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Abstract
We develop differentially private methods for esti-
mating various distributional properties. Given a
sample from a discrete distribution p, some func-
tional f , and accuracy and privacy parameters α
and ε, the goal is to estimate f(p) up to accu-
racy α, while maintaining ε-differential privacy
of the sample. We prove almost-tight bounds on
the sample size required for this problem for sev-
eral functionals of interest, including support size,
support coverage, and entropy. We show that the
cost of privacy is negligible in a variety of set-
tings, both theoretically and experimentally. Our
methods are based on a sensitivity analysis of sev-
eral state-of-the-art methods for estimating these
properties with sublinear sample complexities.

1. Introduction
How can we infer a distribution given a sample from it?
If data is in abundance, the solution may be simple – the
empirical distribution will approximate the true distribution.
However, challenges arise when data is scarce in compari-
son to the size of the domain, and especially when we wish
to quantify “rare events.” This is frequently the case: for
example, it has recently been observed that there are several
very rare genetic mutations which occur in humans, and we
wish to know how many such mutations exist (Keinan &
Clark, 2012; Tennessen et al., 2012; Nelson et al., 2012).
Many of these mutations have only been seen once, and we
can infer that there are many which have not been seen at all.
Over the last decade, a large body of work has focused on
developing theoretically sound and effective tools for such
settings (Orlitsky et al., 2016) and references therein, includ-
ing the problem of estimating the frequency distribution of
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rare genetic variations (Zou et al., 2016).

However, in many settings where one wishes to perform
statistical inference, data may contain sensitive information
about individuals. For example, in medical studies, where
the data may contain individuals’ health records and whether
they carry some disease which bears a social stigma. Alter-
natively, one can consider a map application which suggests
routes based on aggregate positions of individuals, which
contains delicate information including users’ residence
data. In these settings, it is critical that our methods protect
sensitive information contained in the dataset. This does not
preclude our overall goals of statistical analysis, as we are
trying to infer properties of the population p, and not the
samples which are drawn from said population.

That said, without careful experimental design, published
statistical findings may be prone to leaking sensitive infor-
mation about the sample. As a notable example, it was
recently shown that one can determine the identity of some
individuals who participated in genome-wide association
studies (Homer et al., 2008). This realization has motivated
a surge of interest in developing data sharing techniques with
an explicit focus on maintaining privacy of the data (John-
son & Shmatikov, 2013; Uhler et al., 2013; Yu et al., 2014;
Simmons et al., 2016).

Privacy-preserving computation has enjoyed significant
study in a number of fields, including statistics and almost
every branch of computer science, including cryptography,
machine learning, algorithms, and database theory – see,
e.g., (Dalenius, 1977; Adam & Worthmann, 1989; Agrawal
& Aggarwal, 2001; Dinur & Nissim, 2003; Dwork, 2008;
Dwork & Roth, 2014) and references therein. Perhaps the
most celebrated notion of privacy, proposed by theoretical
computer scientists, is differential privacy (Dwork et al.,
2006). Informally, an algorithm is differentially private if
its outputs on neighboring datasets (differing in a single
element) are statistically close (for a more precise defini-
tion, see Section 2). Differential privacy has become the
standard for theoretically-sound data privacy, leading to its
adoption by several large technology companies, includ-
ing Google and Apple (Erlingsson et al., 2014; Differential
Privacy Team, Apple, 2017).

Our focus in this paper is to develop tools for privately
performing several distribution property estimation tasks. In
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particular, we study the tradeoff between statistical accuracy,
privacy, and error rate in the sample size. Our model is
that we are given sample access to some unknown discrete
distribution p, over a domain of size k, which is possibly
unknown in some tasks. We wish to estimate the following
properties:

• Support Coverage: If we take m samples from the
distribution, what is the expected number of unique
elements we expect to see?

• Support Size: How many elements of the support have
non-zero probability?

• Entropy: What is the Shannon entropy of the distribu-
tion?

For more formal statements of these problems, see Sec-
tion 2.1. We require that our output is α-accurate, satisfies
(ε, 0)-differential privacy, and is correct with probability
1−β. The goal is to give an algorithm with minimal sample
complexity n, while simultaneously being computationally
efficient.

