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Machine learning methods that can use additional knowledge in their inference process are
central to the development of integrative bioinformatics. Inclusion of background knowl-
edge improves robustness, predictive accuracy and interpretability. Recently, a set of such
techniques has been proposed that use information on gene sets for supervised data mining
of class-labeled microarray data sets. We here present a new gene set-based supervised
learning approach named SetSig and systematically investigate the predictive accuracy of
this and other gene set approaches compared to the standard inference model where only
gene expression information is used. Our results indicate that SetSig outperforms other
gene set approaches, but contrary to earlier reports, transformation of gene expression
data to the space of gene set signatures does not result in increased accuracy of predic-
tive models when compared to those trained directly from original (not transformed) data.

Keywords: Microarrays, Classification, Gene sets

(©2010 Mramor et al..



MRAMOR ET AL.

1. Introduction

Methods to incorporate additional domain knowledge in the model inference process have
from its early ages been central to machine learning research. Also referred to as back-
ground knowledge, its inclusion should increase model stability, predictive accuracy and
interpretability.

In systems biology the sources of domain knowledge abound. They include information
on gene structure and annotation, protein interactions, tissue localization, biological path-
ways, literature references, and other. From the onset of high-throughput data acquisition,
bioinformatics has striven to include such additional knowledge in the discovery process.
Consider, for instance, genome-wide gene expression analysis. From the first reports on
utility of computational techniques such as clustering, the relevance of results was con-
firmed using function annotations (Eisen et al., 1998). Later, the procedure was formalized
in enrichment analysis, where knowledge on groups of related genes, called gene sets, was
used to identify groups including either over or under-expressed genes under specific exper-
imental conditions (Subramanian et al., 2005). Reporting enriched gene sets, rather than a
list of differentially expressed genes, should yield stability, improve robustness across data
sets of the same kind coming from different sources (labs), and help us in gaining a deeper
understanding of the underlying processes due to identification of affected pathways (Nam
and Kim, 2008).

Gene set enrichment is by definition an explorative data analysis technique. If the
task in genome-wide microarray analysis is class prediction, such as tumor classification,
diagnosis and prognosis, standard supervised machine learning techniques should be used
instead (Simon et al., 2003). Early efforts in this domain directly applied machine learning
to class-labeled expression data (Brown et al., 2000) and used gene expressions as features.
Recently, a number of techniques have been proposed to incorporate the knowledge on gene
sets in the model inference process, where each individual observation (e.g. tissue sample)
should be described by features (signatures) that correspond to gene sets. These are com-
puted from expression of its constituents (genes) and are then used for model inference.
At present, these approaches can be classified based on whether they use class information
when computing the signatures. Approaches that do not use class information include meth-
ods that compute average gene set expression (Guo et al., 2005), use principal component
analysis (PCA) (Liu et al., 2007) or singular value decomposition (Tomfohr et al., 2005; Bild
et al., 2006), while domain-enhanced analysis with partial least squares (Liu et al., 2007),
PCA with relevant gene selection (Chen et al., 2008), activity scores based on condition-
responsive genes (Lee et al., 2008), averages of expression values of genes supporting the
gene set score (Efron and Tibshirani, 2007) and ASSESS (Edelman et al., 2006) do.

Similarly to gains in enrichment analysis, gene sets-based inference of predictive models
should improve the stability and predictive accuracy. Interestingly, however, this has not
yet been systematically tested across larger collections of data sets and across different
methods. Also, there is a lack of a thorough comparison of such approaches with standard
machine learning from the entire set of genes.

In the paper, we demonstrate the stages of development of a gene set-based supervised
learning approach in crafting our own one (SetSig), and then report on systematic investiga-
tion to determine if this and five other knowledge-based techniques produce more accurate
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predictive models. Our test-bed incorporates 30 publicly available data sets, and uses stan-
dard evaluation and modelling procedures from supervised data mining. The results of our
analysis are quite surprising and contradict initial reports on the superiority in accuracy of
gene set-based predictive modelling (Lee et al., 2008; Efron and Tibshirani, 2007; Edelman
et al., 2006).

