control. Whilst observing
the baseline in action, it would frequently select actions that drive the motors to force the gripper
into the table upon reaching the cube. Training a network without distractors and testing without
distractors yields 100%, whilst testing with distractors unsurprisingly performs poorly. A common
characteristic of this network is to make no attempt at reaching the cube, and instead head directly
to above the basket. We tested our hypothesis that using complex textures yields better performance
than using colours drawn from a uniform distribution. Although reaching is not affected, both
grasping and full task completion degrade to 69% and 44% respectively. Moreover, swapping to the
table illustrated in Figure 5 leads to complete failure when using plain colours.

Without moving the camera during training, the full task is not able to be completed. Despite this,
target reaching seems to be unaffected. We cannot guarantee the position of the camera in the
real world, but the error is small enough such that the network is able to reach the cube, but large
enough that it lacks the ability to achieve a grasp. Results show that shadows play an important
role following the grasping stage. Without shadows, the network can easily become confused by the
shadow of both the cube and its arm. Once grasped, the arm frequently raises and then lowers the
cube, possibly due to the network mistaking the shadow of the cube for the cube itself.

We now observe which aspects of the network architecture contribute to success when transferring
the controllers. We alter the network in 3 distinct ways – no LSTM, no auxiliary output, and no
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Scenario Successes
Train Test Cube vicinity Cube grasped Full task

Sim (full) Sim (full) 100% 100% 100%
Sim (full) Real 100% 100% 100%
Sim (full) Real (distractors) 89% 75% 75%
Sim (full) Real (moving scene) 100% 89% 89%
Sim (full) Real (moving camera) 97% 89% 75%
Sim (full) Real (spotlight) 84% 56% 56%
Sim (full) Real (small cube) 89% 41% 41%

Sim (baseline) Real 72% 0% 0%
Sim (no distractors) Real 100% 100% 100%
Sim (no distractors) Real (distractors) 53% 0% 0%

Sim (no textures) Real 100% 69% 44%
Sim (no moving cam) Real 100% 9% 3%

Sim (no shadows) Real 81% 46% 19%
Sim (no LSTM) Real 100% 56% 0%

Sim (no auxiliary) Real 100% 84% 84%
Sim (no joint angles) Real 100% 44% 25%

Table 1: Results based on 32 trials from a dataset size of 1 million images (≈ 4000 episodes) run on a
square table in the real world. Successes are categorised into cube vicinity (whether the arm reached
within ≈ 2cm of the cube, based on human judgement), cube grasped, and full task (whether the
cube was reached, grasped and dropped into the basket). The top half of the table focuses on testing
the robustness of the full method, whilst the bottom half focuses on identifying what are the key
aspects that contribute to transfer. A sample of the scenarios can be seen in Figure 8.

joint angles – and evaluate how performance differs. Excluding the LSTM unit from the network
causes the network to fail at the full task. Our reasoning for including recurrence in the architecture
was to ensure that state was captured. As this is a multi-stage task, we felt it important for the
network to know what stage of the task it was in, especially if it is unclear from the image whether
the gripper is closed or not (which is often the case). Typical behaviour includes hovering above
the cube, which then causes the arm to drift into unfamiliar states, or repeatedly attempting to close
the gripper even after the cube has been grasped. Overall, the LSTM seems fundamental in this
multi-stage task. The next component we analysed was the auxiliary outputs. The task was able to
achieve good performance without the auxiliaries, but not as high as with the auxiliaries, showing
the benefit of this auxiliary training. Finally, the last modification we tested was to exclude joint
angles. We found that the joint angles helped significantly in keeping the gripper in the orientation
that was seen during training. Excluding the joint angles often led to the arm reaching the cube
vicinity, but failing to be precise enough to grasp. This could be because mistakes by the network
are easier to notice in joint space than in image space, and so velocity corrections can be made more
quickly before reaching the cube.

5 Conclusions

In this work, we have shown transfer of end-to-end controllers from simulation to the real world,
where images and joint angles are continuously mapped directly to motor velocities, through a deep
neural network. The capabilities of our method are demonstrated by learning a long-horizon multi-
stage task that is analogous to a simple tidying task, and involves locating a cube, reaching the
cube, grasping the cube, locating a basket, and finally dropping the cube into the basket. We expect
the method to work well for other multi-stage tasks, such as tidying other rigid objects, stacking a
dishwasher, and retrieving items from shelves, where we are less concerned with dexterous manip-
ulation. However, we expect that the method as is, would not work in instances where tasks cannot
be easily split into stages, or when the objects require more complex grasps. Despite the simplicity
of the method, we are able to achieve very promising results, and we are keen to explore the limits
of this method in more complex tasks.
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