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Abstract

In a typical Genetic Association Study (GAS) several hundreds to millions of genomic
variables are measured and tested for association with a given set of a phenotypic variables
(e.g., a given disease state or a complete expression profile), with the aim of identifying
the genetic background of complex, multifactorial diseases. These highly varying require-
ments resulted in a number of different statistical tools applying different approaches either
bayesian or non-bayesian, model-based or conditional. In this paper we evaluate dedicated
GAS tools and general purpose feature subset selection (FSS) tools including a Bayesian
model-based tool BMLA in a GAS context. In the evaluation we used an artificial data
set generated from a reference model with 113 genotypic variables that was based on a
real-world genotype data.

Keywords: Bayesian Networks, Feature Subset Selection, Genetic Association Studies

1. Introduction

The research on genomic variability received much attention in the past years as one of
the most promising areas of genetics research, and several tools were created to aid GAS
analysis, particularly the discovery of gene-gene and gene-environment interactions (for
a review on detecting gene-gene interactions see Cordell (2009), for an overview on the
Bayesian approach see Stephens and Balding (2009)).

c©2010 Hullam, Antal, Szalai and Falus.



Evaluation of a Bayesian model-based approach in GA studies

Earlier multivariate methods designed to detect associations between genotypic variables
and the target variable in GAS include MDR (Multifactor Dimensionality Reduction, Moore
et al. (2006)), a nonparametric model-free data mining method, which can also be used in
conjunction with several filters such as ReliefF (Robnik-Sikonja and Kononenko, 2003;
Moore and White, 2007). Other GAS methods such as BEAM (Bayesian Epistasis Associ-
ation Mapping, Zhang and Liu (2007)) are based on computing posterior probabilities (i.e.,
the probability whether each marker set is associated with the disease) via a Markov chain
Monte Carlo method. Another approach is to compute metrics that indicate associations,
e.g. Bayes factors such as in the case of BIMBAM (Bayesian IMputation-Based Association
Mapping, Servin and Stephens (2007)).

In this paper we compare the performance of these methods and our previously intro-
duced Bayesian network based method in a typical GAS context assuming that the primary
goal is (1) the analysis of the relevance of input variables (e.g. SNPs) w.r.t. the target
variable (e.g. an indicator of a certain disease); and (2) the exploration of the interdepen-
dencies of relevant variables. Note that there are other applicable methods such as PIA
(Polymorphism Interaction Analysis, Mechanic et al. (2008)), and an interaction search
method based on external, a priori networks (Emily et al., 2009) that were not included in
this comparative study.

Earlier, we presented the methodology of the Bayesian Multilevel Analysis (BMLA) of
the relevance of input variables in Antal et al. (2006); Millinghoffer et al. (2007). BMLA
enables the analysis of relevance at different abstraction levels: model-based pairwise rel-
evance, relevance of variable sets, and interaction models of relevant variables. In the
Bayesian model averaging framework each of these levels corresponds to a structural prop-
erty of Bayesian networks (i.e. Markov Blanket Memberships, Markov Blanket sets, and
Markov Blanket graphs respectively). The essence of BMLA is the estimation of posteri-
ors of these structural properties by using a Markov chain Monte Carlo method (for details
see Antal et al. (2006)). Based on the resulting estimated posteriors the relevance of subsets
of input variables can be assessed. Furthermore, Markov blanket graph posteriors provide
principled confidence measures for multivariate variable selection and facilitates the identi-
fication of interaction models of relevant variables (for an extension with scalable structural
properties see Antal et al. (2008)).

Due to its model-based semantics, the BMLA method indicates ”direct” associations,
and omits the transitive dependencies, which results in more peaked posteriors than in con-
ditional models working with associations. Furthermore, its model-based nature facilitates
the application of more powerful imputation methods and prior incorporation. In contrast,
conditional models are typically simple such as logistic regression or black boxes, and the
implementation of imputation methods and prior incorporation requires additional efforts.
Finally, as a Bayesian approach, it has an in- built automated correction for the multiple
testing problem (i.e., the posterior is less peaked with increasing model complexity and
decreasing sample size) contrary to the hypothesis testing framework.

From another point of view, the Bayesian statistical framework is ideal for trading sam-
ple complexity for computational complexity (i.e., applying computation intensive model-
averaging to quantify the sufficiency of the data). Bayesian conditional methods e.g. using
logistic regression or multilayer perceptrons, are widely used in biomedicine and in GASs
(e.g., see Antal et al. (2003); Kooperberg and Ruczinski (2005); Balding (2006); Province
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and Borecki (2008); Park and Hastie (2007); Stephens and Balding (2009)). Although the
conditional approach is capable of multivariate analysis and also copes with conditional
relevance and interactions, the model-based approach offers many advantages such as listed
below.

