We here include proofs and a visual of the Octogrid domain.

A. Proofs

Theorem 3.2. For a distribution of MDPs with \(R \sim D \),
\[
\mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}}(s)] \geq \max_{M \in \mathcal{M}} \Pr(M)V_M^{*}(s).
\]

Proof. Ramachandran Amir (2007) also showed that the value function \(V_{avg}^{\pi} \) of an average MDP is the weighted average of the MDPs in the distribution,
\[
V_{avg}^{\pi}(s) = \sum_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s).
\]
Thus,
\[
\mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}}(s)] = \sum_{M \in \mathcal{M}} \Pr(M)V_M^{\pi_{avg}}(s)
= V_{avg}^{\pi_{avg}}(s)
= \max_{\pi} V_{avg}^{\pi}(s)
= \max_{\pi} \sum_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s)
\geq \max_{\pi} \max_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s)
= \max_{M \in \mathcal{M}} \Pr(M) \max_{\pi} V_M^{\pi}(s)
= \max_{M \in \mathcal{M}} \Pr(M)V_M^{*}(s).
\]
Since we assume \(\mathcal{R}(s,a) \geq 0 \) for all \(s,a \), we infer that
\[
\sum_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s) \geq \max_{M \in \mathcal{M}} \Pr(M)V_M^{*}(s),
\]
thus concluding the proof. \(\square \)

Corollary 3.2.1. The bound in Theorem 3.2 is tight.

Proof. Next we the bound is by an example MDP distribution shown in Figure 1.

In the MDP \(i \) the agent gets a reward if it executes \(a_i \) in MDP \(i \):
\[
R_M(s_0,a_i) = \begin{cases}
1 & M = i \\
0 & \text{otherwise}
\end{cases}
\]
In this distribution of MDPs, the optimal agent always gets reward of 1 where as the optimal average MDP agent gets \(\max_{M \in \mathcal{M}} \Pr(M) \) reward on average. In this setting, \(V_{avg}^{\pi_{avg}}(s) = \max_{M \in \mathcal{M}} \Pr(M)V_M^{*}(s) \). Thus the bound is tight. \(\square \)

Corollary 3.4. For the \(G \sim D \) setting,
\[
\mathbb{E}_{M \in \mathcal{M}}[V_M^{\pi_{avg}}(s)] \geq \min_{M \in \mathcal{M}} \Pr(M) \max_{M' \in \mathcal{M}} \Pr(M')V_{M'}^{*}(s).
\]

Proof. We first leverage the following lemma:

Lemma 3.4.1.
\[
\max_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s) \leq V_{avg}^{\pi}(s)
\leq \sum_{M \in \mathcal{M}} \Pr(M)V_M^{\pi}(s)/\min_{M' \in \mathcal{M}} \Pr(M').
\]

(Proof sketch for lower bound): Let an MDP \(M' \) be the same MDP as \(M \) except it transits to a terminal state from goal nodes (and acquires a reward) by probability of \(\Pr(M) \) instead of probability of 1. The value \(V_M^{\pi}(s) \) of state \(s \) in \(M' \) is at least as large as \(\Pr(M)V_M^{\pi}(s) \). Thus, the value of state \(s \) in \(M' \) is lower than or equal to that in the average MDP as it reaches the goal less frequently. \(V_{avg}^{\pi}(s) \) is smaller that or equal to \(V_{avg}^{\pi}(s) \) as the average MDP has larger or equal probability of reaching the terminal state. Thus, for any \(M \in \mathcal{M} \):
\[
V_{avg}^{\pi}(s) \geq V_M^{\pi}(s) \geq \Pr(M)V_M^{*}(s).
\]
Proof sketch for upper bound:

\[V^\pi_{\text{avg}}(s) \leq \sum_{M \in \mathcal{M}} V^\pi_M(s) \leq \sum_{M \in \mathcal{M}} \Pr(M) V^\pi_M(s) / \min_{M' \in \mathcal{M}} \Pr(M'). \]

Now, we turn to the theorem.

