
Learning Representations and Generative Models for 3D Point Clouds
– Supplementary Material –

Panos Achlioptas 1 Olga Diamanti 1 Ioannis Mitliagkas 2 Leonidas Guibas 1

1. AE Details
The encoding layers of our AEs were implemented as 1D-
convolutions with ReLUs, with kernel size of 1 and stride
of 1, i.e. treating each 3D point independently. Their de-
coding layers, were MLPs built with FC-ReLUs. We used
Adam (Kingma & Ba, 2014) with initial learning rate of
0.0005, β1 of 0.9 and a batch size of 50 to train all AEs.

1.1. AE used for SVM-based experiments

For the AE mentioned in the SVM-related experiments of
Section 5.1 of the main paper, we used an encoder with
128, 128, 256 and 512 filters in each of its layers and a
decoder with 1024, 2048, 2048 × 3 neurons, respectively.
Batch normalization was used between every layer. We also
used online data augmentation by applying random rotations
along the gravity-(z)-axis to the input point clouds of each
batch. We trained this AE for 1000 epochs with the CD loss
and for 1100 with the EMD.

1.2. All other AEs

For all other AEs, the encoder had 64, 128, 128, 256 and
k filters at each layer, with k being the bottle-neck size.
The decoder was comprised by 3 FC-ReLU layers with
256, 256, 2048× 3 neurons each. We trained these AEs for
a maximum of 500 epochs when using single class data and
1000 epochs for the experiment involving 5 shape classes
(end of Section 5.2, main paper).

1.3. AE regularization

To determine an appropriate size for the latent-space, we
constructed 8 (otherwise architecturally identical) AEs with
bottleneck sizes k ∈ {4, 8 . . . , 512} and trained them with
point clouds of the chair object class, under the two losses

1Department of Computer Science, Stanford University, USA
2Department of Computer Science and Operations Research, Uni-
versity of Montréal, Canada. Correspondence to: Panos Achlioptas
<optas@cs.stanford.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

R
ec

on
st

ru
ct

io
n 

er
ro

r

Bottleneck Size

14

16

10

12

8

4

6

10-4×

4 5122561286432168

Chamfer

val
train

test

R
ec

on
st

ru
ct

io
n 

er
ro

r

Bottleneck Size

7

8

6

4

5

10-2×

4 5122561286432168

EMD

val
train

test

Figure 1. The bottleneck size was fixed at 128 in all single-class ex-
periments by observing the reconstruction loss of the AEs, shown
here for various bottleneck sizes, when training with the data of
the chair class.

Figure 2. Shape Analogies using our learned representation. Shape
B′ relates to B in the same way that shape A′ relates to A.

(Fig. 1). We repeated this procedure with pseudo-random
weight initializations three times and found that k = 128
had the best generalization error on the test data, while
achieving minimal reconstruction error on the train split.

Remark. Different AE setups brought no noticeable ad-
vantage over our main architecture. Concretely, adding
drop-out layers resulted in worse reconstructions and us-
ing batch-norm on the encoder only, sped up training and
gave us slightly better generalization error when the AE was
trained with single-class data. Exclusively, for the SVM
experiment of Section 5.1 of the main paper we randomly
rotate the input chairs to promote latent features that are
rotation-invariant.



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Figure 3. Interpolating between different point clouds (left and right-most of each row), using our latent space representation. Note the
interpolation between structurally and topologically different shapes. Note: for all our illustrations that portray point clouds we use the
Mitsuba renderer (Jakob, 2010).

2. Applications of the Latent Space
Representation

For shape editing applications, we use the embedding we
learned with the AE-EMD trained across all 55 object
classes, not separately per-category. This showcases its
ability to encode features for different shapes, and enables
interesting applications involving different kinds of shapes.

Editing shape parts. We use the shape annotations of Yi
et al.(Yi et al., 2016) as guidance to modify shapes. As an
example, assume that a given object category (e.g. chairs)
can be further subdivided into two sub-categories A and B:
every object A ∈ A possesses a certain structural property
(e.g. has armrests, is four-legged, etc.) and objects B ∈
B do not. Using our latent representation we can model
this structural difference between the two sub-categories by
the difference between their average latent representations
xB − xA, where xA =

∑
A∈A

xA, xB =
∑
B∈B

xB . Then,

given an object A ∈ A, we can change its property by
transforming its latent representation: xA′ = xA+xB−xA,
and decode xA′ to obtain A′ ∈ B. This process is shown in
Fig. 3 of the main paper.

