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Abstract: In recent times, Convolutional Neural Network (CNN) based ap-
proaches have performed exceptionally well in many computer vision related
tasks, including classification and segmentation. These approaches have shown
that given enough training data and time, they can often perform at a level sig-
nificantly higher than the alternative methods. However, in the context of robotic
learning, it is commonly the case that both time and training data are limited. In
this work, we propose a learning approach that is more suitable for robotic learn-
ing; it substantially reduces the time required to learn and provides much higher
performance when training data is limited. Our method combines random forests
with deep convolution networks, leveraging the strengths of both frameworks. We
develop a method for generating derivatives from our highly non-linear forest clas-
sifier which in turn enables training of the CNN. Furthermore, our method allows
leaf distributions in the ensemble classifier to be trained jointly with one another
using Stochastic Gradient Descent (SGD), allowing for parallel training of a large
number of tree classifiers at once. This results in a drastic increase in training
speed. Our model demonstrates significant performance improvements over pure
deep learning methods, notably on datasets with limited training data. We ap-
ply our method to the outdoor and indoor segmentation datasets of KITTI and
NYUv2-40, outperforming multiple pure deep learning methods whilst using a
fraction of training time normally required.

Keywords: Fast Learning, Decision Forests, Segmentation

1 Introduction

Deep learning approaches have shown success in learning both feature representations together with
their classifiers, yielding large performance gains over classical methods that rely on conventional
feature descriptor and classifier frameworks [8, 13]. However, these models are often difficult to
train, both in terms of the training time required as well as amount of data necessary to ensure
generalisation in the trained model [28]. In robotic learning, situations arise where training time
is limited or accurate training data is hard to obtain. Hence, whilst effective, pure deep learning
approaches can come up short for these types of robotic applications.

Deep learning has been successfully applied to semantic segmentation tasks [15, 19] - a challenge
which plays a vital role in scene understanding for robots where learning the spatial information
in an environment is as important as understanding the semantic information within it. Robotic
segmentation datasets are often cluttered with many classes and are considered challenging due to
the high ratio of classes to training data [6, 27]. Furthermore, due to the nature of segmentation tasks,
the amount of training data available is limited by the difficulty of providing accurate labeled data
to learn from [3, 27]. Despite this, research towards investigating approaches that generalise well
when there is insufficient training data available has been limited. The popular approach for training
deep neural networks for semantic segmentation tasks with limited training data involves fine-tuning
from network weights trained on a much larger, more general dataset [1, 15, 20]. However, even this
does not properly address the situation when the training data is too limited to sufficiently fine-tune
the network to perform adequately on a given task.
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In this paper, we present a learning approach which not only dramatically reduces time required
to learn, but significantly outperforms many pure deep learning methods on datasets with limited
training data. Our method learns feature representations from a CNN which are used to train a
decision forest framework. We formulate a method which enables the joint training of both features
from the CNN together with a decision forest classifier, unifying the two different frameworks and
training the model end-to-end. To this end, we present Fast Residual Forests (FRF) which provides
the following benefits:

e It jointly optimises information across all the leaf node predictions of trees in the ensem-
ble, allowing for large numbers of tree classifiers to be trained in a parallel (Section 3.2),
drastically reducing training time.

e [t combines highly non-linear random decision forests with the convolutional weights of
a CNN and uses a novel approach to train the whole system via backpropagation (Section
3.3).

o [t demonstrates a significant increase in performance on datasets with limited training data,
such as the KITTI 6-class and NYUv2 40-class segmentation datasets, when compared to
multiple pure deep learning methods (Sections 4.1 & 4.2).

2 Related Work

Random Forests in Segmentation Random forests have found a wide use of applications in
vision-related problems, including segmentation. The early work of [26] used random forests to
efficiently generate local pixel-wise priors which were then refined by graph-based methods to in-
fuse them with global contextual information. In [24], single-histogram class models were mapped
within a random forest classifier for segmentation tasks. [10] used random forests to learn struc-
tured class labels which incorporated joint statistics around a small neighbourhood and used this to
perform semantic labelling. [11] enriched the input space with intermediate predictions from a ran-
dom forest and used this feature space to perform semantic segmentation. [16] used random forests
to search for boundaries in a high-dimensional feature space, using these boundaries to perform
segmentation on tumors in medical images.