1. Strong relevance. Clear semantics for the explicit, faithful representation of strongly
relevant (e.g. non-transitive) relations (cf. associations)

2. Structure posterior. In case of complete data the parameters can be analytically
marginalized.

3. Independence map and causal structure. It offers a graphical representation for the
dependence-independence structure, (e.g. about interactions and conditional rele-
vance) and optionally for the causal relations (Pearl, 2000; Glymour and Cooper,
1999).

4. Multiple-targets. It is applicable for multiple target variables (Antal et al., 2008).

5. Incomplete data. It is applicable for incomplete data sets.

We investigated several probabilistic domain models with promising results (Antal et al.,
2006, 2008), relying on these properties of our model-based framework.

2. Probabilistic concepts for GAS

Despite the centrality of “associations” in GASs the refinements of this concept are hardly
gaining acceptance in biomedicine, such as strong and weak relevance (cf. non-transitivity
and redundancy), conditional relevance (cf. pure interaction), contextual relevance, mul-
tivariate relevance (cf. epistasis, complete interaction model, haplotype-level association)
or causal relevance. In the following paragraphs, we provide a partial overview on these
probabilistic concepts, for a detailed description see Antal et al. (2008).

We start with a pure probabilistic definition of relevance, which is defined in a model-
free, method-free, cost-free and data-free way (Kohavi and John, 1997).

Definition 1 (Relevance) A feature (stochastic variable) Xi is strongly relevant to Y , if
there exists some Xi = xi, Y = y and si = x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0
such that p(y|xi, si) 6= p(y|si). A feature Xi is weakly relevant, if it is not strongly relevant,
and there exists a subset of features S′

i of Si for which there exists some xi, y and s′i for
which p(xi, s

′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i). A feature is relevant, if it is either weakly

or strongly relevant; otherwise it is irrelevant.

A probabilistic definition of relevance can also be given for a set of variables X′ based
on the concept of Markov blanket (Pearl, 1988).

Definition 2 (Markov boundary) A set of variables X′ ⊆ V is called a Markov blanket
set of Xi w.r.t. the distribution p(V ), if (Xi ⊥⊥ V \ X′|X′)p, where ⊥⊥ denotes conditional
independence. A minimal Markov blanket is called MBSp(Xi) Markov boundary.
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For the representation of probabilistic relevance, Bayesian networks (BNs) are an ade-
quate choice, since their structural properties are capable of serving such a purpose (Pearl,
1988). They even allow the unambiguous BN representation of relevant variables under a
sufficient condition defined in Theorem 1.

Theorem 1 For a distribution p defined by Bayesian network (G, θ) the variables bd(Y,G)
form a Markov blanket of Y , where bd(Y,G) denotes the set of parents, children and the
children’s other parents for Y (Pearl, 1988). If the distribution p is stable w.r.t. the DAG
G, then bd(Y,G) forms a unique and minimal Markov blanket of Y , MBSp(Y ) and Xi ∈
MBSp(Y ) iff Xi is strongly relevant (Tsamardinos and Aliferis, 2003).

Note that in typical Bayesian scenarios (e.g., in case of Dirichlet distributions applied
in the paper to specify p(θ|G)), the graph-theoretic neighborhood bd(Y,G) is the unique
Markov Boundary with probability 1, i.e. the parameterizations encoding independencies
have the measure of 0 (Meek, 1995).

The induced (symmetric) pairwise relation MBM(Y,Xj , G) w.r.t. G between Y and Xj

is called Markov blanket membership. MBM(Y,Xj , G) indicates whether Xj is in bd(Y,G)
(i.e. Xj is an element of the Markov blanket set of Y ).

To include interaction terms into the dependency model of a given variable we proposed
the use of the Markov Blanket Graph (MBG) property, a.k.a. classification subgraph (Acid
et al., 2005; Antal et al., 2006).

Definition 3 (Markov Blanket Graph) A subgraph of Bayesian network structure G is
called the Markov Blanket Graph or Mechanism Boundary Graph MBG(Y,G) of variable Y

if it includes the nodes in the Markov blanket defined by bd(Y,G) and the incoming edges
into Y and into its children.

Finally, note that the definition of conditional relevance corresponds to the concept of
pure interaction.

Definition 4 (Conditional Relevance) Assume that X = X
′ ∪ C

′ is relevant for Y ,
that is (Y 6⊥⊥ (X′ ∪ C

′)), and (X′ ∩ C
′ = ∅). We say that X

′ is conditionally relevant if
(X′ ⊥⊥ Y ), but (X′ 6⊥⊥ Y |C′).