Theoretical Results. Our main results show that privacy
can be achieved for all these problems at a very low cost.
For example, if one wishes to privately estimate entropy, this
incurs an additional additive cost in the sample complexity
which is very close to linear in 1/αε. We draw attention to
two features of this bound. First, this is independent of k.
All the problems we consider have complexity Θ(k/ log k),
so in the primary regime of study where k � 1/αε, this
small additive cost is dwarfed by the inherent sample com-
plexity of the non-private problem. Second, the bound is
almost linear in 1/αε. We note that performing even the
most basic statistical task privately, estimating the bias of a
coin, incurs this linear dependence. Surprisingly, we show
that much more sophisticated inference tasks can be pri-
vatized at almost no cost. In particular, these properties
imply that the additive cost of privacy is o(1) in the most
studied regime where the support size is large. In general,
this is not true – for many other problems, including dis-
tribution estimation and hypothesis testing, the additional
cost of privacy depends significantly on the support size
or dimension (Diakonikolas et al., 2015; Cai et al., 2017;
Acharya et al., 2017c; Aliakbarpour et al., 2017). We also
provide lower bounds, showing that our upper bounds are
almost tight. A more formal statement of our results appears
in Section 3.

Experimental Results. We demonstrate the efficacy of our
method with experimental evaluations. As a baseline, we
compare with the non-private algorithms of (Orlitsky et al.,
2016) and (Wu & Yang, 2018). Overall, we find that our
algorithms’ performance is nearly identical, showing that,
in many cases, privacy comes (essentially) for free. We
begin with an evaluation on synthetic data. Then, inspired
by (Valiant & Valiant, 2013; Orlitsky et al., 2016), we ana-

lyze text corpus consisting of words from Hamlet, in order to
estimate the number of unique words which occur. Finally,
we investigate name frequencies in the US census data. This
setting has been previously considered by (Orlitsky et al.,
2016), but we emphasize that this is an application where
private statistical analysis is critical. This is proven by ef-
forts of the US Census Bureau to incorporate differential
privacy into the 2020 US census (Dajani et al., 2017).

Techniques. Our approach works by choosing statistics
for these tasks which possess bounded sensitivity, which is
well-known to imply privacy under the Laplace or Gaussian
mechanism. We note that bounded sensitivity of statistics is
not always something that can be taken for granted. Indeed,
for many fundamental tasks, optimal algorithms for the non-
private setting may be highly sensitive, thus necessitating
crucial modifications to obtain differential privacy (Acharya
et al., 2015; Cai et al., 2017). Thus, careful choice and
design of statistics must be a priority when performing
inference with privacy considerations.

To this end, we leverage recent results of (Acharya et al.,
2017a), which studies estimators for non-private versions of
the problems we consider. The main technical work in their
paper exploits bounded sensitivity to show sharp cutoff-style
concentration bounds for certain estimators, which operate
using the principle of best-polynomial approximation. They
use these results to show that a single algorithm, the Pro-
file Maximum Likelihood (PML), can estimate all these
properties simultaneously. On the other hand, we consider
the sensitivity of these estimators for purposes of privacy
– the same property is utilized by both works for very dif-
ferent purposes, a connection which may be of independent
interest.

We note that bounded sensitivity of a statistic may be ex-
ploited for purposes other than privacy. For instance, by
McDiarmid’s inequality, any such statistic also enjoys very
sharp concentration of measure, implying that one can boost
the success probability of the test at an additive cost which
is logarithmic in the inverse of the failure probability. One
may naturally conjecture that, if a statistical task is based
on a primitive which concentrates in this sense, then it may
also be privatized at a low cost. However, this is not true
– estimating a discrete distribution in `1 distance is such a
task, but the cost of privatization depends significantly on
the support size (Diakonikolas et al., 2015).

One can observe that, algorithmically, our method is quite
simple: compute the non-private statistic, and add a rela-
tively small amount of Laplace noise. The non-private statis-
tics have recently been demonstrated to be practical (Orlit-
sky et al., 2016; Wu & Yang, 2018), and the additional cost
of the Laplace mechanism is minimal. This is in contrast to
several differentially private algorithms which invoke sig-
nificant overhead in the quest for privacy. Our algorithms
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attain almost-optimal rates (which are optimal up to constant
factors for most parameter regimes of interest), while simul-
taneously operating effectively in practice, as demonstrated
in our experimental results.

Related Work. Over the last decade, there have been a
flurry of works on the problems we study in this paper by
the computer science and information theory communities,
including Shannon and Rényi entropy estimation (Paninski,
2003; Valiant & Valiant, 2017; Jiao et al., 2017; Acharya
et al., 2017b; Obremski & Skorski, 2017; Wu & Yang, 2018),
support coverage and support size estimation (Orlitsky et al.,
2016; Wu & Yang, 2018). A recent paper studies the gen-
eral problem of estimating functionals of discrete distribu-
tion from samples in terms of the smoothness of the func-
tional (Fukuchi & Sakuma, 2017). These have culminated in
a nearly-complete understanding of the sample complexity
of these properties, with optimal sample complexities (up
to constant factors) for most parameter regimes.