Deep Learning with Decision Forests As deep learning rose to prominence, it quickly became
the de facto standard for several vision related tasks, including semantic segmentation. Initial work
used the strong features learned by neural networks and leveraged their rich information to train
conventional, off-the-shelf classifiers [4, 6, 7]. Following this, end-to-end deep methods which
jointly trained CNN features in parallel with a classifier emerged as a natural progression from the
typical decoupled frameworks of CNN extractors and classifier pairs [15, 19, 20, 25]. Since then,
works in the literature have sought to train conventional CNNs with methods inspired by decision
trees [9, 18, 22]. In contrast, our work seeks to directly combine deep learning with decision forest
classifiers; most notably, it shares similarities with [12] and [23]. [23] replaced the decision nodes
in decision trees with multi-layer perceptrons and used these modified forests to perform semantic
segmentation. [12] reformulated split node functions as a soft, differentiable stochastic function,
enabling backpropagation to learn both weights in the network and a decision forest classifier. In
contrast to [12] and [23], our method does not modify the hard split function found in conventional
decision trees and reformulates the problem of learning leaf node distributions to allow for paral-
lelised training of thousands of tree classifiers at once.

3 Theoretical Framework

3.1 Decision Forest Solver

Random Trees Decision trees consist of a set decision nodes and leaf nodes; decision nodes dic-
tate how data is routed down the tree, by splitting data to their corresponding left or right child
decision nodes, whilst leaf nodes hold prediction distributions. We define the set of decision nodes
as D = {do,--- ,dn—_1}, each holding a decision function d(z; ), where 6 are the parameters of
the decision node. In binary decision trees, a decision function is defined as: d(z;6) : X — [0,1],
which routes an instance of data, z, to its respective left or right child decision node. This process



is repeated from the start root decision node until the instance reaches a terminating leaf prediction
node ¢ = D(x, ©). This is illustrated in Fig.1. The leaf nodes in the tree hold class label probability
distributions, ¢ = Q(¥), which serve to classify unseen incoming instances of data. These probabil-
ity distributions are formed from the training set of observed ground truth class labels of instances

routed to them: 5(D OL
Q) = POk (1)

where ng = . 6(D(z;), £) is the number of samples routed into leaf node ¢, and L;; is the observed
class label for instance 7 in class j such that:
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Figure 1: Decision tree routing of training instances. Actual instance routing path (green) and
divergent instance path routing (red) highlighted is discussed in Section 3.3

Random Forests In a Random Forest (RF), an ensemble of 7 random tree classifiers are combined
to give a single classification output. A commonly adopted approach is to average the result across
trees in the ensemble:

:
P(class jlz, 0, Q) %ZQt(Dt(x,@t))j 3)
t=1

where !, D! and ©° are the respective distributions, decisions and parameters of tree ¢, while ©
and ( are the collected parameters of all trees’ decisions and distributions.

Random Residual Trees For each decision node, we randomly index into the input feature’s set
of channel values. Positive channel values route the feature right; otherwise the feature is routed
to the left. For leaf nodes, we generate residual distributions in our leaf prediction nodes which
are designed to combine multiplicatively across the ensemble. Hence, our ensemble gives a final
prediction for an instance z as:
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3.2 Learning Prediction Nodes

Each residual distribution is optimised so that it combines with other residuals in other trees in the
ensemble to form an approximation of the underlying data. Given an instance i and a decision tree
d from the ensemble that 7 is to be routed through, we define the following terms:

e Our stored residual distributions in each leaf prediction node for each class j is given by
qs-

e P is the logistic value of class j for instance i from Equation (4) before the residual
distribution value g; from tree d is added.