2. Methods
2.1 Data sets

The study considered 30 cancer gene expression data sets from the Gene Expression Om-
nibus (GEO) (Barrett et al., 2007). All data sets have two diagnostic classes and include
at least 20 samples, where each class was represented by at least 8 data instances. On
average, the data sets include 44 instances (s.d.= 29.6). The GDS data sets with following
ID numbers were used: 806, 971, 1059, 1062, 1209, 1210, 1220, 1221, 1282, 1329, 1375,
1390, 1562, 1618, 1650, 1667, 1714, 1887, 2113, 2201, 2250, 232, 2415, 2489, 2520, 2609,
2735, 2771, 2785 and 2842.

All data sets were preprocessed in the same manner. First, the probes measuring the
expression of the same gene were joined and the average value of the expression over all
probes was used. Second, in all data sets the gene expression values for each gene were
normalized to zero mean (; = 0) and unit variance (02 = 1).

2.2 Gene sets

We used the gene sets from the Molecular signatures data base (MSigDB v2.5) (Subrama-
nian et al., 2005). MSigDB includes five collections of gene sets that differ in the prior
knowledge or the computational method used for creating them. We have considered col-
lections C2 and C5, where gene sets where composed based on prior biological knowledge.
From these we selected gene sets that include at least five genes for which the gene expression
information was provided in the explored data set. Also, large (and possibly non-specific)
gene sets that included more than 200 such genes were excluded from the analysis. As a
result of this filtering, we used the following gene sets:

e C2cp: 639 gene sets belonging to canonical pathways (C2 collection). These gene
sets are compiled by domain experts from the pathway data bases and are usually
canonical representations of a biological process.

e C2C5: gene sets from the biological process and molecular function part of gene on-
tology (C5 collection) in addition to gene sets from C2cp. Depending on the number
of genes in the specific data set, approximately 1.600 gene sets covering up to 7.900
genes met these criteria.

2.3 SetSig: sample characterization by gene set signatures

We here describe SetSig, a new approach to summarizing gene expression data into features
based on gene sets. Our primary motivation was to construct a relatively simple method
that does not rely on linear transformations and on search for gene groups within gene
subsets which can potentially lead to overfitting.
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Gene expression data consists of a number of samples S described by gene expressions,
fs(g) (where g represents a gene) and the class value. SetSig transforms the data so that
samples are described by gene set signatures, fs(G) (where G is a gene set) computed from
the original gene expressions. The procedure for computation of fs(G) for a particular
sample S and gene set G goes as follows:

1. Let (7 and Cs be sets of samples belonging to the first and to the second class,
respectively.

2. Calculate the Pearson correlation coefficient between the expressions of genes from
gene set G in the sample S and every sample from C; and from Cs. For a given gene
set G, let R; and Ry then be the corresponding sets of correlation coefficients, that is

Ry = {Tg(S, C) :C e C1}, Ry = {7’0(5, C) :C e CQ},
where r¢(S, C) is the correlation between fs(g;) and fo(g;) for g; € G.

3. The genes set G’s signature for sample S, fs(G), is then computed as the Student’s
t-statistics for difference between R; and Rs:

. R-®
\/8%21/]\71 + 8%2/]\[2

where N1 and Ny are the number of samples in C; and Cy, respectively.

fs(G)

Intuitively, coefficients in R; are high (low) if expressions of genes from gene set G in
the sample S are similar to (different from) expressions of these genes in the samples from
the first class. Coefficients in Ry describe the similarities (differences) for the second class.
Student’s t-test measures whether the coefficients in Ry differ from those in Ry that is, how
important are the genes from G for distinguishing between the two classes. The sign of the
t-statistic is positive (negative) if the particular sample’s gene expressions are more similar
to those of first (second) class.

This procedure is used on each sample and for each gene set. The result is a set of
samples described with gene set-based features, instead of gene expressions. The samples
without class values (the testing set) are not used to obtain R; and Rs. While SetSig
directly addresses the data with binary class variable, it can be simply extended to multi-
class prediction problems by construction of a separate classifier for each of the sample
labels. In the paper we concentrate on the performance of the core method only and study
only binary classification problems.