Recently, there has been significant interest in performing
statistical tasks under differential privacy constraints. Per-
haps most relevant to this work are (Cai et al., 2017; Acharya
et al., 2017c; Aliakbarpour et al., 2017), which study the
sample complexity of differentialy privately performing clas-
sical distribution testing problems, including identity and
closeness testing. Other works investigating private hypothe-
sis testing include (Wang et al., 2015a; Gaboardi et al., 2016;
Kifer & Rogers, 2017; Kakizaki et al., 2017; Rogers, 2017;
Gaboardi & Rogers, 2017), which focus less on characteriz-
ing the finite-sample guarantees of such tests, and more on
understanding their asymptotic properties and applications
to computing p-values. There has also been study on private
distribution learning (Diakonikolas et al., 2015; Duchi et al.,
2017; Karwa & Vadhan, 2018; Acharya et al., 2018; Kamath
et al., 2018), in which we wish to estimate parameters of the
distribution, rather than just a particular property of interest.
A number of other problems have been studied with privacy
requirements, including clustering (Wang et al., 2015b; Bal-
can et al., 2017), principal component analysis (Chaudhuri
et al., 2013; Kapralov & Talwar, 2013; Hardt & Price, 2014),
ordinary least squares (Sheffet, 2017), and much more.

2. Preliminaries
We will start with some definitions.

Let ∆ def= {(p(1), . . . , p(k)) : p(i) ≥ 0,
∑k
i=1 p(i) =

1, 1 ≤ k ≤ ∞} be the set of discrete distributions over
a countable support. Let ∆k be the set of distributions in ∆
with at most k non-zero probability values. A property f(p)
is a mapping from ∆→ R. We now describe the classical
distribution property estimation problem, and then state the
problem under differential privacy.

Property Estimation. Given α, β, f , and independent
samples Xn

1 from an unknown distribution p, design an
estimator f̂ : Xn

1 → R such that with probability at least
1− β,

∣∣∣f̂(Xn
1 )− f(p)

∣∣∣ < α. The sample complexity of f̂ ,

Cf̂ (f, α, β) def= min{n : Pr
(∣∣∣f̂(Xn

1 )− f(p)
∣∣∣ > α

)
< β}

is the smallest number of samples to estimate f to accu-
racy α, and error β. We study the problem for β = 1/3,
and by the median trick, we can boost the success proba-
bility to 1 − β with an additional multiplicative log(1/β)
more samples. Therefore, focusing on β = 1/3, we define

Cf̂ (f, α) def= Cf̂ (f, α, 1/3). The sample complexity of esti-
mating a property f(p) is the minimum sample complexity
over all estimators: C(f, α) = minf̂ Cf̂ (f, α).

An estimator f̂ is ε-differentially private (DP) (Dwork et al.,
2006) if for any Xn

1 and Y n1 , with dham(Xn
1 , Y

n
1 ) ≤ 1,

Pr (f(Xn
1 )∈S)

Pr (f(Y n
1 )∈S) ≤ e

ε, for all measurable S.

Private Property Estimation. Given α, ε, β, f , and inde-
pendent samples Xn

1 from an unknown distribution p, de-
sign an ε-differentially private estimator f̂ : Xn

1 → R such
that with probability at least 1 − β,

∣∣∣f̂(Xn
1 )− f(p)

∣∣∣ < α.
Similar to the non-private setting, the sample complexity of
ε-differentially private estimation problem is C(f, α, ε) =
minf̂ :f̂ is ε-DP Cf̂ (f, α, 1/3), the smallest number of samples
n for which there exists such an ε-DP ±α estimator with
error probability at most 1/3.

In their original paper (Dwork et al., 2006) provides a
scheme for differential privacy, known as the Laplace mech-
anism. This method adds Laplace noise to a non-private
scheme in order to make it private. We first define the sen-
sitivity of an estimator, and then state their result in our
setting.

Definition 1. The sensitivity of an estimator f̂ : [k]n →
R is ∆n,f̂

def= maxdham(Xn
1 ,Y

n
1 )≤1

∣∣∣f̂(Xn
1 )− f̂(Y n1 )

∣∣∣ . Let

Df̂ (α, ε) = min{n : ∆n,f̂ ≤ αε}.

