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Abstract: Applying end-to-end learning to solve complex, interactive, pixel-
driven control tasks on a robot is an unsolved problem. Deep Reinforcement
Learning algorithms are too slow to achieve performance on a real robot, but
their potential has been demonstrated in simulated environments. We propose
using progressive networks to bridge the reality gap and transfer learned policies
from simulation to the real world. The progressive net approach is a general
framework that enables reuse of everything from low-level visual features to high-
level policies for transfer to new tasks, enabling a compositional, yet simple,
approach to building complex skills. We present an early demonstration of this
approach with a number of experiments in the domain of robot manipulation that
focus on bridging the reality gap. Unlike other proposed approaches, our real-
world experiments demonstrate successful task learning from raw visual input
on a fully actuated robot manipulator. Moreover, rather than relying on model-
based trajectory optimisation, the task learning is accomplished using only deep
reinforcement learning and sparse rewards.
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1 Introduction

Deep Reinforcement Learning offers new promise for achieving human-level control in robotics
domains, especially for pixel-to-action scenarios where state estimation is from high dimensional sen-
sors and environment interaction and feedback are critical. With deep RL, a new set of algorithms has
emerged that can attain sophisticated, precise control on challenging tasks, but these accomplishments
have been demonstrated primarily in simulation, rather than on actual robot platforms.

While recent advances in simulation-driven deep RL are impressive [1, 2, 3, 4, 5, 6, 7], demonstrating
learning capabilities on real robots remains the bar by which we must measure the practical applica-
bility of these methods. However, this poses a significant challenge, given the "data-hungry" training
regime required for current pixel-based deep RL methods, and the relative frailty of research robots
and their human handlers. One solution is to use transfer learning methods to bridge the reality gap
that separates simulation from real world domains. In this paper, we use progressive networks, a deep
learning architecture that has recently been proposed for transfer learning, to demonstrate such an
approach, thus providing a proof-of-concept pathway by which deep RL can be used to effect fast
policy learning on a real robot.

Progressive nets have been shown to produce positive transfer between disparate tasks such as Atari
games by utilizing lateral connections to previously learnt models [8]. The addition of new capacity
for each new task allows specialized input features to be learned, an important advantage for deep RL
algorithms which are improved by sharply-tuned perceptual features. An advantage of progressive

1st Conference on Robot Learning (CoRL 2017), Mountain View, United States.



nets compared with other methods for transfer learning or domain adaptation is that multiple tasks
may be learned sequentially, without needing to specify source and target tasks.

This paper presents an approach for transfer from simulation to the real robot that is proven using
real-world, sparse-reward tasks. The tasks are learned using end-to-end deep RL, with RGB inputs
and joint velocity output actions. First, an actor-critic network is trained in simulation using multiple
asynchronous workers [6]. The network has a convolutional encoder followed by an LSTM. From
the LSTM state, using a linear layer, we compute a set of discrete action outputs that control the
different degrees of freedom of the simulated robot as well as the value function. After training, a
new network is initialized with lateral, nonlinear connections to each convolutional and recurrent
layer of the simulation-trained network. The new network is trained on a similar task on the real
robot. Our initial findings show that the inductive bias imparted by the features and encoded policy
of the simulation net is enough to give a dramatic learning speed-up on the real robot.

2 Transfer Learning from Simulation to Real

Our approach relies on the progressive nets architecture, which enables transfer learning through
lateral connections which connect each layer of previously learnt network columns to each new
column, thus supporting rich compositionality of features. We first summarize progressive nets, and
then we discuss their application for transfer in robot domains.

2.1 Progressive Networks

Progressive networks are ideal for simulation-to-real transfer of policies in robot control domains, for
multiple reasons. First, features learnt for one task may be transferred to many new tasks without
destruction from fine-tuning. Second, the columns may be heterogeneous, which may be important
for solving different tasks, including different input modalities, or simply to improve learning speed
when transferring to the real robot. Third, progressive nets add new capacity, including new input
connections, when transferring to new tasks. This is advantageous for bridging the reality gap, to
accommodate dissimilar inputs between simulation and real sensors.