Interpolating shapes. By linearly interpolating between
the latent representations of two shapes and decoding the re-
sult we obtain intermediate variants between the two shapes.
This produces a “morph-like” sequence with the two shapes
at its end points Fig. 2 of main paper and Fig. 3 here).
Our latent representation is powerful enough to support re-

moving and merging shape parts, which enables morphing
between shapes of significantly different appearance. Our
cross-category latent representation enables morphing be-
tween shapes of different classes, cfg. the second row for
an interpolation between a bench and a sofa.

Shape analogies. Another demonstration of the Eu-
clidean nature of the latent space is demonstrated by find-
ing analogous shapes by a combination of linear manip-
ulations and Euclidean nearest-neighbor searching. Con-
cretely, we find the difference vector between A and A′,
we add it to shape B and search in the latent space for the
nearest-neighbor of that result, which yields shape B′. We
demonstrate the finding in Fig. 2 with images taken from
the meshes used to derive the underlying point clouds to
help the visualization. Finding shape analogies has been
of interest recently in the geometry processing community
(Rustamov et al., 2013; Huang et al., 2018).

Loss ModelNet40 ModelNet10

C-plt icpt loss C-plt icpt loss
EMD 0.09 0.5 hng 0.02 3 sq-hng
CD 0.25 0.4 sq-hng 0.05 0.2 sq-hng

Table 1. Training parameters of SVMs used in each dataset with
each structural loss of the AE. C-penalty (C-plt): term control-
ling the trade-off between the size of the learned margin and the
misclassification rate; intercept (icpt): extra dimension appended
on the input features to center them; loss: svm’s optimization loss
function: hinge (hng), or squared-hinge (sq-hng).



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Figure 4. Synthetic results produced by the r-GAN. From left to
right: airplanes, car, chairs, sofa.

3. Autoencoding Human Forms
In addition to ShapeNet core which contains man-made only
objects, we have experimented with the D-FAUST dataset of
(Bogo et al., 2017) that contains meshes of human subjects.
Specifically, D-FAUST contains 40K scanned meshes of
10 human subjects performing a variety of motions. Each
human performs a set of (maximally) 14 motions, each
captured by a temporal sequence of ∼300 meshes. For
our purposes, we use a random subset of 80 (out of the
300) meshes for each human/motion and extract from each
mesh a point cloud with 4096 points. Our resulting dataset
contains a total of 10240 point clouds and we use a train-test-
val split of [70%, 20%, 10%] - while enforcing that every
split contains all human/motion combinations. We use this
data to train and evaluate an AE-EMD that is identical to
the single-class AE presented in the main paper, with the
only difference being the number of neurons of the last layer
(4096× 3 instead of 2048× 3).

We demonstrate reconstruction and interpolation results in
Figs. 5 and 6. For a given human subject and a specific
motion we pick at random two meshes corresponding to
time points t0, t1 (with t1 > t0) and show their recon-
structions along with the ground truth in Fig. 5 (left-most
and right-most of each row). In the same figure we also
plot the reconstructions of two random meshes captured
in (t0, t1) (middle-two of each row). In Fig. 6, instead
of encoding/decoding the ground truth test data, we show
decoded linear interpolations between the meshes of t0, t1.

4. Shape Completions
An important application that our AE architecture can be
used for is that of completing point clouds that contain
limited information of the underlying geometry. Typical
range scans acquired for an object in real-time can often
miss entire regions of the object due to the existence of self-
occlusions and the lack of adequate (or ”dense”) view-point
registrations. This fact makes any sensible solution to this
problem of high practical importance. To address it here, we
resort in a significantly different dataset than the ones used in
the rest of this paper. Namely, we utilize the dataset of (Dai
et al., 2016) that contains pairs of complete (intact) 3D CAD
models and partial versions of them. Specifically, for each
object of ShapeNet (core) it contains six partial point clouds
created by the aggregation of frames taken over a limited
set of view-points in a virtual trajectory established around

Figure 5. Reconstructions of unseen shapes from the test split ex-
tracted from the D-FAUST dataset of (Bogo et al., 2017) with an
AE-EMD decoding point clouds with 4096 points. In each row the
poses depict a motion (left-to-right) as it progress in time.

the object. Given this data, we first fix the dimensionality
of the partial point clouds to be 2048 points for each one by
randomly sub-sampling them. Second, we apply uniform-in-
area sampling to each complete CAD model to extract from
it 4096 points to represent a ”complete” ground-truth datum.
All the resulting point clouds are centered in the unit-sphere
and (within a class) the partial and complete point clouds
are co-aligned. Last, we train class-specific neural-nets with
Chair, Table and Airplane data and a train/val/test split of
[80%, 5%, 15%].

