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Abstract: Traffic dynamics are often modeled by complex dynamical systems for
which classical analysis tools can struggle to provide tractable policies used by
transportation agencies and planners. In light of the introduction of automated
vehicles into transportation systems, there is a new need for understanding the
impacts of automation on transportation networks. The present article formulates
and approaches the mixed-autonomy traffic control problem (where both auto-
mated and human-driven vehicles are present) using the powerful framework of
deep reinforcement learning (RL). The resulting policies and emergent behaviors
in mixed-autonomy traffic settings provide insight for the potential for automa-
tion of traffic through mixed fleets of automated and manned vehicles. Model-
free learning methods are shown to naturally select policies and behaviors previ-
ously designed by model-driven approaches, such as stabilization and platooning,
known to improve ring road efficiency and to even exceed a theoretical velocity
limit. Remarkably, RL succeeds at maximizing velocity by effectively leveraging
the structure of the human driving behavior to form an efficient vehicle spacing for
an intersection network. We describe our results in the context of existing control
theoretic results for stability analysis and mixed-autonomy analysis. This article
additionally introduces state equivalence classes to improve the sample complex-
ity for the learning methods.

1 Introduction
Emergent behaviors have long motivated general learning methods such as genetic algorithms, sim-
ulated annealing, and RL algorithms, producing interesting, useful and captivating behaviors in
complex dynamical systems such as swarms [1], ant colonies [2], and life [3]. The present article
studies the emergent behaviors of road transportation networks in the presence of mixed autonomy.

Modeling and analysis of traffic dynamics is notoriously complex and yet is a prerequisite for model-
based traffic control [4, 5]. Researchers classically trade away the complexity of the model (and thus
the realism of the model) for tractability of analysis (for example through aggregate models), often
with the goal of designing optimal controllers with desirable provable properties, such as safety or
optimality [6]. Consequently, results in traffic control can largely be clustered into several groups
which include simulation-based numerical analysis or theoretical analysis on idealized settings. In
the present article, we largely focus our discussion on control of microscopic longitudinal dynamics
(sometimes referred to as car following models [7]) and lateral dynamics [8] on a variety of network
configurations.

Deep RL is a powerful tool for control and has already demonstrated success in complex but data-
rich problem settings such as Atari games [9], 3D locomotion and manipulation [10, 11], and chess
[12], among others. In this article, we revisit the problem of traffic control and view automated
vehicles as a mechanism for congestion control, using the framework of deep RL.
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Using model-free RL methods, the present article studies emergent behaviors in mixed-autonomy
traffic. This study sets the stage for further study of increasingly complex and realistic scenarios
and the discovery of policies that can be deployed in real life. Real-world phenomena have highly
stochastic driving dynamics with different human drivers exhibiting differing levels of aggression
or timidity, drivers merging and exiting, accidents blocking a road, drivers distracted by nearby
accidents, sudden slowdowns in the presence of cops, different driving styles for different weather
conditions, etc. All of these affect the types of policies that might be deployed to mitigate congestion,
and the complexity and diversity of these policies make automatic discovery critical. This article
studies how model-free RL methods can autonomously discover interesting policies that exploit
the dynamics of the uncontrolled drivers. It sets the seed for further research in more complex
settings, one that will be increasingly important as companies start deploying autonomous vehicles
commercially, alongside several other core research problems in the context of autonomous vehicles,
such as localization, path planning, collision avoidance, and perception. The discovery of policies
in the presence of high-level goals and complex dynamics is another crucial piece of the overall
research which will enable safe and efficient next generation mobility systems.

The contributions of this article include:

• The formulation of the mixed-autonomy traffic problem, in which automated and human-driven
vehicles co-exist in the same system, in the framework of deep RL.

• The presentation of the first demonstration of model-free RL for the longitudinal and lateral con-
trol of a fleet of automated vehicles in a variety of complex mixed-autonomy environments, in-
cluding single- and multi-lane ring roads, a Figure Eight network, and environments with frequent
perturbations.

• The introduction of the concept of state equivalence classes, which improves sample efficiency of
the learning method.

• Emergent behaviors, demonstrated numerically in a variety of network configurations, including
stabilizing traffic, tailgating, platooning, and efficient vehicle spacing. The article demonstrates
the selection of policies previously discovered by model-driven approaches, such as stabilization,
platooning, and efficient vehicle spacing at intersections, using a model-free learning paradigm.