° P; is the normalised probability of class j for instance x, which comprises of the combined
residual distributions from all trees in the ensemble. This includes the residual distribution
value g; where:

pt— ROT'
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Hence, for each residual {g;} contributing to the final prediction, we look to minimise the following
log-loss function:

(&)

L=-— Z Lijlog (P) (6)
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Subsequently, learning of our prediction nodes in the ensemble of trees can be constructed as a
convex optimisation problem. We use Stochastic Gradient Descent (SGD) to jointly optimise all
residuals distributions in all leaves, across all trees in the ensemble. Thus, for the class [ of a
particular instance ¢, we can generate its first-order derivatives of the log-loss with respect to the
residual, ¢;:
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Where p;; is the ground truth probability of instance ¢ for a given class [. We use Stochastic Gradient
Descent (SGD) to minimise our log-loss with respect to the residual distributions stored in our
ensemble of trees:

o =g + o (®)
Where p is the momentum and ¢ is an update term given by:
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Where 1 > 0 is the learning rate and w > 0 is the weight decay. This allows us to build all residual
distributions in all trees in the decision forest in parallel, where each residual contribution from each
tree is jointly optimised in the context of contributions from all other trees in the forest.

3.3 Learning CNN Weights

Conventionally, weights in a CNN are learned via backpropagation using a softmax layer which
provides a loss to drive the training. Here, we replace the softmax layer with a decision forest which
serves to provide the loss function to enable learning of the weights by backpropagation.

Loss Function We generate derivatives to drive training by considering an actual and divergent
loss from each node in each tree in the decision forest. For each instance routed through each tree in
the decision forest, we define the actual loss of that instance to be the loss computed if the instance
was routed normally through each tree. We define the divergent loss assigned by a node in the tree
to be the computed loss if for a node n in tree ¢, the instance is instead routed the other direction
(but proceeding through all other nodes in the tree as normal). This is illustrated in Fig.1. Using
this concept, we can form an approximation of the loss function for our decision forest which is
differentiable and use this to generate derivatives to drive training of the weights in the CNN. For
each input instance, we approximate the loss function of our forest solver as a blend of sigmoids of
the actual and divergent loss, for a given decision node n:
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Where z is the feature value, s,, is the split threshold which the feature is compared against for a
given decision node, d,,. For x < s,, L; and L are the respective actual and divergent losses; for
T > sp, L1 and Ly are the respective divergent and actual losses. A indicates the steepness of the
sigmoid function which dictates how close a feature needs to be to its respective threshold to affect
the backward derivative generated.




Backward Gradients We can use the loss function defined in Eq. (10) to generate backward
derivatives and use SGD to train the weights in the CNN. The first-order derivatives of the loss L,
with respect to the feature activations z is given by:
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Eq. (11) indicates that for a given feature activation x, the backward gradient generated is dependent
on the difference between actual and divergent losses computed at the node n the instance was
diverted on. For any divergence point, if the divergent loss is lower than the actual loss, this indicates
that the feature activation would be better off on the other side of its threshold value. Hence, a
gradient is generated which pulls x towards s,,, such that it may cross the threshold. Likewise, if the
actual loss is lower than the divergent loss, the gradient generated would push x away from s,,.

4 [Experiments

We use FCN-8s [15] as a feature extractor which we attach our forest classifier as a solver; FCN-8s
also serves as a baseline comparison in all experiments. All training experiments were performed
on a PASCAL GeForce GTX1080. We use features extracted from the £c7, conv5_3 and conv4_3
layers of the network in [15] to train our decision forest solver. For all our experiments, we build
three forests comprising of 1024, 512 and 256 10-level depth trees for each of the £c7, conv5_3 and
conv4_3 convolutional layers respectively. We train the ‘at-once’” FCN-8s model of [15] with default
specified hyperparameters (high momentum of 0.99, mini-batch size of 1, weight decay of 5e—4 and
fixed learning rate of 10~). For our model, we use the exact same hyperparameter settings, and we
set our value of A = 1 for all experiments. We initialised both our model and [15] with the same
network weights, trained on PASCAL-Context [17].