4.1. Architecture

The high level design of the architecture we use for shape-
completions is identical to the AE, i.e. independent-
convolutions followed by FCs, trained under a structural
loss (CD or EMD). However, essential parts of this network
are different: depth, bottleneck size (controlling compres-
sion ratio) and the crucial differentiation between the input



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Figure 6. Interpolating between different point clouds from the test split (left and right-most of each row) of the D-FAUST dataset of
(Bogo et al., 2017). These linear interpolations have captured some of the dynamics of the corresponding motions: ’chicken-wings’ (first
row), ’shake shoulders’ (second row) and ’jumping jacks’ (third row). Compare to Fig.5 that contains ground-truth point clouds in the
same time interval.

and the output data. Technically, the resulting architecture
is an Abstractor-Predictor (AP) and is comprised by three
layers of independent per-point convolutions, with filter
sizes of [64, 128, 1024], followed by a max-pool, which is
followed by an FC-ReLU (1024 neurons) and a final FC
layer (4096×3 neurons). We don’t use batch-normalization
between any layer and train each class-specific AP for a
maximum of 100 epochs, with ADAM, initial learning rate
of 0.0005 and a batch size of 50. We use the minimal per
the validation split model (epoch) for evaluating our models
with the test data.

4.2. Evaluation

We use the specialized point cloud completion metrics intro-
duced in (Sung et al., 2015). That is a) the accuracy: which
is the fraction of the predicted points that are within a given
radius (ρ) from any point in the ground truth point cloud and
b) the coverage: which is the fraction of the ground-truth
points that are within ρ from any predicted point. In Table 2
we report these metrics (with a ρ = 0.02 similarly to (Sung
et al., 2015)) for class-specific networks that were trained
with the EMD and CD losses respectively. We observe that
the CD loss gives rise to more accurate but also less com-
plete outputs, compared to the EMD. This highlights again
the greedy nature of CD – since it does not take into account
the matching between input/output, it can get generate com-
pletions that are more concentrated around the (incomplete)
input point cloud. Figure 7 shows the corresponding com-
pletions of those presented in the main paper, but with a

network trained under the CD loss.

Class Airplane Chair Table
Test-size 4.5K 6K 6K
Acc-CD 96.9 86.5 87.6

Acc-EMD 94.7 77.1 78.4
Cov-CD 96.6 77.5 75.2

Cov-EMD 96.8 82.6 83.0

Table 2. Performance of point cloud completions on ShapeNet test
data. Comparison between Abstractor-Predictors trained under the
CD or EMD losses, on mean Accuracy and Coverage, across each
class. The size of each test-split is depicted in the first row.

5. SVM Parameters for Auto-encoder
Evaluation

For the classification experiments of Section 5.1 (main pa-
per) we used a one-versus-rest linear SVM classifier with
an l2 norm penalty and balanced class weights. The exact
optimization parameters can be found in Table 1. The con-
fusion matrix of the classifier evaluated on our latent codes
on ModelNet40 is shown in Fig. 8.

6. r-GAN Details
The discriminator’s first 5 layers are 1D-convolutions with
stride/kernel of size 1 and {64, 128, 256, 256, 512} filters
each; interleaved with leaky-ReLU. They are followed by
a feature-wise max-pool. The last 2 FC-leaky-ReLU lay-



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Figure 7. Point cloud completions of a network trained with partial and complete (input/output) point clouds and the CD loss. Each
triplet shows the partial input from the test split (left-most), followed by the network’s output (middle) and the complete ground-truth
(right-most). Also compare with Fig. 4 of main paper that portrays the corresponding completions of a network trained with the EMD loss.

Figure 8. Confusion matrix for the SVM-based classification of
Section 5.1, for the Chamfer loss on ModelNet40. The class
pairs most confused by the classifier are dresser/nightstand, flower
pot/plant. Better viewed in the electronic version.

ers have {128, 64}, neurons each and they lead to single
sigmoid neuron. We used 0.2 units of leak.

The generator consists of 5 FC-ReLU layers with
{64, 128, 512, 1024, 2048 × 3} neurons each. We trained
r-GAN with Adam with an initial learning rate of 0.0001,
and beta1 of 0.5 in batches of size 50. The noise vector was
drawn by a spherical Gaussian of 128 dimensions with zero
mean and 0.2 units of standard deviation.