• For the single-lane ring road, the presentation of a theoretical upper bound on the average velocity
of a mixed-autonomy setting, and experiments which demonstrate that the learned policy exceeds
the optimal human performance and is close to optimal mixed-autonomy performance.

• The demonstration of an effective leveraging of the structure of the human driving behavior, which
allows the learned policies to surpass the performance of state-of-the-art controllers designed for
automated vehicles, for ring road and figure eight settings.

Videos and additional results of the paper are available at https://bit.ly/2tm8lEV.

2 Mixed-autonomy traffic problem

Notation. This article assumes a discrete-time Markov decision process (MDP), defined by
(S,A,P, r, ρ0, γ,H), in which S ⊆ Rn is an n-dimensional state space, A ⊆ Rm an m-
dimensional action space, P : S × A × S → R+ a transition probability function, r : S × A → R
a bounded reward function, ρ0 : S → R+ an initial state distribution, γ ∈ (0, 1] a discount fac-
tor, and H a time horizon. The presented models are based on the optimization of a stochas-
tic policy πθ : S × A → R+ parameterized by θ. Let η(πθ) denote its expected return:
η(πθ) = Eτ [

∑∞
t=0 γ

tr(st, at)], where τ = (s0, a0, . . .) denotes the entire trajectory, s0 ∼ ρ0(s0),
at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at) for all t. Our goal is to find the optimal policy
θ∗ := argmaxθ η(πθ) [13].

Problem statement. In this article, we study the problem of mixed-autonomy traffic: How can a
set of automated vehicles optimize a traffic system in the presence of both automated and human-
driven vehicles? The present article studies this problem for the objective of maximizing system-
level velocity, for a variety of traffic settings. We note that of particular interest in this problem is
the study of system-level objectives rather than local (vehicle-level or platoon-level) objectives, for
instance system-level velocity or energy consumption.
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Problem setting. We formulate the mixed-autonomy traffic problem as a fully cooperative, fully
observed RL problem. We study a centralized training regime and centralized execution; other learn-
ing settings such as shared policies, multi-headed policies, and decentralized training and execution
are beyond the scope of this work.

System dynamics. The longitudinal dynamics of human-driven vehicles are computed by a mi-
croscopic car-following model called Intelligent Driver Model (IDM), known to accurately model
realistic driver behavior [14]. In this model, the acceleration for vehicle α is defined by its bumper-
to-bumper headway sα (distance to preceding vehicle), velocity vα, and relative velocity ∆vα, via
the following equation:

aIDM =
dvα
dt

= a

[
1−

(
vα
v0

)δ
−
(
s∗(vα,∆vα)

sα

)2]
(1)

where s∗ is the desired headway of the vehicle, denoted by:

s∗(vα,∆vα) = s0 + max

(
0, vαT +

vα∆vα

2
√
ab

)
(2)

where s0, v0, T, δ, a, b are given parameters. In order to incorporate stochasticity into the dynam-
ics of human-driven vehicles, the accelerations are additionally perturbed by Gaussian acceleration
noise of N (0, 0.2), calibrated to match measures of stochasticity presented in [15].

All other system dynamics are represented within SUMO, an open-source traffic microsimulator,
including lateral (lane-changing) dynamics for human-driven vehicles, right-of-way, and a failsafe
(optionally) imposed on automated vehicles to ensure safety [16].

Although conceptually clean, even a string of vehicles on a single-lane road can be modeled as a
dynamical system consisting of a cascade of n (possibly different) nonlinear systems, one for each
vehicle. As such, the complexity of the overall system already largely constrains formal analysis
of such systems to homogeneous settings, where each of the n systems are identical, or where
such systems are assumed to be linear, non-delayed, etc. With the introduction of lane changes
(in any multi-lane setting), the dynamics additionally exhibit discrete events, when lane changes
occur. Modeling and studying lane changes and their effects on traffic is a difficult and active area
of research [17, 18]. Additional components such as traffic lights and intersections, turns, route
choice, demand, specialized lanes, and heterogeneous vehicle types, introduce further complexities
in the overall dynamics of traffic control problems. Due to discontinuous and non-smooth dynamics
inherent to traffic control problems, we choose to study the control problem using model-free RL
methods, as opposed to model-based RL methods.