To demonstrate the usefulness of our method in the context of robotic learning on limited train-
ing data, we present results in a small-size outdoor scene segmentation dataset (KITTI) [3] and a
medium-size indoor scene segmentation dataset (NVYv2) [27]. Our purpose is to illustrate value of
our method in applications to robotic learning; as such, we compare against methods that generate
pure unaries (without pre-processing on the input such as multi-scaling and data augmentation, as
well as post-processing on the output in the form of CRFs). This allows for a more direct and even
comparison across learning approaches and highlights the improvements we gain in speed of learn-
ing and segmentation performance over our baseline model. To measure our performance, we use
the metrics defined in [15]: mean IU, mean accuracy and global pixel accuracy.

4.1 KITTI

KITTT is a small outdoor scene segmentation dataset with 11 classes, comprising of 146 images in
total [3] (100 training and 46 testing images). We follow [30] and exempt under-represented classes
like pole and pedestrians for evaluation. This turns the dataset into a 6 class problem and we follow
[30], using intersection-over-union (IU) as a measurement of performance.

We compare our results in Table 1, outperforming all other listed methods significantly in 4 out of
6 classes and offering a significant improvement to the mean IU metric. We train the model of [15]
for 20,000 iterations after which it shows performance improvements over the graph-based methods
of [21, 29] and [30]. Comparatively, our approach further improves on the result of [15], using the
same amount of training data and vastly less training iterations (2000 iterations).

Next, we demonstrate improvements towards speed of learning that our method offers. The graph
on the left side of Fig.3 shows the relative performance of our method compared to [15] across a
range of training iterations. We can see that given the same base learning rate (10~%), our model
learns more than an order of magnitude faster than [15]. After approximately 20,000 iterations, the



‘ sky ‘ building ‘ road ‘ sidewalk ‘ vegetation ‘ car ‘ overall

Ren et al. [21] 87.4 78.7 72.6 413 80.9 59.5 71.9

Tighe et al. [29] 81.41 2.7 51.2 17.3 69.9 523 60.7

Wang et. al [30] 88.6 80.1 80.9 43.6 81.6 63.5 74.8
FCN-8s-heavy (20k iterations) [15] | 78.9 84.4 87.3 68.3 86.6 80.4 81.0
Ours (2k iterations) 84.5 85.9 92.3 78.8 87.8 80.3 84.9

Table 1: KITTT test data performance results: intersection-over-union

model of [15] begins to converge at a performance point of around 81% mean IU. In contrast, our
model reaches this performance point a lot earlier (within 500 iterations of training) and continues
to improve in performance for another 1,500 iterations before converging at the significantly higher
point of approximately 85% mean IU. This represents a reduction by a factor of 40 in the number of
training iterations required by our model compared to [15].

Table 4 shows the timings for both training and inference between our model and the model in
[15]. We drastically reduce the training time required, requiring only 4.81 minutes compared to
[15], which requires 150.11 minutes to reach the same mean IU performance point of 81%. This
represents an increase in training speed by a factor of approximately 31. Inference across both
models is approximately the same; we gain a small reduction of 2.67 milliseconds in inference time
per inference iteration compared to the model in [15].

Ablation Study for Tree Depth Additionally, we perform an ablation study on performance of
our model versus tree depth selection. Table 2 shows the mean IU performance from shallow trees
(1 depth) up to the relatively deep trees used in our final evaluation (10 depth). This shows some
limitations of our model - performance converges to approximately the same mean IU (84.5%),
regardless of tree depth up to 4 depth. However, for any depth shallower than 4 depth, mean TU
performance begins to suffer, indicating that our trees cannot be too shallow for proper learning to
occur. The results also seem to indicate deeper trees learn faster (iterations 100 to 500), possibly
due to more non-linearity in the classifier and higher modelling capacity.