Some synthetic results produced by the r-GAN are shown
in Fig. 4.

7. l-GAN Details
The discriminator consists of 2 FC-ReLU layers with
{256, 512} neurons each and a final FC layer with a single
sigmoid neuron. The generator consists of 2 FC-ReLUs with
{128, k = 128} neurons each. When used the l-Wasserstein-
GAN, we used a gradient penalty regularizer λ = 10 and
trained the critic for 5 iterations for each training iteration of
the generator. The training parameters (learning rate, batch

size) and the generator’s noise distribution were the same as
those used for the r-GAN.

8. Model Selection of GANs
All GANs are trained for maximally 2000 epochs; for each
GAN, we select one of its training epochs to obtain the
“final” model, based on how well the synthetic results match
the ground-truth distribution. Specifically, at a given epoch,
we use the GAN to generate a set of synthetic point clouds,
and measure the distance between this set and the validation
set. We avoid measuring this distance using MMD-EMD,
given the high computational cost of EMD. Instead, we
use either the JSD or MMD-CD metrics to compare the
synthetic dataset to the validation dataset. To further reduce
the computational cost of model selection, we only check
every 100 epochs (50 for r-GAN). The generalization error
of the various GAN models, at various training epochs, as
measured by MMD and JSD is shown in Fig. 9 (left and
middle).

Using the same JSD criterion, we also select the number
and covariance type of Gaussian components for the GMM
(Fig. 10, left), and obtain the optimal value of 32 compo-
nents. GMMs performed much better with full (as opposed
to diagonal) covariance matrices, suggesting strong correla-
tions between the latent dimensions (Fig. 10, right).

When using MMD-CD as the selection criterion, we obtain
models of similar quality and at similar stopping epochs
(see Table 3); the optimal number of Gaussians in this case
was 40. The training behavior measured using MMD-CD
can be seen in Fig. 9 (right).

9. Voxel AE Details
Our voxel-based AEs are fully-convolutional with the en-
coders consisting of 3D-Conv-ReLU layers and the decoders
of 3D-Conv-ReLU-transpose layers. Below, we list the pa-
rameters of consecutive layers, listed left-to-right. The layer
parameters are denoted in the following manner: (number of
filters, filter size). Each Conv/Conv-Transpose has a stride
of 2 except the last layer of the 323 decoder which has 4. In
the last layer of the decoders we do not use a non-linearity.
The abbreviation ”bn” stands for batch-normalization.



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Raw GAN - Train
Raw GAN - Test
Latent GAN (AE-EMD) - Train

Latent WGAN (AE-EMD) - Train
Latent WGAN (AE-EMD) - Test

Latent GAN (AE-EMD) - Test

JS
D

Epochs
500 1000 1500 2000

0.8

0.6

0.4

0.2

0.0

JSD in train and test

M
M

D
-C

D

Epochs
1 200 400 600 800 1000

9

7

5

1

3

10-3×

Raw GAN - Train
Raw GAN - Test
Latent GAN (AE-EMD) - Train

Latent WGAN (AE-EMD) - Train
Latent WGAN (AE-EMD) - Test

Latent GAN (AE-EMD) - Test

MMD-CD in train and test

Raw GAN

Latent GAN (AE-EMD)
Latent GAN (AE-CD)

Latent WGAN (AE-EMD)

M
M

D
-C

D

Epochs0 500 1000 1500 2000

1.4

1.2

1

0.6

0.4

0

0.8

0.2

10-2×

Figure 9. Left/middle: Generalization error of the various GAN models, at various training epochs. Generalization is estimated using
the JSD (left) and MMD-CD (middle) metrics, which measure closeness of the synthetic results to the training resp. test ground truth
distributions. The plots show the measurements of various GANs. Right: Training trends in terms of the MMD-CD metric for the various
GANs. Here, we sample a set of synthetic point clouds for each model, of size 3x the size of the ground truth test dataset, and measure
how well this synthetic dataset matches the ground truth in terms of MMD-CD. This plot complements Fig. 6 (left) of the main paper,
where a different evaluation measure was used - note the similar behavior.

Figure 10. GMM model selection. GMMs with a varying number
of Gaussians and covariance type are trained on the latent space
learned by and AE trained with EMD and a bottleneck of 128.
Models with a full covariance matrix achieve significantly smaller
JSD than models trained with diagonal covariance. For those with
full covariance, 30 or more clusters seem sufficient to achieve
minimal JSD. On the right, the values in a typical covariance
matrix of a Gaussian component are shown in pseudocolor - note
the strong off-diagonal components.