2.4 Other gene set signature transformation methods

In experiments we compared SetSig to other, previously published methods that use trans-
formation of gene expression data sets to data sets comprising gene set scores. These
transformations include:

1. Mean and Median (Guo et al., 2005), where each gene set is characterized with mean
(median, respectively) expression of genes from the gene set.
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2. ASSESS (Edelman et al., 2006) scores gene sets with a Kolmogorov-Smirnov like statis-
tic on a list of ranked gene correlations, similarly to GSEA (Subramanian et al., 2005).
While GSEA estimates correlations of genes with the class labels across all samples,
ASSESS estimates these correlations individually for each sample. The correlations
are estimated as the differential probabilities of the two classes. The parametric
model (Edelman et al., 2006) was used for estimation of differential probabilities.

3. The first principal component of PCA (Liu et al., 2007) of genes in the gene set.

4. CORGs method selects a subset of genes from the gene set, named condition-responsive
genes (CORGs), whose activity scores (averages across expression values) differentiate
between class labels (Lee et al., 2008). Contrary to previously mentioned methods,
only a subset of the gene set is used for data transformation. The CORGs are selected
greedily starting with genes with the highest t-scores until the quality estimate of the
subset improves.

2.5 Estimation of predictive accuracy, classification, evaluation of results

Different supervised learning methods have been used to build class prediction models in
the space of gene set signatures and in the space of gene expressions. Models were built with
support vector machines (SVMs) with linear kernel, a naive Bayesian classifier, a k-nearest
neighbor learner, and a logistic regression learner. We report on the results for the SVM and
logistic regression models, which outperformed models built with other supervised learning
approaches. The results of other tested class prediction methods show similar trends.

We used leave-one-out validation to estimate the area under ROC curve (AUC) of the
tested models. As some gene set transformation methods build internal data models, only
the learning set was used to induce such models. The same evaluation procedure was
used across the entire set of 30 data sets. For each data set, the various methods were
ranked. Statistical significances of differences between average ranks of tested methods were
evaluated with the Nemenyi test and were visualized with critical distance graphs (Demsar,
2006).

All supervised learning approaches were used as embedded in Orange data mining envi-
ronment (Demsar et al., 2004). Orange was also used to implement SetSig and re-implement
all other gene set-based supervised learning procedures investigated in this report.

3. Results

We first compared the predictive accuracy of class prediction models using SetSig trans-
formed data sets with the C2cp and C2C5 gene set subsets with predictive accuracy of the
models built with original gene expression data. For the latter, no feature selection or
any additional data transformation was used. Figure 1 shows that SVM models built with
original data sets perform significantly better than SetSig on the C2cp subset and better
(but not significantly) for the C2C5 subset. As expected, SetSig performs better with larger
number of gene sets (more biological knowledge), albeit the difference was not significant.
Figures 2 and 3 include the results for all gene set-based transformations listed in Sec. 2.4
for the SVM and logistic regression models, respectively. Gene sets in C2C5 were used as the
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Figure 1: Critical distance graph showing the average AUC ranks of SVM models on orig-
inal gene expression data sets(genes_all) and data sets transformed by SetSig (ei-
ther with gene sets C2cp or C2C5). Methods connected with bold lines are not
significantly different (o = 0.05).

models built with them performed better in the experiments with SetSig reported above.
Nemenyi test identifies two groups of insignificantly different methods connected with a
bold line in Figure 2. Inference from gene expression without gene set transformation
performs best, although the difference is only significant for two of the six gene set-based
methods (PCA and ASSESS). The difference between all gene set methods is statistically
insignificant. Of all the tested methods, SetSig performed best. Similar trends can be
observed in Figure 3 for the models built with logistic regression. Again, models built
with the original gene expression data preform best. The difference in the average ranks is
significant for two of the gene set transformation methods (Median and CORGs). SetSig
outperforms other gene set transformation methods and is significantly better than the
Median approach.

CD

P
1 2 3 4 5 6 7
genes_all ——M PCA
Setsig Assess
CORGs Median

Mean

Figure 2: The average AUC ranks of SVM models on original gene expression data sets
(genes_all) and transformed using a variety of gene set-based transformation meth-
ods.