A progressive network starts with a single column: a deep neural network having L layers with
hidden activations h(1)i ∈ Rni , with ni the number of units at layer i ≤ L, and parameters Θ(1)

trained to convergence. When switching to a second task, the parameters Θ(1) are “frozen” and a new
column with parameters Θ(2) is instantiated (with random initialization), where layer h(2)i receives
input from both h(2)i−1 and h(1)i−1 via lateral connections. Progressive networks can be generalized in a
straightforward manner to have arbitrary network width per column/layer, to accommodate varying
degrees of task difficulty, or to compile lateral connections from multiple, independent networks in
an ensemble setting.
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where W (k)
i ∈ Rni×ni−1 is the weight matrix of layer i of column k, U (k:j)

i ∈ Rni×nj are the lateral
connections from layer i− 1 of column j, to layer i of column k and h0 is the network input. f is an
element-wise non-linearity: we use f(x) = max(0, x) for all intermediate layers.

In the standard pretrain-and-finetune paradigm, there is often an implicit assumption of “overlap”
between the tasks. Finetuning is efficient in this setting, as parameters need only be adjusted slightly
to the target domain, and often only the top layer is retrained. In contrast, we make no assumptions
about the relationship between tasks, which may in practice be orthogonal or even adversarial.
Progressive networks side-step this issue by allocating a new column, potentially with different
structure or inputs, for each new task. Columns in progressive networks are free to reuse, modify or
ignore previously learned features via the lateral connections.

Application to Reinforcement Learning. Although progressive networks are widely applicable,
this paper focuses on their application to deep reinforcement learning. In this case, each column is
trained to solve a particular Markov Decision Process (MDP): the k-th column thus defines a policy
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π(k)(a | s) taking as input a state s given by the environment, and generating probabilities over
actions π(k)(a | s) := h

(k)
L (s). At each time-step, an action is sampled from this distribution and

taken in the environment, yielding the subsequent state. This policy implicitly defines a stationary
distribution ρπ(k)(s, a) over states and actions.

2.2 Approach

The proposed approach for transfer from simulated to real robot domains is based on a progressive
network with some specific changes. First, the columns of a progressive net do not need to have
identical capacity or structure, and this can be an advantage in sim-to-real situations. Thus, the
simulation-trained column is designed to have sufficient capacity and depth to learn the task from
scratch, but the robot-trained columns have minimal capacity, to encourage fast learning and limit total
parameter growth. Secondly, the layer-wise adapters proposed for progressive nets are unnecessary
for the output layers of complementary sequences of tasks, so they are not used. Third, the output
layer of the robot-trained column is initialised from the simulation-trained column in order to improve
exploration. These architectural features are shown in Fig. 1.
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Figure 1: Depiction of a progressive network, left, and a modified progressive architecture used for robot transfer
learning, right. The first column is trained on Task 1, in simulation, the second column is trained on Task 1 on
the robot, and the third column is trained on Task 2 on the robot. Columns may differ in capacity, and the adapter
functions (marked ‘a’) are not used for the output layers of this non-adversarial sequence of tasks.

The greatest risk in this approach to transfer learning is that rewards will be so sparse, or non-existent,
in the real domain that the reinforcement learning will not improve a vastly suboptimal initial policy
within a practical time frame. Thus, in order to maximise the likelihood of reward during exploration
in the real domain, the new column is initialised such that the initial policy of the agent will be
identical to the previous column. This is accomplished by initialising the weights coming from the
last layer of the previous column to the output layer of the new column with the output weights of
the previous column, and the connections incoming from the last hidden layer of the current column
are initialised with zero-valued weights. Thus, using the example network in Fig. 1 (right), when
parameters Θ(2) are instantiated, layer output(2)2 will have input connections from h

(1)
2 and h(2)2 .

However, unlike the other parameters in Θ(2), which will be randomly initialised, the weights W (2)
out

will be zeros and the weights U (1:2)
out will be copied from W

(1)
out. Note that this only affects the initial

policy of the agent and does not prevent the new column from training.