State representation. The state representation provides full information of the system of vehicles
in the network, and takes advantage of state equivalence classes, explained in Section 3. For a
network of vehicles in a single lane setting, the state consists of a vector of velocities v and absolute
positions x for each vehicle in the network, ordered by the absolute position of each vehicle. Note
that the absolute position is defined relative to a pre-specified starting point for the network. For
a network of vehicles in a multi-lane setting, a vector of lane numbers l for each vehicle is also
added to this representation. Let sorted(x) denote the sequence of indices by ascending order of
the values in vector x. Then, the overall state representation is s := (vi, xi, li)i∈sorted(x) ∈ R3k.
Partially observable settings are out of the scope of this work, as this article studies possible learned
behaviors rather than focusing on the design of practical controllers.

Action representation. The action representation permits automated vehicles to perform lateral
and longitudinal actions in the traffic network. In a single lane setting, the action space simply
consists of a vector of requested accelerations c ∈ [cmin, cmax]k, where k is the number of auto-
mated vehicles, bounded between certain minimum and maximum acceptable accelerations. If
the scenario contains more than one lane, a vector of lane changing directions d ∈ [−1, 1]k is also
provided. The lane of the vehicle is then updated as follows: lt+1 = lt + round(d), thus encoding
actions {left, stay, right}. The lane change updates are restricted to 1) existence of the lane, and 2)
a lane change cooldown duration, which prevents lane changes in quick succession. The actions
a = (c, d) ∈ R2k are applied to agents (automated vehicles) in order of absolute position.

Reward function. We choose a reward function to encourage high system-level velocity. This
function measures the deviation of all vehicle velocities from a user-specified desired veloc-
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ity. Moreover, in order to ensure that the reward function naturally punishes the early termina-
tion of rollouts due to collisions or other failures, the function must have a non-negative range
r : S × A → R≥0. This is done by subtracting the deviation of the system from the desired ve-
locity from the peak allowable deviation from the desired velocity. Additionally, since the velocity
of vehicles are unbounded above, the reward is bounded below by zero, to ensure nonnegativity.
Define vdes as the desired velocity, 1n a vector of ones of length n, n as the number of vehicles in
the system, and v as a vector of velocities. The reward function (with abuse of notation for clarity)
is given as

r(v) = max{0, ||vdes · 1n||2 − ||v − vdes · 1n||2} (3)

3 State equivalence classes
We define a state equivalence class to be subset of states T ⊆ S such that for any s1, s2 ∈
T , π∗(s1, a) = π∗(s2, a) for all actions a ∈ A. Define C to be a set of canonical states of the
state space S; for each equivalence class T , there exists exactly one state in C, that is, |T ∩ C| = 1.
We call T : S → S a canonical projection mapping if T (s) ∈ S ∩ C,∀s ∈ T . Then, we call
s ∈ S ∩ C the canonical state for state equivalence class T . This concept is analogous to specific
solutions in constraint elimination in constrained convex optimization; C is analogous to particular
solutions, and T is analogous to a mapping from an arbitrary solution to the particular solution (by
projecting from the nullspace).

State equivalence classes arise commonly in multi-agent settings due to the redundancy in state
and action information exhibited by arbitrary ordering of agents, which may occur due to random
initialization, lane changes, or turns in the mixed-autonomy traffic setting. Such redundancy can
lead to a combinatorial explosion in equivalent states. This selection of a canonical state effectively
reduces the combinatorial number of states in each equivalence class to a single state. By learning
for canonical states, the policy learns for all states in the respective equivalence classes, thereby
reducing the sampling complexity of learning algorithms. However, the problem of finding and
reducing such symmetries in MDPs is in general NP-Hard [19].

We now demonstrate the use of this concept in the mixed-autonomy problem. In the mixed-
autonomy traffic problem, a naive state representation, for instance a vector of vehicle positions
and velocities, implicitly encodes an index for each human-driven vehicle. However, swapping the
indices of any two human-driven vehicles yields a change in the state representation but should not
change the behavior of the learning agents (and could result from lane changes). Thus, with this
state representation, the state equivalence classes are closed under pairwise swaps of non-automated
or automated agents. In the ring road and figure eight settings, we choose a canonical state which
orders non-automated agents based on absolute distance, followed by automated agents ordered
on absolute distance (thereby yielding a projection mapping T (·)). Swapping the indices of two
automated or two non-automated agents then leaves the resulting state unchanged. Unfortunately,
even though ordering by absolute distance resolves the symmetry reduction problem in these special
cases, this solution may not generalize to more complex network structures and is an open problem.
For instance, absolute distance can be defined for the closed circuit networks studied in this article,
but is less clearly defined for a large complex network or even for a road with many lanes.