Lemma 1.

C(f, α, ε) = O

(
min
f̂

{
Cf̂ (f, α/2) +Df̂

(α
4 , ε

)})
.

Proof. (Dwork et al., 2006) showed that for a function with
sensitivity ∆n,f̂ , adding Laplace noise X ∼ Lap(∆n,f̂/ε)
makes the output ε-differentially private. By the definition
of Df̂ (α4 , ε), the Laplace noise we add has parameter at
most α

4 . Recall that the probability density function of

Lap(b) is 1
2be
− |x|

b , hence we have Pr (|X| > α/2) < 1
e2 .

By the union bound, we get an additive error larger than
α = α

2 + α
2 with probability at most 1/3+ 1

e2 < 0.5. Hence,
with the median trick, we can boost the error probability
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to 1/3, at the cost of a constant factor in the number of
samples.

To prove sample complexity lower bounds for differentially
private estimators, we observe that the estimator can be
used to test between two distributions with distinct property
values, hence is a harder problem. For lower bounds on
differentially private testing, (Acharya et al., 2017c) gives
the following argument based on coupling:

Lemma 2. Suppose there is a coupling between distribu-
tions p and q over Xn, such that E [dham(Xn

1 , Y
n
1 )] ≤ D.

Then, any ε-differentially private algorithm that distin-
guishes between p and q with error probability at most
1/3 must satisfy D = Ω

( 1
ε

)
.

2.1. Problems of Interest

Support Size. The support size of a distribution p is
S(p) = |{x : p(x) > 0}|, the number of symbols with non-
zero probability values. However, notice that estimating
S(p) from samples can be hard due to the presence of sym-
bols with negligible, yet non-zero probabilities. To circum-
vent this issue, (Raskhodnikova et al., 2009) proposed to
study the problem when the smallest probability is bounded.
Let ∆≥ 1

k

def= {p ∈ ∆ : p(x) ∈ {0} ∪ [1/k, 1]} be the set of
all distributions where all non-zero probabilities have value
at least 1/k. For p ∈ ∆≥ 1

k
, our goal is to estimate S(p) up

to ±αk with the least number of samples from p.

Support Coverage. For a distribution p, and an integerm,
let Sm(p) =

∑
x(1−(1−p(x))m), be the expected number

of symbols that appear when we obtain m independent
samples from the distribution p. The objective is to find the
least number of samples n in order to estimate Sm(p) to an
additive ±αm.

Support coverage arises in many ecological and biological
studies (Colwell et al., 2012) to quantify the number of new
elements (gene mutations, species, words, etc) that can be
expected to be seen in the future. Good and Toulmin (Good
& Toulmin, 1956) proposed an estimator that for any con-
stant α, requires m/2 samples to estimate Sm(p).

Entropy. The Shannon entropy of a distribution p is
H(p) =

∑
x p(x) log 1

p(x) , H(p) is a central object in in-
formation theory (Cover & Thomas, 2006), and also arises
in many fields such as machine learning (Nowozin, 2012),
neuroscience (Berry et al., 1997; Nemenman et al., 2004),
and others. Estimating H(p) is hard with any finite number
of samples due to the possibility of infinite support. To cir-
cumvent this, a natural approach is to consider distributions
in ∆k. The goal is to estimate the entropy of a distribution in
∆k to an additive ±α, where ∆k is all discrete distributions
over at most k symbols.

3. Statement of Results
Our theoretical results for estimating support coverage, sup-
port size, and entropy are given below. Algorithms for these
problems and proofs of these statements are provided in Sec-
tion 4. Our experimental results are described and discussed
in Section 5.

Theorem 1. The sample complexity of support coverage
estimation C(Sm, α, ε) is

O
(
m log(1/α)

logm + m log(1/α)
log(2+εm)

)
, when m ≥ 1

αε

O
( 1
α2 + 1

αε

)
, when 1

α ≤ m ≤
1
αε

O
(
m2 + m

ε

)
. when m ≤ 1

α

Furthermore,

C(Sm, α, ε) = Ω
(
m log(1/α)

logm + 1
αε

)
.