3. GAS Tools

To demonstrate the performance of BMLA compared to other available GAS tools we
present the results of a comparative study in Section 4. For this purpose we selected
two groups of tools that are capable of analyzing case-control type GASs based on SNP
measurements. The first group consists of dedicated GAS tools, designed specifically for
GAS analysis, and the second group consists of general purpose feature subset selection
methods that are applicable in this GAS context. In the following sections we give a short
description for the tools dedicated for GAS analysis.

• BEAM: Bayesian Epistasis Association Mapping 1.0 (Zhang and Liu, 2007): BEAM
uses a Bayesian partitioning model to select SNPs associated with a disease (i.e. the
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target variable) and their interactions, and computes the posterior probability that
each set is associated with the disease via a Markov chain Monte Carlo method.
http://www.fas.harvard.edu/ junliu/BEAM

• BIMBAM: Bayesian IMputation-Based Association Mapping 0.99 (Servin and Stephens,
2007): BIMBAM computes Bayes Factors for each SNP, and multi Bayes factors for
combinations of SNPs under a linear or logistic regression of target variable(s) on
SNPs.
http://stephenslab.uchicago.edu/software.html

• Powermarker 3.25 (Liu and Muse, 2005): PowerMarker contains a set of statistical
methods for SNP data analysis. It implements traditional statistical methods for
population genetic analysis and also some newly developed methods.
http://statgen.ncsu.edu/powermarker

• SNPassoc 1.5.8 (Gonzlez et al., 2007): SNPassoc is an R package that provides
tools for the analysis of whole genome association studies. It allows the identification
of SNP-disease associations based on generalized linear models (depending on the
selected genetic inheritance model) and the analysis of epistasis.
http://www.creal.cat/jrgonzalez/software.htm

• SNPMStat 3.1 (Lin et al., 2008): SNPMStat is an association analysis tool for case-
control studies. The program performs a standard association analysis and provides
estimated odds ratios, standard error estimates, and Armitage trend tests.
http://www.bios.unc.edu/ lin/software/SNPMStat

Furthermore, we also investigated some general purpose feature subset selection tools,
which are as follows:

• Causal Explorer 1.4 (Aliferis et al., 2003): Causal Explorer is a library of causal
discovery algorithms (such as HITON and IAMB) implemented in MatLab. The
algorithms are based on Bayesian Network learning theory, and can also be used for
variable selection for classification.
http://discover1.mc.vanderbilt.edu/discover/public/causal explorer

• MDR: Multifactor Dimensionality Reduction 2.0.7 (Moore et al., 2006): MDR is a
nonparametric and genetic model-free data mining method for detecting nonlinear
interactions among discrete genetic and environmental variables. The MDR software
also implements a couple of feature selection algorithms to aid the selection of relevant
variables. http://www.multifactordimensionalityreduction.org

4. Results

We demonstrate the capabilities of BMLA and compare its performance with other GAS
tools (presented previously) on an artificial data set, which consists of 5000 complete random
samples generated from a reference model containing 113 SNPs (genomic variables) and a
clinical variable Asthma. The reference model was learned from a real data set containing
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1117 samples, and the 113 SNPs were selected from the asthma susceptibility region of
chromosome 11q13 (Szalai, 2005).

The clinical variable Asthma served as the target variable, and the aim of the compara-
tive study was to identify all the relevant variables w.r.t. this target variable. There are 11
SNPs in total that are relevant and therefore are part of the MBG of Asthma (see Fig. 1).

Figure 1: Markov blanket of the reference model containing all relevant SNPs

Out of the 11 relevant SNPs, 5 are in direct relationship with Asthma (i.e. 4 children:
SNP11, SNP23, SNP64, SNP109 and 1 single parent: SNP110), and the remaining 6 are
pure interaction terms (SNP17, SNP27, SNP61, SNP69, SNP81, SNP85). The performance
of the tools was assessed by comparing their result set of relevant variables against the 11
relevant SNPs of the reference model. In order to measure the effect of varying sample size
(i.e. the sufficiency of the data) the computations were run on data sets with sample sizes
500, 1000 and 5000, where the smaller data sets are subsets of larger ones.

Fig. 2 presents the sensitivity for selecting relevant variables for each of the tested
dedicated GAS methods. Apart from the overall sensitivity, the sensitivity for identifying
relevant variable subgroups (i.e. direct relationships and pure interactions) is also shown.
Fig. 3 shows the accuracy of the GAS methods data set sizes 500,1000 and 5000.