3 Related Literature

There exist many different paradigms for domain transfer and many approaches designed specifically
for deep neural models, but substantially fewer approaches for transfer from simulation to reality for
robot domains. Even more rare are methods that can be used for transfer in interactive, rich sensor
domains using end-to-end (pixel-to-action) learning.

A growing body of work has been investigating the ability of deep networks to transfer between
domains. Some research [9, 10] considers simply augmenting the target domain data with data from
the source domain where an alignment exists. Building on this work, [11] starts from the observation
that as one looks at higher layers in the model, the transferability of the features decreases quickly.
To correct this effect, a soft constraint is added that enforces the distribution of the features to be
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more similar. In [11], a ‘confusion’ loss is proposed which forces the model to ignore variations in
the data that separate the two domains [12, 13].

Based on [12], [14] attempts to address the simulation to reality gap by using aligned data. The work
is focused on pose estimation of the robotic arm, where training happens on a triple loss that looks at
aligned simulation to real data, including the domain confusion loss. The paper does not show the
efficiency of the method on learning novel complex policies.

Several recent works from the supervised learning literature, e.g. [15, 16, 17], demonstrate how
ideas from the adversarial training of neural networks can be used to reduce the sensitivity of a
trained network to inter-domain variations, without requiring aligned training data. Intuitively these
approaches train a representation that makes it hard to distinguish between data points drawn from
the different domains. These ideas have, however, not yet been tested in the context of control.
Demonstrating the difficulty of the problem, [10] provides evidence that a simple application of a
model trained on synthetic data on the real robot fails. The paper also shows that the main failure
point is the discrepancy in visual cues between simulation and reality.

Partial success on transferring from simulation to a real robot has been reported [18, 19, 20]. They
focus primarily on the problem of transfer from a more restricted simpler version of a task to the
full, more difficult version. While transfer from simulation to reality remains difficult, progress
has been made with directly learning neural network control policies on a real robot, both from
low-dimensional representations of the state and from visual input (e.g. [21],[22]). While the results
are impressive, to achieve sufficient data efficiency these works currently rely on relatively restrictive
task setups, specialized visual architectures, and carefully designed training regimes. Alternative
approaches embrace big data ideas for robotics ([23, 24]).

4 Experiments

For training in simulation, we use the Asynchronous Advantage Actor-Critic (A3C) framework
introduced in [6]. Compared to DQN [25], the model simultaneously learns a policy and a value
function for predicting expected future rewards, and can be trained with CPUs, using multiple
threads. A3C has been shown to converge faster than DQN, which makes it advantageous for research
experimentation.

For the manipulation domain of the Jaco arm, the agent policy controls nine degrees of freedom
using velocity commands. This includes six joints on the arm plus three actuated fingers. The full
policy Π(A|s, θ) comprises nine joint policies learnt by the agent, each one a softmax connected to
the inputs from the previous layer and any lateral connections. Each joint policy i has three actions
(a fixed positive velocity, a fixed negative velocity, and a zero velocity): πi(ai|s; θi). This discrete
action set, while potentially lacking the precision of a continuous control policy, has worked well
in practice. There is also a single value function that is linearly connected to the previous layer and
lateral layers: V (s, θv).

We evaluate both feedforward and recurrent neural networks. Both have convolutional input layers
followed by either a fully connected layer or an LSTM. A standard-sized network is used for the
simulation-trained column and a reduced-capacity network is used for the robot-trained columns,
chosen because we found empirically that more capacity does not accelerate learning (see Section4.2),
presumably because of the features reused from the previous column. Details of the architecture are
given in Figure 2 and Table 1. In all variants, the input is 3x64x64 pixels and the output is 28 (9
discrete joint policies plus one value function).

The MuJoCo physics simulator [26] is used to train the first column for our experiments, with a
rendered camera view to provide observations. In the real domain, a similarly positioned RGB
camera provides the input. While the modeled Jaco and its dynamics are quite accurate, the visual
discrepancies are obvious, as shown in Figure 3.