Gene set-based approaches use only a subset of genes from the original expression data
sets. One reason for poorer performance of these approaches could have been that some
informative genes are left out. We tested this by evaluating the accuracy of predictive
models built directly from gene expressions but using only a subset of genes. We have
examined the following subsets in this way: (1) genes present in C2cp (genes_C2cp), (2)
genes not present in C2cp (genes notC2cp), (3) genes present in C2C5 (genes_C2C5), (4)
genes not present in C2C5 (genes_notC2C5), and (5) all genes (genes_all).
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Figure 3: The average AUC ranks of logistic regression models on original gene expression
data sets (genes_all) and transformed using a variety of gene set-based transfor-
mation methods.

genes_C2C5 | l genes_notC2C5
genes_all genes_notC2cp
genes_C2cp

Figure 4: The average ranks of AUC-scored classifiers that use different subsets of genes.
The differences are statistically insignificant.

The average ranks of the models built with the above mentioned subsets and the dif-
ferences between them are shown in Figure 4. The average ranks of AUC of models built
with different subsets of genes are very similar. No statistically significant differences were
detected.

4. Discussion

Our experimental results indicate that transformation of gene expression data to the space
of gene set signatures does not result in increased accuracy of predictive models when
compared to those trained from original (not transformed) data. In fact, the latter, “gene-
set free” approach consistently ranked higher in our experiments. Of all the tested gene set
approaches, SetSig’s performance was closest to that of using all genes.

These results come as a surprise. First, in explorative data analysis, the utility of gene
sets is motivated by gains in interpretability, and also by gains in stability and robustness of
results, even when compared across data sets obtained from different laboratories (Manoli
et al., 2006).

Next, several recently published papers explicitly report that their gene set approaches
over-perform the gene-centric approach. Closer inspection shows that these assertions are
not a result of systematic study, and either used a very limited number of data sets in the
study (Efron and Tibshirani, 2007; Edelman et al., 2006; Lee et al., 2008), or, as in the
most recent report, are based on too restrictive gene selection (feature set selection of only
a handful genes in gene-centric approach) prior to learning (Lee et al., 2008). But even
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with such lack of systematic testing, all the present evidence reported votes in favor of gene
set-based approaches.

Finally, we would in general (albeit naively) expect to gain with any inclusion of ad-
ditional (background) knowledge in machine learning. However, in frameworks described
in this paper such knowledge is used to transform, rather than complement the problem
domain. We can think of a number of other reasons why the utility of gene sets with respect
to predictive accuracy fails:

1. Gene sets do not include some highly class-informative genes.

2. There are too many gene sets.

3. Some gene sets are very similar to each other.

4. Gene set signature construction methods lose information.

5. Number of samples (instances) is too low to reliably estimate gene set scores.

6. Biological knowledge of the genes is incomplete. Gene sets and pathways used are not
specific enough to represent biological processes that distinguish between different
cancer types.

We can reject reason (1) based on results on gene-centric approach that used genes from
different sets (Figure 4), where no significant differences were observed. Facts stated in (2)
and (3) can hurt supervised learning, but gene-centric approaches must deal with the same
kind of problems (abundance of genes, many of which are co-expressed genes). Due to (4)
we have tested six different approaches, including very promising and elaborate ones such
as CORGs. (5) clearly deserves further investigation. Previous studies have already shown
that supervised learning methods may fail due to low sample size (Ein-Dor et al., 2005;
Hanczar and Dougherty, 2008). Finally (6), despite incompleteness of biological knowledge
on genes, we would expect that additional information in the form of gene sets should help
us in inference of reliable classifiers, even more for the methods like CORGs which remove
genes that do not contribute to class differentiation from the gene sets.

5. Conclusion

The reasons why gene set-based transformations for supervised learning from gene expres-
sion data sets fail when compared to gene-centric learning seem elusive. In fact, they do
not fail, but rather — contrary to our expectations and to several recent reports — do not
surpass the more standard and direct learning from gene expression profiles. Yet, predictive
performance is not the only issue here, and gene set-based predictive models can signifi-
cantly gain with regard to ease of interpretation and information they provide to biologists
and clinicians. We have indeed observed that just like for gene-centric models (Mramor
et al., 2007) we could construct very simple and highly-predictive visual models using only
a few gene set signatures. We can thus conclude that knowledge on gene sets may be a
useful resource for supervised microarray data analysis, but that methods for its inclusion
in model inference require further studying and improvements, specifically in terms of gains
in predictive accuracy.