The results confirm preliminary expectations, that is direct relationships are discovered
by almost all of the methods, while pure interaction terms are ignored by most. Fig. 4
presents the sensitivity measures and Fig. 5 displays the accuracy of the tested general
purpose feature subset selection (FSS) methods. The results indicate that the examined
FSS methods identify pure interactions at a significantly higher rate than dedicated GAS
tools.

Table 1 shows the sensitivity, specificity and accuracy of the five best performing meth-
ods using the complete data set of 5000 samples. Whereas there is only a slight difference in
terms of specificity among the methods, the difference in sensitivity is much more significant.
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Sensitivity of GAS Tools
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Figure 2: The performance of dedicated GAS tools: Sensitivity for selecting relevant vari-
ables. The figure indicates the sensitivity for identifying all associations, and
the two main subtypes separately, i.e. direct relationships and interactions us-
ing data sets consisting of 500, 1000 and 5000 samples. Methods are denoted as
follows: PMarker - PowerMarker, MSTAT - SNPMStat, ASSOC-L - SNPAssoc
using a log-additive inheritance model, ASSOC-D - SNPAssoc using a dominant
inheritance model.

Table 1: Sensitivity, specificity and accuracy of the five best performing methods with dif-
ferent parameter settings. The listed methods include BMLA, HITON-MB - with
G2 statistic and a varying local test set size k, MDR - with TurF and RelieF as two
pre-filters, interIAMB - based on mutual information(MI), and the Koller-Sahami
algorithm(KS).

Method Sensitivity Specificity Accuracy
BMLA MBM 1 0.99 0.9912
HITON-MB(G2, k=1) 0.7692 0.98 0.9558
HITON-MB(G2, k=2) 0.7692 0.99 0.9646
HITON-MB(G2, k=3) 0.6923 0.99 0.9558
MDR-TurF 0.6154 0.97 0.9292
MDR-Relief 0.5385 0.96 0.9115
interIAMB(MI) 0.4615 0.96 0.9027
KS(k=3) 0.4615 0.97 0.9115

Although in the examined case MBM based results are sufficient to successfully identify
the relevant interaction terms of the target variable, however, in several real-world domains
a broader, multivariate interpretation is required (e.g. for the discovery of gene-gene in-
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Figure 3: Accuracy of dedicated GAS tools. The figure indicates the accuracy of identi-
fying all associations, using data sets consisting of 500, 1000 and 5000 samples.
Methods are denoted as follows: PMarker - PowerMarker, MSTAT - SNPM-
Stat, ASSOC-L - SNPAssoc using a log-additive inheritance model, ASSOC-D -
SNPAssoc using a dominant inheritance model.

teractions) such as the investigation of MBS properties. Note that MBM probabilities are
normatively model-based, despite being pairwise descriptors, since they are generated by
Bayesian model averaging. Figures 6 and 7 display the specificity and the accuracy of the
10 most probable MBSs (estimated from the data) respectively for data set sizes 500,1000
and 5000. Note that even in the case of 500 samples the sensitivity of the top MBSs is close
to 1 ( for details see Table 2).

Table 2: Sensitivity, specificity and accuracy of the ten most probable MBSs.
500 samples 1000 samples 5000 samples

Top10 MBS Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc
MBS-1 0.909 0.720 0.739 1.000 0.990 0.991 1.000 0.970 0.973
MBS-2 0.909 0.790 0.802 1.000 0.980 0.982 1.000 0.980 0.982
MBS-3 1.000 0.780 0.802 1.000 0.980 0.982 1.000 0.960 0.964
MBS-4 0.909 0.730 0.748 1.000 0.980 0.982 1.000 0.960 0.964
MBS-5 1.000 0.760 0.784 0.909 0.980 0.973 1.000 0.960 0.964
MBS-6 1.000 0.780 0.802 1.000 0.970 0.973 1.000 0.960 0.964
MBS-7 1.000 0.770 0.793 1.000 0.970 0.973 1.000 0.950 0.955
MBS-8 1.000 0.770 0.793 0.909 0.970 0.964 1.000 0.970 0.973
MBS-9 0.909 0.810 0.820 1.000 1.000 1.000 1.000 0.970 0.973
MBS-10 0.909 0.770 0.784 1.000 0.980 0.982 1.000 0.980 0.982
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Sensitivity of general purpose FSS methods
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Figure 4: The performance of general purpose FSS tools: Sensitivity for selecting relevant
variables. The suffixes for the methods are as follows: G2 - based on G2 statistic,
MI - based on mutual information, Kn - uses a local test set size of n. Note that
Turf, Relief, Chi and Odds denote filters used for variable selection with MDR.
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Figure 5: Accuracy of general purpose FSS tools. The suffixes for the methods are the same
as in Fig. 4.

