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We here include proofs and a visual of the Octogrid domain.

A. Proofs
Theorem 3.2. For a distribution of MDPs with R ∼ D,

EM∈M[V
π∗avg

M (s)] ≥ max
M∈M

Pr(M)V ∗M (s).

Proof. Ramachandran Amir (2007) also showed that the
value function V πavg of an average MDP is the weighted
average of the MDPs in the distribution,

V πavg(s) =
∑
M∈M

Pr(M)V πM (s). (1)

Thus,

EM∈M[V
π∗avg

M (s)] =
∑
M∈M

Pr(M)V
π∗avg

M (s)

= V
π∗avg
avg (s)

= max
π

V πavg(s)

= max
π

∑
M∈M

Pr(M)V πM (s)

≥ max
π

max
M∈M

Pr(M)V πM (s)

= max
M∈M

Pr(M)max
π

V πM (s)

= max
M∈M

Pr(M)V ∗M (s).

Since we assume R(s, a) ≥ 0 for all s, a, we infer that∑
M∈M Pr(M)V πM (s) ≥ maxM∈M Pr(M)V πM (s), thus

concluding the proof. .

Corollary 3.2.1. The bound in Theorem 3.2 is tight.

Proof. Next we the bound is by an example MDP distribu-
tion shown in Figure 1.

In the MDP i the agent gets a reward if it executes ai in
MDP i:

RM (s0, ai) =

{
1 M = i

0 otherwise

s0

g

a0 a1 a2

Figure 1: An example of a MDP which an average MDP
solution returns a lower bound value.

In this distribution of MDPs, the optimal agent always
gets reward of 1 where as the optimal average MDP agent
gets maxM∈M Pr(M) reward on average. In this setting,
V π
∗
avg (s) = maxM∈M Pr(M)V ∗M (s). Thus the bound is

tight.

Corollary 3.4. For the G ∼ D setting,

EM∈M[V
π∗avg

M (s)]

≥ min
M∈M

Pr(M) max
M ′∈M

Pr(M ′)V ∗M ′(s).

Proof. We first leverage the following lemma:

Lemma 3.4.1.

max
M∈M

Pr(M)V πM (s) ≤ V πavg(s)

≤
∑
M∈M

Pr(M)V πM (s)/ min
M ′∈M

Pr(M ′)

(Proof sketch for lower bound): Let an MDP M ′ be the
same MDP as M except it transits to a terminal state from
goal nodes (and acquires a reward) by probability of Pr(M)
instead of probability of 1. The value V πM ′(s) of state s in
M ′ is at least as large as Pr(M)V πM (s). Thus, the value
of state s in M ′ is lower than or equal to that in the aver-
age MDP as it reaches the goal less frequently. V πM ′(s) is
smaller that or equal to V πavg(s) as the average MDP has
larger or equal probability of reaching the terminal state.
Thus, for any M ∈M:

V πavg(s) ≥ V πM ′(s) ≥ Pr(M)V πM (s).
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(Proof sketch for upper bound):

V πavg(s) ≤
∑
M∈M

V πM (s)

≤
∑
M∈M

Pr(M)V πM (s)/ min
M ′∈M

Pr(M ′).

Now, we turn to the theorem.
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M (s)
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Pr(M) max
M ′∈M

Pr(M ′)V ∗M ′(s).

Theorem 3.8. Suppose A is an algorithm that produces ε
accurate Q functions for a subset of the state action space
given an MDP M , an initial state s0, and a horizon H . For
a given δ ∈ (0, 1], after

t ≥ ln(δ)

ln(1− pmin)
, (2)

sampled MDPs, for pmin = minM∈M Pr(M), the
updating-max shaping method will return a shaped Q-
function Q̂max such that for all state action pairs (s, a):

Q̂max(s, a) ≥ max
M

Q∗M (s, a), (3)

with probability 1− δ.

Proof. Consider an arbitrary state action pair (s,a).

After t samples, we choose:

Q̂∗max(s, a) , max
M

Q̂∗M (s, a). (4)

After t samples, we let the following event define a mistake:

Q̂∗max(s, a) < max
M

Q∗M (s, a). (5)

First, we suppose that for each of sampled MDP M , our
learning algorithm computes a partial but nearly accurate
Q-function. That is, for some small ε:

Q̂∗M (s, a) =

{
Q∗M (s, a)± ε c(s, a) ≥ m
VMAX otherwise

(6)

That is, letting c(s, a) denote the number of times a was
executed in s: any state action pairs that were visited suf-
ficiently often (more than m for some chosen m << H)

result in an ε-accurate Q function. Otherwise, the algorithm
returns VMAX.

Under these conditions, for a given state action pair, surely,
for any MDP seen during the t samples Mi:

Q̂∗max(s, a) ≥ max
M∈Mseen

Q∗M (s, a) (7)

Therefore, the mistake event defined by Equation 5 only
occurs when we miss an MDP in the distribution that has
a higher Q∗(s, a) than our estimate. We assume that the
distribution has a lower bound on MDP probabilty:

pmin , min
M∈M

Pr(M). (8)

Accordingly, we upper bound the mistake probability ac-
cording to the probability that no such MDP was sampled
over t samples, captured by the cumulative geometric distri-
bution:

1− (1− pmin)m ≥ 1− δ. (9)

Simplifying:

1 + δ ≥ 1 + (1− pmin)t

ln(δ) ≥ ln(1− pmin) · t
ln(δ)

ln(1− pmin)
≤ t

Therefore, after

t ≥ ln(δ)

ln(1− pmin)
, (10)

sampled MDP we will have seen all MDPs in the distribution
with high probability.

B. Octogrid

Figure 2: The Octogrid task distribution. The goal appears
in exactly one of the 12 green circles chosen uniformly at
random, with the agent starting in the center at the triangle.