The experiments are all focused around the task of reaching to a visual target, with only pure rewards
provided as feedback (no shaped rewards). Though simple, this task requires that the state of the
arm and the position of the target are correctly inferred from visual observations, and that the agent
learns robust control over a high-dimensional state space. The arm is set to a random start position at
the beginning of every episode, and the target is placed randomly within a 40cm by 30cm area. The
agent receives a reward of +1 if its palm is within 10cm of the target, and episodes last for at most
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Figure 2: Detailed schematic of progressive recurrent
network architecture. The activations of the LSTM are
connected as inputs to the progressive column. The
factored policy and single value function are shown.

feedforward recurrent
wide narrow wide narrow

fc (output) 28 28 28 28
LSTM - - 128 16
fc 512 32 128 16
conv 2 32 8 32 8
conv 1 16 8 16 8
params 621K 39K 299K 37K

Table 1: Network sizes for wide columns
(simulation-trained) and narrow columns (robot-
trained). For all networks, the first convolutional
layer uses 8x8, stride 4 kernels and the second uses
5x5, stride 2 kernels. The total parameters include
the lateral connections.

Figure 3: Sample images from the real camera input image and the MuJoCo-rendered image. Though a more
realistic model appearance could have been used, the blocky Jaco model was used to accelerate MuJoCo
rendering, which was done on CPUs. The images show the diversity of Jaco start positions and target positions.

50 steps. Though there is some variance due to randomized starting states, a well-performing agent
can achieve an average score of over 30 points by quickly reaching to the target and remaining in
safe positions at all times. The episode is terminated if the agent causes a safety violation through
self-intersection, by touching the table top, or by exceeding set joint limits.

4.1 Training in simulation

The first column is trained in simulation using A3C, as previously mentioned, using a wide feedfor-
ward or recurrent network. Intuitively, it makes sense to use a larger capacity network for training in
simulation, to reach maximum performance. We verified this intuition by comparing wide and narrow
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Figure 4: Learning curves are shown for wide and narrow versions of the feedforward (left) and recurrent (right)
models, which are trained with the MuJoCo simulator. The plots show mean and variance over 5 training runs
with different seeds and hyperparameters. Stable performance is reached after approximately 50 million steps,
which is more than one million episodes. While both the feedforward and the recurrent models learn the task,
the recurrent network reaches a higher final mean score.
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Figure 5: Real robot training: We compare progressive, finetuning, and ‘from scratch’ learning curves. All
experiments use a recurrent architecture, trained on the robot, from RGB inputs. We compare wide and narrow
columns for both the progressive experiments and the randomly initialized baseline. For all results, a median-
filtered solid curve is shown overlaid on the raw rewards (dotted line). The ‘from scratch’ baseline was a
randomly initialized narrow or wide column, both of which fail to get any reward during training.

network architectures, and found that the narrow network had slower learning and worse performance
(see Figure 4). We also see that the LSTM model out-performs the feedforward model by an average
of 3 points per episode. Even on this relatively simple task, full performance is only achieved after
substantial interaction with the environment, on the order of 50 million steps - a number which is
infeasible with a real robot.

The simulation training, compared with the real robot, is accelerated because of fast rendering,
multithreaded learning algorithms, and the ability to continuously train without human involvement.
We calculate that learning this task, which trains to convergence in 24 hours using a CPU compute
cluster, would take 53 days on the real robot even with continuous training for 24 hours a day.
Moreover, multiple experiments in parallel were used to explore hyperparameters in simulation; this
sort of search would multiply the hypothetical real robot training time.

In simulation, we explore learning rates and entropy costs, which are sampled uniformly at random
on a log scale. Learning rates are sampled between 5e-5 and 5e-3 and entropy costs between 1e-5 and
1e-2. The configuration with the best final performance from a grid of 30 is chosen as first column.
For real Jaco experiments, both learning rates and entropy costs were optimized separately using a
simulated transfer experiment with a single-threaded agent (A2C).

4.2 Transfer to the robot

To train on the real Jaco, a flat target is manually repositioned within a 40cm by 30cm area on every
third episode. Rewards are given automatically by tracking the colored target and giving reward based
on the position of the Jaco gripper with respect to it. We train a baseline from scratch, a finetuned
first column, and a progressive second column. Each experiment is run for approximately 60000
steps (about four hours). The baseline is trained by randomly initializing a narrow network and then
training. We also try a randomly initialized wide network. As seen in Figure 5 (green curve), the
randomly initialized column fails to learn and the agent gets zero reward throughout training. The
progressive second column gets to 34 points, while the experiment with finetuning, which starts with
the simulation-trained column and continues training on the robot, does not reach the same score as
the progressive network.