No. of Training Iterations
Tree Depth ' —56—1560 T 500 | 1000 [ 2000
i 363 | 589 | 583 | 541 | 530
2 625 | 487 | 572 | 636 | 71.6
3 66.5 | 663 | 65.0 | 68.6 | 705
4 412 | 629 | 644 | 721 | 843
5 395 | 653 | 73.8 | 813 | 84.6
6 548 | 60.6 | 67.5 | 81.9 | 847
7 516 | 744 | 804 | 81.7 | 849
g 571 | 57.6 | 75.1 | 83.9 | 85.0
9 537 | 742 | 797 | 794 | 845
10 638 | 753 | 81.5 | 82.0 | 84.9

Table 2: Ablation study on tree depth for KITTI

4.2 NYUDv2

‘We now show that our method can be extended to larger, more complex scene segmentation datasets.
The NYUDV2 [27] dataset is a challenging 40 class indoor scene segmentation problem with pixel-
wise labels provided by [5], considered a medium-sized dataset (1449 total images). We use the
standard split of 795 training images and 654 testing images. First, we list our best results com-
parison in Table 3 - note that our method and [14] use only colour information for training whilst
[2, 6, 15] use the method of [6] to utilise additional depth information for training. We show that
we outperform all colour only methods by a significant margin across all metrics. Furthermore, we
even outperform methods that use both colour and depth information for training across the mean
accuracy and mean IU metric, and obtain a competitive result in global accuracy compared to [2].
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Figure 2: Qualitative results on KITTI Test data. The first and second rows show the test image and
corresponding ground truth segmentation respectively. The third row shows the output of [15] over
training iterations. Our model’s output is shown in the fourth row over the same training iterations.

pixel mean mean

acc. (%) | acc. (%) | IU (%)
Gupta et al. (RGB-HHA) [6] 60.3 35.1 28.6
FCN-32s-heavy (RGBD) [15] 61.5 424 30.5
FCN-32s-heavy (RGB-HHA) [15] 64.3 449 32.8
FCN-16s-heavy (RGB-HHA) [15] 65.4 46.1 34.0
Eigen ef al. (RGB-HHA) [2] 65.6 45.1 34.1
FCN-8s (100k iterations) (RGB) [15] 60.6 41.6 29.0
Lin et. al (Basemodel) (RGB) [14] 63.5 45.3 324
Ours (10k iterations) (RGB) 64.6 48.3 34.3

Table 3: NYUDvV?2 test results

We again offer a more in-depth analysis of the performance of our model against our baseline model
[15]. The graph on the right side of Fig.3 compares the performance of our method to [15] across
a range of training iterations. After approximately 100,000 iterations, the model of [15] begins to
converge at a performance point of around 29% mean IU (consistent with the published results in
[15]). Our model reaches this performance point much earlier (after approximately 4000 iterations
of training) and continues to improve in performance until 10,000 iterations of training, at a signifi-
cantly higher point of approximately 34% mean IU. This represents a reduction by a factor of 25 in
the number of training iterations required by our model compared to [15].

Table 4 shows the timings for both training and inference between our model and the model in
[15]. We improve on training time, using only 21.08 minutes compared to [15], which requires
533.21 minutes to reach the same mean IU performance point of 29%. This represents an increase
in training speed by a factor of approximately 25. We gain a significant reduction in inference time,

cutting inference down by more than 20 milliseconds per iteration of inference over the model in
[15].

Method KITTI NYUv2
Total training | Avg. inference | Total training | Avg. inference
time (min) time (ms) time (min) time (ms)
FCN-8s-heavy [15] 150.11 109.02 533.21 69.46
Ours 4.81 106.35 21.08 48.36

Table 4: Training and inference timings for KITTI and NYUv2
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Figure 3: Training iteration timings vs. mean IU performance on KITTI (left) and NYUv2 (right)
test data
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Figure 4: Qualitative results on NYUv2-40 Test data. The first and second rows show the test
image and corresponding ground truth segmentation respectively. The third row shows the output of
[15] over training iterations. Our model’s output is shown in the fourth row over the same training
iterations.

5 Conclusion

In this paper, we have presented an ensemble learning method for segmentation which demonstrates
vast improvements on speed of training. We introduce a hybrid-model which utilises the represen-
tational learning of CNNs together with the discriminating power of decision forests. Moreover, we
formulate a method that allows for end-to-end learning of both representations and leaf distributions
in our decision forest solver. We use this approach to demonstrate successful segmentation results on
the KITTI and NYUv2 datasets, outperforming multiple pure deep learning approaches and cutting
down training time by more than an order of magnitude.
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