In terms of MBS posteriors, in the case of 500 samples, there are hundreds or thousands
of MBSs with low posteriors, i.e. the posterior curve seen on Fig. 8 is flat. The posteriors
for data sets with 1000 and 5000 samples are more peaked, but there are still numerous
MBSs with relatively high posteriors. Although MBSs provide a perfect multivariate view
of the examined domain, their cardinality is exponential, therefore their sufficient sample
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Figure 6: Specificity of the 10 most probable MBSs estimated from the data.
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Figure 7: Accuracy of the 10 most probable MBSs estimated from the data.

size is larger than that of MBMs (which have linear cardinality). This is the cause of
the phenomenon, that the posteriors for MBS properties are relatively flat compared to
posteriors for MBM properties (average posterior for members: 0.9834 and non-members:
0.0109). Note that there is also an intermediate level between MBMs and MBSs, the so
called k-MBS property with scalable polynomial cardinality, which we designed especially to
be able to select a posterior with appropriate peakness (for details see Antal et al. (2008)).
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Figure 8: MBS posteriors for data sets of 500, 1000 and 5000 samples.

5. Discussion

The results indicate that the general purpose FSS tools significantly outperformed the tested
GAS tools in terms of identifying interactions and conditional relevance in the examined
domain.

Basically none of the GAS tools have identified any of the 6 interaction terms of the
reference model successfully. Although BEAM produced a larger than zero posterior for 3
interaction terms (using 5 chains, 106 and 5∗106 steps for burn-in and length respectively),
these were not larger than 0.3 (and thus they were ignored). On the other hand, direct
associations were identified by most of the methods correctly. The variation of sensitivity
seen on Fig. 2 is due to SNP110, which could only be identified from the data set of 5000
samples.

As it can be seen from Table 1, the methods producing the best results all belong to the
FSS group. Among them, the best performance was achieved by BMLA. The second best
method was HITON (with several different setups), and the third was MDR in conjunction
with its filters ReliefF and TurF. Note that the performance of MDR highly depends on the
used filter method, since the exhaustive evaluation of all variables is frequently not feasible.
The other FSS methods identified only a portion of interactions, and missed even some of
the direct associations.

However, note that this evaluation was undertaken in a partial genetic association study
(<1000 variables) domain, which is the primary target of the Bayesian network-based BMLA
method, and not in a genome-wide association study (10000< variables), which is the main
target of dedicated GAS tools. This is also reflected in the computational complexity of
these tools. On the other hand, the performance of BMLA comes at a high computational
cost and therefore it is currently only applicable in partial genetic association studies. On
an Intelr CoreTM2 CPU 6700 @ 2.66GHz the execution time of BMLA varied between 5.5
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to 7 hours (depending on the used runtime parameters) in contrast to all other methods,
amongst which the longest execution time was 39.8 minutes.

The high computational cost of BMLA is due to the estimation of non-analytic poste-
riors. Although Monte Carlo methods using direct sampling are insensitive to the curse of
dimensionality, Markov chain Monte Carlo methods, which are used to estimate the posteri-
ors, are not. They require longer runs in order to ensure convergence and a given confidence
level (empirically it takes O(n3) steps in this domain, where n denotes the number of vari-
ables).

Furthermore, note that the reference model used in this evaluation is a Bayesian network
with general multinomial local models, which cannot represent contextual dependencies
explicitly (Boutilier et al., 1996). On the other hand, MDR and other methods such as
logistic regression are capable of the representation of contextual dependencies, thus in case
of more specific reference models their relative performance can be better.

6. Conclusion

The presented comparative study has shown, that general purpose FSS tools can be suc-
cessfully applied in partial genetic association studies and for the purpose of detecting in-
teractions, particularly conditional relevance, among relevant variables, they perform better
than dedicated GAS tools. The results also indicated, that BMLA is an adequate choice
for evaluating GASs. Its Bayesian network based approach allowed an excellent reconstruc-
tion of the reference model, i.e. the identification of relevant variables either in a direct
association or in an interaction with the target variable. Furthermore, being a model-based
Bayesian method BMLA offers an automated approach to the correction of multiple testing
problem (for the selection of proper priors for GAS in univariate case see Stephens and
Balding (2009)).

Finally, note that the capabilities of BMLA can only be fully utilized when the analysis
based on MBS and k-MBS structural properties is also carried out (Antal et al., 2008).
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