An alternative approach not explored in this article is to discretize the space and treat the obser-
vation space as an image-like representation. Both representations preserve much of the spatial
information in the state. While this approach resolves the issue of combinatorially similar states in
multi-agent environments, an image-like representation exhibits different challenges, such as learn-
ing fine-grained and high-dimensional control. Levine et al. [20] interprets an image-like represen-
tation as a partial observation, from which the true state information can be inferred or used in an
end-to-end manner. Related is the pixel-to-torques problem; [21] uses a deep auto-encoders to learn
a closed-loop control policy from pixel information only, and could be composed with our problem
setup to work with pixel inputs.

4 Mixed-autonomy traffic scenarios
4.1 Network configurations
Three traffic networks are studied: a ring road, a multi-lane ring road, and a figure eight.

Ring Road. The ring road network consists of a circular lane with a specified length, similar to
that of Sugiyama et al. [22]. A visual representation of the scenario can be seen in Figure 1a.

4



(a) Ring Road (b) Multi-lane Ring Road (c) Figure Eight

Figure 1: Network configurations

Multi-lane Ring Road. Multi-lane ring roads are also implemented (See Figure 1b); these net-
works contain two or more lanes and permit lane changing.

Figure Eight. The figure eight network is an extension of the ring road network: Two rings, placed
at opposite ends of the network, are connected by an intersection with road segments of length equal
to the diameter of the rings. A visual representation of the scenario can be seen in Figure 1c. If two
vehicles attempt to cross the intersection from opposing directions, the dynamics of these vehicles
are constrained by right-of-way rules provided by SUMO.

4.2 Scenarios
This section details the learning scenarios studied in this article.

Single-lane ring road with one automated vehicle. Experimental work involving 22 human-
driven vehicles driving on a ring of length 230 m has shown that similar dynamical systems produce
instabilities (also called stop-and-go waves) [22] (See Figure 3a). In order to prevent the breakout of
instabilities in the network, a single human car is replaced by an automated vehicle. In Section 5,
we give an upper bound on the equilibrium velocity for vehicles in a single lane ring, which serves
as a performance measure for our learned policy.

Single- and multi-lane ring road with strings of automated vehicles. This scenario examines
the effect of positioning multiple automated vehicles side-by-side. In the single-lane case of Fig-
ure 1a, a total of 22 vehicles on a 230 m length road are studied. This scenario contains strings of
(consecutive) multiple automated vehicles; automated vehicle strings of size 3-11 are studied. The
multi-lane scenario is the same, except with twice as many lanes and vehicles.

Mixed-autonomy figure eight. A figure eight with a ring radius of 30 m and total length of 402 m
is studied. The network contains a total of 14 vehicles. We study various levels of mixed-autonomy.

5 Theoretical performance bound
Consider a single-lane ring road with na automated vehicles and nh human-driven vehicles, de-
scribed in the single-lane scenarios in Sections 4.2 and 4.2. Let all the human-driven vehicles follow
longitudinal dynamics, such as the Intelligent Driver Model (IDM) [14]. Then, denote v̂e(se) the
equilibrium velocity, which may be a function of the equilibrium headway se [23].

Then, an upper bound on the average velocity of this mixed-autonomy system is as follows:

Vna,nh
= v̂e

(
L− naLveh

nh

)
, (4)

where L is the total length of the ring and Lveh is the length of each vehicle. Conceptually, this
is equivalent to the equilibrium velocity attained if the automated vehicles were removed from the
network and their cumulative length were added to one of the human vehicles. In the fully human-
driven setting, the upper bound V0,N is exactly the equilibrium velocity of the system and, in such a
setting, the bound is tight.
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6 Numerical results
We study analytically challenging settings, which push the limits of control theoretic analysis, in-
cluding multi-lane settings and mixed-autonomy intersection control. We first describe the ex-
perimental configuration chosen and implementation details. We then present the numerical results
on maximizing velocity in each of the above scenarios and demonstrate the convergence improve-
ment seen by using state equivalence classes. We show the resulting emergent behaviors observed
in mixed-autonomy traffic environments, including the ability of autonomous vehicles to stabilize a
ring road, to tailgate, to platoon, and to efficiently space vehicles before an intersection.