• 323 - model
Encoder: Input → (32, 6) → (32, 6) → bn →
(64, 4) → (64, 2) → bn → (64, 2)
Decoder: (64, 2) → (32, 4) → bn → (32, 6) →
(1, 8) → Output

• 643 - model
Encoder: Input → (32, 6) → (32, 6) → bn →
(64, 4) → (64, 4) → bn → (64, 2) → (64, 2)
Decoder: (64, 2) → (32, 4) → bn → (32, 6) →
(32, 6) → bn → (32, 8) → (1, 8) → Output

We train each AE for 100 epochs with Adam under the
binary cross-entropy loss. The learning rate was 0.001, the
β1 0.9 and the batch size 64. To validate our voxel AE
architectures, we compared them in terms of reconstruction
quality to the state-of-the-art method of (Tatarchenko et al.,

Method Epoch JSD MMD-
CD

MMD-
EMD

COV-
EMD

COV-
CD

A 1350 0.1893 0.0020 0.1265 19.4 54.7
B 300 0.0463 0.0020 0.0800 32.6 58.2
C 200 0.0319 0.0022 0.0684 57.6 58.7
D 1700 0.0240 0.0020 0.0664 64.2 64.7
E - 0.0182 0.0018 0.0646 68.6 69.3

Table 3. Evaluation of five generators on test-split of chair data
on epochs/models that were selected via minimal MMD-CD on
the validation-split. We report: A: r-GAN, B: l-GAN (AE-CD),
C: l-GAN (AE-EMD) , D: l-WGAN (AE-EMD), E: GMM-40-F
(AE-EMD). GMM-40-F stands for a GMM with 40 Gaussian com-
ponents with full covariances. The reported scores are averages of
three pseudo-random repetitions. Compare this with Table 3 of the
main paper. Note that the overall quality of the selected models
remains the same, irrespective of the metric used for the selection.

2017) and obtained comparable results, as demonstrated in
Table 4.

10. Memorization Baseline
Here we compare our GMM-generator against a model that
memorizes the training data of the chair class. To do this,
we either consider the entire training set or randomly sub-
sample it, to create sets of different sizes. We then evaluate
our metrics between these memorized sets and the point
clouds of test split (see Table 5). The coverage/fidelity ob-
tained by our generative models (last row) is slightly lower
than the equivalent in size case (third row) as expected:
memorizing the training set produces good coverage/fidelity
with respect to the test set when they are both drawn from
the same population. This speaks for the validity of our
metrics. Naturally, the advantage of using a learned rep-
resentation lies in learning the structure of the underlying



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Voxel Resolution 32 64
Ours 92.7 88.4

(Tatarchenko et al., 2017) 93.9 90.4

Table 4. Reconstruction quality statistics for our dense voxel-based
AE and the one of (Tatarchenko et al., 2017) for the ShapeNetCars
dataset. Both approaches use a 0.5 occupancy threshold and the
train-test split of (Tatarchenko et al., 2017). Reconstruction quality
is measured by measuring the intersection-over-union between
the input and synthesized voxel grids, namely the ratio between
the volume in the voxel grid that is 1 in both grids divided by the
volume that is 1 in at least one grid.

Sample Set Size COV-
CD

MMD-
CD

COV-
EMD

MMD-
EMD

Entire —Train— 97.3 0.0013 98.2 0.0545
1 × —Test— 54.0 0.0023 51.9 0.0699
3 × —Test— 79.4 0.0018 78.6 0.0633
Full-GMM/32
(3 × —Test—) 68.9 0.0018 67.4 0.0651

Table 5. Quantitative results of a baseline sampling/memorizing
model, for different sizes of sets sampled from the training set and
evaluated against the test split. The first three rows show results
of a memorizing model, while the third row corresponds to our
generative model. The first row shows the results of memorizing
the entire training chair dataset. The second and third rows show
the averages of three repetitions of the sub-sampling procedure
with different random seeds.

space instead of individual samples, which enables com-
pactly representing the data and generating novel shapes as
demonstrated by our interpolations. In particular, note that
while some mode collapse is present in our generative re-
sults, as indicated by the ∼10% drop in coverage, the MMD
of our generative models is almost identical to that of the
memorization case, indicating excellent fidelity.