Theorem 2. The sample complexity of support size estima-
tion C(S, α, ε) is

O
(
k log2(1/α)

log k + k log2(1/α)
log(2+εk)

)
, when k ≥ 1

αε

O
(
k log(1/α) + 1

αε

)
, when 1

α ≤ k ≤
1
αε

O
(
k log k + k

ε

)
. when k ≤ 1

α

Furthermore,

C(S, α, ε) =
{

Ω
(
k log2(1/α)

log k + 1
αε

)
, when k ≥ 1

α

Ω
(
k log k + k

ε

)
. when k ≤ 1

α

Theorem 3. Let λ > 0 be any small fixed constant. For
instance, λ can be chosen to be any constant between 0.01
and 1. We have the following upper bounds on the sample
complexity of entropy estimation C(H,α, ε):

O

(
k

α
+ log2(min{k, n})

α2 + 1
αε

log
(

1
αε

))
and

O

(
k

λ2α log k + log2(min{k, n})
α2 +

(
1
αε

)1+λ
)
.

Furthermore,

C(H,α, ε) = Ω
(

k

α log k + log2(min{k, n})
α2 + log k

αε

)
.

We provide some discussion of our results. At a high level,
we wish to emphasize the following two points:
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1. Our upper bounds show that the cost of privacy in these
settings is often negligible compared to the sample
complexity of the non-private statistical task, especially
when we are dealing with distributions over a large
support. Furthermore, our upper bounds are almost
tight in all parameters.

2. The algorithmic complexity introduced by the require-
ment of privacy is minimal, consisting only of a single
step which noises the output of an estimator. In other
words, our methods are realizable in practice, and we
demonstrate the effectiveness on several synthetic and
real-data examples.

Before we continue, we emphasize that, in Theorems 1
and 2, we consider the “sublinear” regime to be of primary
interest (when m ≥ 1

αε or k ≥ 1
αε , respectively), both

technically, and in terms of parameter regimes which may
be of greatest interest in practice. We include results for
other regimes mostly for completeness.

First, we examine our results on support coverage and sup-
port size estimation in the sublinear regime, when m ≥ 1

αε
(focusing on support coverage for simplicity, but support
size is similar). In this regime, if ε = Ω(mγ/m) for any
constant γ > 0, then up to constant factors, our upper bound
is within a constant factor of the optimal sample complex-
ity without privacy constratints. In other words, for most
meaningful values of ε, privacy comes for free. In the non-
sublinear regime for these problems, we provide upper and
lower bounds which match in a number of cases. We note
that in this regime, the cost of privacy may not be a lower
order term – however, this regime only occurs when one
requires very high accuracy, or unreasonably large privacy,
which we consider to be of somewhat lesser interest.

Next, we turn our attention to entropy estimation. We note
that the second upper bound in Theorem 3 has a parameter λ
that indicates a tradeoff between the sample complexity in-
curred in the first and third term. This parameter determines
the degree of a polynomial to be used for entropy estima-
tion. As the degree becomes smaller (corresponding to a
large λ), accuracy of the polynomial estimator decreases,
however, at the same time, low-degree polynomials have a
small sensitivity, allowing us to privatize the outcome.

In terms of our theoretical results, one can think of λ = 0.01.
With this parameter setting, it can be observed that our upper
bounds are almost tight. For example, one can see that the
upper and lower bounds match to either logarithmic factors
(when looking at the first upper bound), or a very small
polynomial factor in 1/αε (when looking at the second up-
per bound). For our experimental results, we empirically
determined an effective value for the parameter λ on a single
synthetic instance. We then show that this choice of param-
eter generalizes, giving highly-accurate private estimation
in other instances, on both synthetic and real-world data.

4. Algorithms and Analysis
We now prove our results for support coverage estimation,
Theorem 1, while support size and entropy estimation ap-
pear in the supplementary material. We first describe and
analyze our algorithms, and then go on to describe and an-
alyze a lower bound construction, showing that our upper
bounds are almost tight.

All our algorithms fall into the following simple framework:

1. Compute a non-private estimate of the property;
2. Privatize this estimate by adding Laplace noise, where

the parameter is determined through analysis of the es-
timator and potentially computation of the estimator’s
sensitivity.

4.1. Support Coverage Estimation

4.1.1. UPPER BOUND FOR SUPPORT COVERAGE
ESTIMATION

We split the analysis into two regimes. First, we focus on
the case where m ≤ 1

αε , and we prove the upper bound
O
( 1
α2 + 1

αε

)
. Note that the problem is identical for any

α < 1
m , since this corresponds to estimating the sup-

port coverage exactly, and the above bound simplifies to
O
(
m2 + m

ε

)
. The algorithm in this case is simple: since

n = Ω(m), we group the dataset into n/m batches of size
m. Let Yj be the number of unique symbols observed in
batch j. Our estimator is Ŝm(Xn