Our experiments extend the computational framework from [24] for running deep RL experiments
on traffic microsimulation, which interfaces RL library rllab [25] and microsimulator SUMO [16].
For all experiments, we use linear feature baselines as described in [25] and Trust Region Policy
Optimization [10] for learning the policy, with discount factor γ = 0.999 and step size 0.01. A
diagonal Gaussian MLP policy is used with hidden layers (100, 50, 25) and tanh non-linearity.

(a) Single Lane Ring (b) Multi Lane Ring (c) Figure Eight

Figure 2: Ordering the observations by position accelerates the convergence of the RL algorithm and allows
the algorithm to escape the local maximum of the unordered observations.

State equivalence classes. The learning curve in the multi-lane setting (Figure 2b) demonstrates
that learning for state equivalence classes by ordering the observations speeds up the convergence of
the RL method. The state equivalence classes also allows the algorithm to move past local maxima.

Stabilization of the ring. In the presence of 21 string unstable human-driven vehicles, a single
automated vehicle eliminates the stop-and-go waves and stabilizes the ring when provided the reward
function of Equation (3), as shown in Figure 3. Notably, the automated vehicle learns to tailgate its
preceding vehicle and uses a safe distance less than that of the human drivers (see the magenta
vehicle in Figure 1a), thereby allowing the average velocity of vehicles in the ring to exceed the
theoretic equilibrium velocity of the system (an unstable equilibrium in the absence of external
control), as shown in Figure 4a. As predicted, the automated vehicle remains below the average
velocity upper bound derived in Section 5 (black dotted line). Additionally, the reward function in
Equation (3) successfully encourages automated vehicles to avoid collisions.

In the presence of additive Gaussian acceleration noise in the human models, we find that a single au-
tomated vehicle is still able to achieve shorter headways than the average human vehicle (tailgating)
and still succeeds in stabilizing the ring near or at the equilibrium velocity. Surprisingly, this implies
that, in a setting with multiple automated vehicles, not much benefit is expected from spreading the
vehicles out among the human vehicles. This implies that a single damping component (via the
policy for the automated vehicles) is sufficient for stabilizing the overall dynamical system, which
consists of a cascade of n nonlinear systems. Experimentally, we thus study a localized the setting
where the automated vehicles are initialized in a string. Observing the same average velocity in the
general setting requires further experimental confirmation. Our results demonstrate the potential for
machine learning techniques to sometimes exceed groundbreaking explicit controllers obtained by
classical control theory [26, 27], which successfully stabilize the ring at or below the equilibrium
velocity.

Platooning. In the single-lane ring described in Section 4.2, a string of automated vehicles ex-
hibits further improvement to the average velocity. As demonstrated in Figure 4b, the string of
automated vehicles exhibits platooning behavior, thereby further reducing roadway utilization and
thus permitting an even higher velocity for the human-driven vehicles. In a multi-lane setting, in
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(a) 22 human-driven vehicles (b) 21 human-driven, 1 automated vehicle

Figure 3: A total of 22 vehicles are place in a ring road of length 230 m. Each line in the space-time diagrams
represents the position of a specific vehicle as a function of time. Once a vehicle crosses the entire length
of the ring, its position is reset to zero. Left: In the absence of automated vehicles, the inherently unstable
human-driver vehicles experience stop-and-go traffic. Right: A single automated vehicle stabilizes a string of
string unstable vehicles, when provided with the reward function in Equation (3).

(a) Average velocity (1 AV) (b) Average velocity (multiple AVs)

Figure 4: Left: In a single lane ring with one automated vehicle (AV) and 21 human driven vehicles, the
automated vehicle tailgates its preceding vehicle with a safe distance less than that of the human drivers, thereby
allowing the average velocity of vehicles in the ring to exceed the theoretic equilibrium velocity of the system.
Right: Having multiple consecutive automated vehicles exhibits further improvements in average velocity,
even for relatively few automated vehicles. The automated vehicles are found to platoon together.

addition to platooning together, the automated vehicles learn to evenly distribute themselves among
the lanes which ensures that each lane in the network benefits from the same level of platooning, as
shown in Figure 1b (magenta vehicles).