\[\mathbb{E}_{M \in \mathcal{M}}[V^\pi_{\text{max}}^*(s)] = \sum_{M \in \mathcal{M}} \Pr(M) V^\pi_M(s) \geq \min_{M \in \mathcal{M}} \Pr(M) \max_{\pi} V^\pi_M(s) = \min_{M \in \mathcal{M}} \Pr(M) \max_{M' \in \mathcal{M}} \Pr(M') V^\pi_{M'}(s). \]

\[\delta \leq \ln(1 - \min\{\mathbb{E}_{M \in \mathcal{M}}[V^\pi_{\text{max}}^*(s)], \mathbb{E}_{M \in \mathcal{M}}[V^\pi_{\text{max}}^*(s)] \}) \]

Theorem 3.8. Suppose \(\mathcal{A} \) is an algorithm that produces \(\varepsilon \) accurate \(Q \) functions for a subset of the state action space given an MDP \(M \), an initial state \(s_0 \), and a horizon \(H \). For a given \(\delta \in (0, 1] \), after

\[t \geq \frac{\ln(\delta)}{\ln(1 - \min\{\mathbb{E}_{M \in \mathcal{M}}[V^\pi_{\text{max}}^*(s)], \mathbb{E}_{M \in \mathcal{M}}[V^\pi_{\text{max}}^*(s)] \})}, \]

sampled MDPs, for \(\min_{M \in \mathcal{M}} \Pr(M) \), the updating-max shaping method will return a shaped \(Q \)-function \(\hat{Q}_{\text{max}}^* \) such that for all state action pairs \((s, a)\):

\[\hat{Q}_{\text{max}}^*(s, a) \geq \max_M Q^*_M(s, a), \]

with probability \(1 - \delta \).

Proof. Consider an arbitrary state action pair \((s, a)\).

After \(t \) samples, we choose:

\[\hat{Q}_{\text{max}}^*(s, a) \triangleq \max_M Q^*_M(s, a). \]

After \(t \) samples, we let the following event define a mistake:

\[\hat{Q}_{\text{max}}^*(s, a) < \max_M Q^*_M(s, a). \]

First, we suppose that for each of sampled MDP \(M \), our learning algorithm computes a partial but nearly accurate \(Q \)-function. That is, for some small \(\varepsilon \):

\[\hat{Q}_M^*(s, a) = \begin{cases} Q^*_M(s, a) + \varepsilon & \text{if } c(s, a) \geq m \\ \text{VMAX otherwise} \end{cases} \]

That is, letting \(c(s, a) \) denote the number of times \(a \) was executed in \(s \): any state action pairs that were visited sufficiently often (more than \(m \) for some chosen \(m << H \)) result in an \(\varepsilon \)-accurate \(Q \) function. Otherwise, the algorithm returns \text{VMAX}.

Under these conditions, for a given state action pair, surely, for any MDP seen during the \(t \) samples \(M_i \):

\[\hat{Q}_{\text{max}}^*(s, a) \geq \max_{M \in \mathcal{M}} Q^*_M(s, a) \]

Therefore, the mistake event defined by Equation 5 only occurs when we miss an MDP in the distribution that has a higher \(Q^*(s, a) \) than our estimate. We assume that the distribution has a lower bound on MDP probability:

\[p_{\min} \triangleq \min_{M \in \mathcal{M}} \Pr(M). \]

Accordingly, we upper bound the mistake probability according to the probability that no such MDP was sampled over \(t \) samples, captured by the cumulative geometric distribution:

\[1 - (1 - p_{\min})^t \geq 1 - \delta. \]

Simplifying:

\[1 + \delta \geq 1 + (1 - p_{\min})^t \]

\[\frac{\ln(\delta)}{\ln(1 - p_{\min})} \leq t \]

Therefore, after

\[t \geq \frac{\ln(\delta)}{\ln(1 - p_{\min})}, \]

sampled MDP we will have seen all MDPs in the distribution with high probability. \(\Box \)

B. Octogrid

Figure 2: The Octogrid task distribution. The goal appears in exactly one of the 12 green circles chosen uniformly at random, with the agent starting in the center at the triangle.