1 ) = m
n

∑n/m
j=1 Yj . Ob-

serve that E [Yj ] = Sm(p), and that Var[Yj ] ≤ m. The
latter can be seen by observing that Yj is the sum of m
negatively correlated indicator random variables, each one
being the indicator of whether that sample in the batch
is the first time the symbol is observed. This gives that
Ŝm(Xn

1 ) is an unbiased estimator of Sm(p), with variance
O(m2/n). By Chebyshev’s inequality, since we want an
estimate which is accurate up to ±αm, this gives us that
CŜm

(Sm(p), α/2) = O
( 1
α2

)
. Furthermore, we can see that

the sensitivity of Ŝm(Xn
1 ) is at most 2m/n. By Lemma 1,

there is a private algorithm for support coverage estima-
tion as long as ∆

(
Ŝm(Xn

1 )
m

)
≤ αε. With the above bound

on sensitivity, this is true with n = O(1/αε), giving the
desired upper bound.

Now, we turn our attention to the case where m ≥ 1
αε ,

and we prove the upper boundO
(
m log(1/α)

logm + m log(1/α)
log(2+εm)

)
.

Let ϕi be the number of symbols that appear i times in Xn
1 .

We will use the following non-private support coverage
estimator from (Orlitsky et al., 2016):

Ŝm(Xn
1 ) =

n∑
i=1

ϕi
(
1− (−t)i · Pr (Z ≥ i)

)
,

where Z is a Poisson random variable with mean r (which
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is a parameter to be instantiated later), and t = (m− n)/n.

Our private estimator of support coverage is derived by
adding Laplace noise to this non-private estimator with the
appropriate noise parameter, and thus the performance of
our private estimator, is analyzed by bounding the sensitiv-
ity and the bias of this non-private estimator according to
Lemma 1.

The sensitivity and bias of this estimator is bounded in the
following lemmas.

Lemma 3. Suppose m > 2n, then the maximum coefficient
of ϕi in Ŝm(p) is at most 1 + er(t−1).

Proof. By the definition of Z, we know Pr (Z ≥ i) =∑∞
k=i e

−r rk

k! , hence we have: |1 + (−t)i · Pr (Z ≥ i)| ≤
1 + ti

∑∞
k=i e

−r rk

k! ≤ 1 + e−r
∑∞
k=i

(rt)k

k! ≤ 1 +
e−r

∑∞
k=0

(rt)k

k! = 1 + er(t−1).

The bias of the estimator is bounded in Lemma 4
of (Acharya et al., 2017a):

Lemma 4. If m > 2n, then
∣∣∣E [Ŝm(Xn

1 )
]
− Sm(p)

∣∣∣ ≤
2 + 2er(t−1) + min(m,S(p)) · e−r.

Using these results, letting r = log(1/α), (Orlitsky et al.,
2016) showed that there is a constant C, such that with
n = C m

logm log(1/α) samples, with probability at least 0.9,∣∣∣ Ŝm(Xn
1 )

m − Sm(p)
m

∣∣∣ ≤ α.

Our upper bound in Theorem 1 is derived by the follow-
ing analysis of the sensitivity of Ŝm(Xn

1 )
m . If we change

one sample in Xn
1 , at most two of the ϕj’s change.

Hence by Lemma 3, the sensitivity of the estimator sat-
isfies ∆

(
Ŝm(Xn

1 )
m

)
≤ 2

m ·
(
1 + er(t−1)). By Lemma 1,

there is a private algorithm for support coverage estima-
tion as long as ∆

(
Ŝm(Xn

1 )
m

)
≤ αε, which, by the in-

equality above, holds if 2(1 + exp(r(t − 1))) ≤ αεm.
Let r = log(3/α), note that t − 1 = m

n − 2. Sup-
pose αεm > 2, then, the condition above reduces to
log
( 3
α

)
·
(
m
n − 2

)
≤ log

( 1
2αεm− 1

)
. This is equivalent

to n ≥ m log(3/α)
log( 1

2αεm−1)+2 log(3/α) = m log(3/α)
log( 3

2 εm−3/α)+log(3/α) .

Suppose αεm > 2, then the condition above reduces to the
requirement that n = Ω

(
m log(1/α)
log(2+εm)

)
.

4.1.2. LOWER BOUND FOR SUPPORT COVERAGE
ESTIMATION

We now prove the lower bound described in Theorem 1.
Note that the first term in the lower bound is the sample com-
plexity of non-private support coverage estimation, shown

in (Orlitsky et al., 2016). Therefore, we turn our attention
to prove the last term in the sample complexity.