Efficient spacing at the intersection. In a figure eight scenario (described in Section 4.2), we
examine the behavior of vehicles crossing the intersection. In the mixed-autonomy setting, a single
automated vehicle slows or stops entirely to allow all other vehicles to uniformly space themselves
behind it. The automated vehicle exploits the dynamics of the human-driven vehicles to travel at
a velocity just slow enough to allow all vehicles to pass through the intersection without stopping
for the other direction of traffic, and just fast enough that all the available roadway (without causing
weaving traffic) is used by the vehicles, which corresponds to half the length of the network. This
leads to a snake-like behavior in the figure eight and achieves a system-level (average) velocity
of 8.75 m/s with one automated vehicle and 13 human-driven vehicles (as compared to 5.48 m/s
with no automated vehicles). Relatedly, model-based approaches have permitted the derivation of
vehicle weaving behavior for fully automated intersections [28]. However, there is no such result
for a mixed-autonomy intersection.

7 Related Work
Multi-agent systems [29] is a rich modeling framework, which can capture the complexities of
organism dynamics and social organization. When fused with learning frameworks such as deep RL,
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(a) 14 human-driven vehicles (b) 13 human-driven, 1 automated vehicle

Figure 5: A total of 14 vehicles are placed in a Figure Eight road network of ring radius 30 m (total road length
of 402 m). Position 0 in the above time-space diagrams denotes the location of the intersection, and vehicles are
traveling towards it from two different directions. Left: In the absence of automated vehicles, the right-of-way
model of the traffic simulator induces a stop-sign-like intersection behavior, generating queues at either sides
of the intersection. Right: With a single automated vehicle, the emergent behavior observed is efficient vehicle
spacing, which is seen to be more efficient than intersection yielding behavior (with respect to velocity).

multi-agent learning systems [30] have the potential to exhibit many interesting emergent behaviors.
Mordatch and Abbeel demonstrate the interesting emergence of compositional language from multi-
agent systems [31]. Peng et al. demonstrate emergent combat tactics in the multi-agent environment
of combat scenarios in the real-time strategy game StarCraft [32].

In the context of traffic problems, RL has been explored in [33], which demonstrates the use of
multi-agent RL for ramp metering and matches the performance of state-of-the-art techniques us-
ing feedback control. Additionally, Steven and Yeh explore RL on traffic lights to increase traf-
fic flow through intersections [34]. Deep learning methods [35] are used in several other aspects
of transportation, including vision for self-driving cars [36], traffic flow prediction [37, 38], and
origin-destination prediction [39]. For an overview on neural and non-neural statistical methods in
transportation, we refer the reader to [40].

Classical techniques for vehicle controller design, such as adaptive cruise control (ACC) [6] and
cooperative ACC (CACC) [41], typically optimize local metrics such as driver comfort or local fuel
consumption, and the approaches include model predictive control for steering control [42, 43] and
traffic control with automated vehicles [44, 45, 46], reservation and polling systems [47, 28], and
frequency domain analysis [48, 49]. Recently, a few studies have started to use formal techniques
for controller design for system-level evaluation of mixed-autonomy traffic, including state-space
[26] and frequency domain analysis [50]. There are also several modeling- and simulation-based
evaluations of mixed-autonomy systems [51, 52, 53]. The present article presents the first study of
system-level optimization of mixed-autonomy traffic through modern machine learning techniques.

8 Conclusions

This article studies the use of state-of-the-art machine learning techniques on control of road traffic.
In particular, we study emergent behaviors of automated vehicles in a mixed-autonomy environment
through the use of model-free RL methods. Understanding emergent behaviors in such complex sys-
tems is an important and often overlooked part of understanding the impact of automation on trans-
portation systems. By investigating a variety of scenarios, behaviors such as stabilization, tailgating,
platooning, and efficient vehicle spacing at intersections have emerged as useful behaviors for im-
proving the system-level velocity of traffic. We additionally demonstrate that RL has the potential
of sometimes exceeding performance measures based in control theory for fully-human traffic. Nu-
merous extensions are still needed, however, to understand the potential impact of automation on
transportation systems. Topics of future research include learning policies which generalize across a
variety of traffic scenarios, studying other system-level and local objectives, studying mixed control
of automated vehicles and infrastructure, and studying effects at the scale of city networks. Param-
eterized policies can also be used to study settings with a variable number of vehicles by introducing
a pooling component to the policy, similar to [31], or by using recurrent policies [54].
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