Finetuning vs. progressive approaches. The progressive approach is clearly well-suited for contin-
ual learning scenarios, where it is important to mitigate forgetting of previous tasks while supporting
transfer to new tasks, but the advantage is less intuitive for curricula of tasks where the focus is on
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Figure 6: To analyse the relative stability and performance of finetuning vs. progressive approaches, we add
color or perspective changes to the environment in simulation and then train 300 networks with different random
seeds, learning rates, and entropy costs. The progressive networks have significantly higher performance and
less sensitivity to hyperparameter selection for all four experiments.

maximising transfer learning. To assess this empirically, we start with a simulator-trained first column,
as described above, and then either finetune that column or add a narrow progressive column and
retrain for the reacher task under a variety of conditions, including small or large color changes and
small or large perspective changes. For each of these environment perturbations, we train 300 times
with different seeds, learning rates, and entropy costs, which are the most sensitive hyperparameters.
As shown in Figure 6, we find that progressive networks are more stable and reach higher final
performance than finetuning.

4.3 Transfer to a dynamic robot task with proprioception

Unlike the finetuning paradigm, which is unable to accommodate changing network morphology
or new input modalities, progressive nets offer a flexibility that is advantageous for transferring to
new data sources while still leveraging previous knowledge. To demonstrate this, we train a second
column on the reacher task but add proprioceptive features as an additional input, alongside the RGB
images. The proprioceptive features are joint angles and velocities for each of the 9 joints of the
arm and fingers, 18 in total, input to a MLP (a single linear layer plus ReLU) and joined with the
outputs of the convolutional stack. Then, a third progressive column is added that only learns from
the proprioceptive features, while the visual input is forwarded through the previous columns and
the features are used via the lateral connections. A diagram of this architecture is shown in Figure 7
(left).

To evaluate this architecture, we train on a dynamic target task. By employing a small motorized
pulley, the red target is smoothly translated across the table with random reversals in the motion,
creating a tracking task that requires a different control policy while maintaining a similar visual
presentation. Other aspects of the task, including rewards and episode lengths, were kept the same. If
the second column is trained on this conveyor task, the learning is relatively slow, and full performance
is reached after 50000 steps (about 4 hours). If the second column is instead trained on the static
reacher task, and the third column is then trained on the conveyor task, we observe immediate
transfer, and full performance is reached almost immediately (Figure 7, right). This demonstrates
both the utility of progressive nets for curriculum tasks, as well as the capability of the architecture to
immediately reuse previously learnt features.

5 Discussion

Transfer learning, the ability to accumulate and transfer knowledge to new domains, is a core
characteristic of intelligent beings. Progressive neural networks offer a framework that can be used
for continual learning of many tasks and which facilitates transfer learning, even across the divide
which separates simulation and robot. We took full advantage of the flexibility and computational
scaling afforded by simulation and compared many hyperparameters and architectures for a random
start, random target control task with visual input, then successfully transferred the skill to an agent
training on the real robot.

In order to fulfill the potential of deep reinforcement learning applied in real-world robotic domains,
learning needs to become many times more efficient. One route to achieving this is via transfer
learning from simulation-trained agents. We have described an initial set of experiments that prove
that progressive nets can be used to achieve reliable, fast transfer for pixel-to-action RL policies.
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Figure 7: Real robot training results are shown for the dynamic ‘conveyor’ task. A three-column architecture is
depicted (left), in which vision (x) is used to train column one, vision and proprioception (φ) are used in column
two, and only proprioception is used to train column three. Encoder 1 is a convolutional net, encoder 2 is a
convolutional net with proprioceptive features added before the LSTM, and encoder 3 is an MLP. The learning
curves (right) show the results of training on a conveyor (dynamic target) task. If the conveyor task is learned as
the third column, rather than the second, then the learning is significantly faster.
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