Consider the following two distributions. u1 is uniform
over [m(1 + α)]. u2 is distributed over m + 1 elements
[m] ∪ {4} where u2[i] = 1

m(1+α)∀i ∈ [m] and u2[4] =
α

1+α . Moreover, 4 /∈ [m(1 + α)]. Then, Sm(u1) =

m(1 + α) ·
(

1−
(

1− 1
m(1+α)

)m)
, and Sm(u2) = m ·(

1−
(

1− 1
m(1+α)

)m)
+
(

1−
(

1− α
1+α

)m)
. Therefore,

Sm(u2) − Sm(u1) = mα ·
(

1−
(

1− 1
m(1+α)

)m)
−(

1−
(

1− α
1+α

)m)
= Ω(αm).

Hence we know there support coverage differs by Ω(αm).
Moreover, their total variation distance is α

1+α . The follow-
ing lemma is folklore, based on the coupling interpretation
of total variation distance, and the fact that total variation
distance is subadditive for product measures.
Lemma 5. For any two distributions p, and q, there is a
coupling between n i.i.d. samples from the two distributions
with an expected Hamming distance of dTV(p, q) · n.

Using Lemma 5 and dTV(u1, u2) = α
1+α , we have

Lemma 6. Suppose u1 and u2 are as defined before, there
is a coupling between un1 and un2 with expected Hamming
distance equal to α

1+αn.

Moreover, given n samples, we must be able to privately dis-
tinguish between u1 and u2 given an α accurate estimator of
support coverage with privacy considerations. Thus, accord-
ing to Lemma 2 and 6, we have α

1+αn ≥
1
ε ⇒ n = Ω

( 1
εα

)
.

5. Experiments
We evaluated our methods for entropy estimation and sup-
port coverage on both synthetic and real data. Overall, we
found that privacy is quite cheap: private estimators achieve
accuracy which is comparable or near-indistinguishable to
non-private estimators in many settings. Our results on en-
tropy estimation and support coverage appear in Sections 5.1
and 5.2, respectively. Code of our implementation is
available at https://github.com/HuanyuZhang/
INSPECTRE.

5.1. Entropy

We compare the performance of our entropy estimator with
a number of alternatives, both private and non-private. Non-
private algorithms considered include the plug-in estima-
tor (plug-in), the Miller-Madow Estimator (MM) (Miller,
1955), the sample optimal polynomial approximation es-
timator (poly) of (Wu & Yang, 2016). We analyze the
privatized versions of plug-in, and poly in the supplemen-
tary material. The implementation of the latter is based on

https://github.com/HuanyuZhang/INSPECTRE
https://github.com/HuanyuZhang/INSPECTRE
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code from the authors of (Wu & Yang, 2016)1. We compare
performance on different distributions including uniform,
a distribution with two steps, Zipf(1/2), a distribution with
Dirichlet-1 prior, and a distribution with Dirichlet-1/2 prior,
and over varying support sizes.

While plug-in, and MM are parameter free, poly (and
its private counterpart) have to choose the degree L of the
polynomial to use, which manifests in the parameter λ in
the statement of Theorem 3. (Wu & Yang, 2016) suggests
the value of L = 1.6 log k in their experiments. How-
ever, since we add further noise, we choose a single L
as follows: (i) Run privatized poly for different L val-
ues and distributions for k = 2000, ε = 1, (b) Choose
the value of L that performs well across different distri-
butions (See Figure 1). We choose L = 1.2 · log k from
this, and use it for all other experiments. To evaluate the
sensitivity of poly, we computed the estimator’s value at
all possible input values, computed the sensitivity, (namely,
∆ = maxdham(Xn

1 ,Y
n

1 )≤1 |poly(Xn
1 )− poly(Y n1 )|), and

added noise distributed as Lap
(
0, ∆

ε

)
.

The RMSE of various estimators for k = 1000, and ε = 1
for various distributions are illustrated in Figure 2. The
RMSE is averaged over 100 iterations in the plots.

We observe that the performance of our private-poly is
near-indistinguishable from the non-private poly, particu-
larly as the number of samples increases. It also performs
significantly better than all other alternatives, including the
non-private Miller-Madow and the plug-in estimator. The
cost of privacy is minimal for several other settings of k
and ε, additional experiments appear in the supplementary
material.