62



ON UTILITY OF GENE SET SIGNATURES IN GENE EXPRESSION-BASED CANCER CLASS PREDICTION

Acknowledgements

This study was funded by the program and project grants from the Slovenian Research
Agency (P2-0209, J2-9699, L2-1112).

References

Tanya Barrett, Dennis B. Troup, Stephen E. Wilhite, et al. NCBI GEO: mining tens of
millions of expression profiles—database and tools update. Nucl. Acids Res., 35:760-5,
2007.

Andrea H. Bild, Guang Yao, Jeffrey T. Chang, et al. Oncogenic pathway signatures in
human cancers as a guide to targeted therapies. Nature, 439(7074):353-357, 2006.

Michael Brown, William Noble Grundy, David Lin, et al. Knowledge-based analysis of
microarray gene expression data by using support vector machines. PNAS, 97(1):262-7,
2000.

X. Chen, L. Wang, J. D. Smith, and B. Zhang. Supervised principal component anal-
ysis for gene set enrichment of microarray data with continuous or survival outcomes.

Bioinformatics, 24(21):2474-81, 2008.

J Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of machine
learning research, 7(jan):1-30, 2006.

J. Demsar, B. Zupan, and G. Leban. Orange: From experimental machine learning to
interactive data mining, white paper, 2004.

E. Edelman, A. Porrello, J. Guinney, et al. Analysis of sample set enrichment scores:
assaying the enrichment of sets of genes for individual samples in genome-wide expression
profiles. Bioinformatics, 22(14):e108-16, 2006.

B Efron and R Tibshirani. On testing the significance of sets of genes. Ann Appl Stat, 1
(1):107-29, 2007.

Liat Ein-Dor, Itai Kela, Gad Getz, et al. Outcome signature genes in breast cancer: is there
a unique set? Bioinformatics, 21(2):171-178, 2005.

Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Cluster analysis
and display of genome-wide expression patterns. PNAS, 95(25):14863-8, 1998.

Z. Guo, T. Zhang, X. Li, et al. Towards precise classification of cancers based on robust
gene functional expression profiles. BMC Bioinformatics, 6:58, 2005.

Blaise Hanczar and Edward R. Dougherty. Classification with reject option in gene expres-
sion data. Bioinformatics, 24(17):1889-1895, 2008.

Funjung Lee, Han-Yu Chuang, Jong-Won Kim, et al. Inferring pathway activity toward
precise disease classification. PLoS Comput Biol, 4(11):¢1000217, 11 2008.

63



MRAMOR ET AL.

J. Liu, J. M. Hughes-Oliver, and Jr. Menius, J. A. Domain-enhanced analysis of microarray
data using GO annotations. Bioinformatics, 23(10):1225-34, 2007.

T. Manoli, N. Gretz, H. J. Grone, et al. Group testing for pathway analysis improves
comparability of different microarray datasets. Bioinformatics, 22(20):2500-6, 2006.

Minca Mramor, Gregor Leban, Janez Demsar, and Blaz Zupan. Visualization-based cancer
microarray data classification analysis. Bioinformatics, 23(16):2147-2154, 2007.

D. Nam and S. Y. Kim. Gene-set approach for expression pattern analysis. Brief Bioinform,
9(3):189-97, 2008.

R. Simon, M. D. Radmacher, K. Dobbin, and L. M. McShane. Pitfalls in the use of dna
microarray data for diagnostic and prognostic classification. J Natl Cancer Inst, 95(1):
14-8, 2003.

A. Subramanian, P. Tamayo, V. K. Mootha, et al. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102
(43):15545-50, 2005.

J. Tomfohr, J. Lu, and T. B. Kepler. Pathway level analysis of gene expression using singular
value decomposition. BMC Bioinformatics, 6:225, 2005.

64