5.2. Support Coverage

We investigate the cost of privacy for the problem of support
coverage. We provide a comparison between the Smoothed
Good-Toulmin estimator (SGT) of (Orlitsky et al., 2016)
and our algorithm, which is a privatized version of their
statistic (see Section 4.1.1). Our implementation is based on
code provided by the authors of (Orlitsky et al., 2016). As
shown in our theoretical results, the sensitivity of SGT is at
most 2(1 + er(t− 1)), necessitating the addition of Laplace
noise with parameter 2(1 + er(t−1))/ε. Note that while the
theory suggests we select the parameter r = log(1/α), α is
unknown. We instead set r = 1

2t loge
n(t+1)2

t−1 , as previously
done in (Orlitsky et al., 2016).

1See https://github.com/Albuso0/entropy for
their code for entropy estimation.

5.2.1. EVALUATION ON SYNTHETIC DATA

In our synthetic experiments, we consider different distribu-
tions over different support sizes k. We generate n = k/2
samples, and then estimate the support coverage atm = n·t.
For large t, estimation is harder. Some results of our evalua-
tion on synthetic are displayed in Figure 3. We compare the
performance of SGT, and privatized versions of SGT with
parameters ε = 1, 2, and 10. For this instance, we fixed
the domain size k = 20000. We ran the methods described
above with n = k/2 samples, and estimated the support
coverage at m = nt, for t ranging from 1 to 10. The perfor-
mance of the estimators is measured in terms of RMSE over
1000 iterations.

We observe that, in this setting, the cost of privacy is rela-
tively small for reasonable values of ε. This is as predicted
by our theoretical results, where unless ε is extremely small
(less than 1/k) the non-private sample complexity domi-
nates the privacy requirement. However, we found that for
smaller support sizes (as shown in the supplementary ma-
terial), the cost of privacy can be significant. We provide
an intuitive explanation for why no private estimator can
perform well on such instances. To minimize the number
of parameters, we instead argue about the related problem
of support-size estimation. Suppose we are trying to dis-
tinguish between distributions which are uniform over sup-
ports of size 100 and 200. We note that, if we draw n = 50
samples, the “profile” of the samples (i.e., the histogram
of the histogram) will be very similar for the two distribu-
tions. In particular, if one modifies only a few samples (say,
five or six), one could convert one profile into the other.
In other words, these two profiles are almost-neighboring
datasets, but simultaneously correspond to very different
support sizes. This pits the two goals of privacy and accu-
racy at odds with each other, thus resulting in a degradation
in accuracy.

5.2.2. EVALUATION ON CENSUS DATA AND HAMLET

We conclude with experiments for support coverage on two
real-world datasets, the 2000 US Census data and the text
of Shakespeare’s play Hamlet, inspired by investigations
in (Orlitsky et al., 2016) and (Valiant & Valiant, 2017). Our
investigation on US Census data is also inspired by the fact
that this is a setting where privacy is of practical importance,
evidenced by the proposed adoption of differential privacy
in the 2020 US Census (Dajani et al., 2017).

The Census dataset contains a list of last names that appear
at least 100 times. Since the dataset is so oversampled,
even a small fraction of the data is likely to contain almost
all the names. As such, we make the task non-trivial by
subsampling mtotal = 86080 individuals from the data,
obtaining 20412 distinct last names. We then sample n of
the mtotal individuals without replacement and attempt to

https://github.com/Albuso0/entropy
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Figure 1. RMSE comparison between private Polynomial Approximation Estimators for entropy with various values for degree L,
k = 2000, ε = 1. The degree L represents a bias-variance tradeoff: a larger degree decreases the bias but increases the sensitivity,
necessitating the addition of Laplace noise with a larger variance.
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Figure 2. Comparison of various estimators for entropy estimation, k = 1000, ε = 1.
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Figure 3. Comparison between the private support coverage estimator with the non-private SGT when k = 20000

estimate the total number of last names. Figure 4 displays
the RMSE over 100 iterations of this process. We observe
that even with an exceptionally stringent privacy budget of
ε = 0.5, the performance is almost indistinguishable from
the non-private SGT estimator.
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Figure 4. Comparison between our private support coverage esti-
mator with the SGT on Census Data.

The Hamlet dataset has mtotal = 31, 999 words, of which
4804 are distinct. Since the distribution is not as oversam-
pled as the Census data, we do not need to subsample the

data. Besides this difference, the experimental setup is iden-
tical to that of the Census dataset. Once again, as we can see
in Figure 5, we get near-indistinguishable performance be-
tween the non-private and private estimators, even for very
small values of ε. Our experimental results demonstrate that
privacy is realizable in practice, with particularly accurate
performance on real-world datasets.
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Figure 5. Comparison between our private support coverage esti-
mator with the SGT on Hamlet.
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