11. More Comparisons with Wu et al.
In addition to the EMD-based comparisons in Table 4 of the
main paper, in Tables 6, 7 we provide comparisons with (Wu
et al., 2015) for the ShapeNet classes for which the authors
have made publicly available their models. In Table 6 we
provide JSD-based comparisons for two of our models. In
Table 7 we provide Chamfer-based Fidelity/Coverage com-
parisons on the test split, that complement the EMD-based
ones of Table 4 in the main paper.

Comparisons on training data. In Table 8 we compare
to (Wu et al., 2016) in terms of the JSD and MMD-CD
on the training set of the chair category. Since (Wu et al.,
2016) do not use any train/test split, we perform 5 rounds
of sampling 1K synthetic results from their models and re-
port the best values of the respective evaluation metrics.

Class A B C

Tr+Te Tr Te Tr Te
airplane - 0.0149 0.0268 0.0065 0.0191

car 0.1890 0.0081 0.0109 0.0063 0.0108
rifle 0.2012 0.0212 0.0364 0.0092 0.0214
sofa 0.1812 0.0102 0.0102 0.0102 0.0101
table 0.2472 0.0058 0.0177 0.0035 0.0143

Table 6. JSD-based comparison between A: (Wu et al., 2016) and
our generative models – B: a latent GAN, C: our GM with 32
full-covariance Gaussian components. Both B and C were trained
on the latent space of our AE with the EMD structural loss. Note
that the l-GAN here uses the same “vanilla” adversarial objective
as (Wu et al., 2016). Tr: training split, Te: testing split.

Class MMD-CD COV-CD

A B A B
airplane - 0.0005 - 71.1

car 0.0015 0.0007 22.9 63.0
rifle 0.0008 0.0005 56.7 71.7
sofa 0.0027 0.0013 42.40 75.5
table 0.0058 0.0016 16.7 71.7

Table 7. CD based MMD and Coverage comparison between
A: Wu et al. (2016) and B: our generative model on the test split of
each class. Our generative model is a GM with 32 full-covariance
Gaussian components, trained on the latent space of our AE with
the EMD structural loss. Note that Wu et al. used all models of
each class for training.

We also report the average classification probability of the
synthetic samples to be classified as chairs by the Point-
Net classifier. The r-GAN mildly outperforms (Wu et al.,
2016) in terms of its diversity (as measured by JSD/MMD),
while also creating realistic-looking results, as shown by the
classification score. The l-GANs perform even better, both
in terms of classification and diversity, with less training
epochs. Finally, note that the PointNet classifier was trained
on ModelNet, and (Wu et al., 2016) occasionally generates
shapes that only rarely appear in ModelNet. In conjunction
with their higher tendency for mode collapse, this partially
accounts for their lower classification scores.

12. Limitations
Figure 11 shows some failure cases of our models. Chairs
with rare geometries (left two images) are sometimes not
faithfully decoded. Additionally, the AEs may miss high-
frequency geometric details, e.g. a hole in the back of a chair
(middle), thus altering the style of the input shape. Finally,
the r-GAN often struggles to create realistic-looking shapes
(right) – while the r-GAN chairs are easily visually recog-



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Metric A B C D E F
JSD 0.1660 0.1705 0.0372 0.0188 0.0077 0.0048

MMD-CD 0.0017 0.0042 0.0015 0.0018 0.0015 0.0014
CLF 84.10 87.00 96.10 94.53 89.35 87.40

Table 8. Evaluating six generators on train-split of chair dataset
on epochs/models selected via minimal JSD on the validation-split.
We report: A: r-GAN, B: (Wu et al., 2016) (a volumetric approach),
C: l-GAN(AE-CD), D: l-GAN(AE-EMD), E: l-WGAN(AE-EMD),
F: GMM(AE-EMD). Note that the average classification score
attained by the ground-truth point clouds was 84.7%.

Figure 11. The AEs might fail to reconstruct uncommon geome-
tries or might miss high-frequency details: first four images - left
of each pair is the input, right the reconstruction. The r-GAN may
synthesize noisy/unrealistic results, cf. a car (right most image).

nizable, it has a harder time on cars. Designing more robust
raw-GANs for point clouds remain an interesting avenue for
future work. A limitation of our shape-completion pipeline
regards the style of the partial shape, which might not be
well preserved in the completed point cloud (see Fig. 13 for
an example).

References
Bogo, F., Romero, J., Pons-Moll, G., and Black, M. J. Dy-

namic FAUST: Registering human bodies in motion. In
IEEE CVPR, 2017.

Dai, A., Qi, C. R., and Nießner, M. Shape completion
using 3d-encoder-predictor cnns and shape synthesis.
http://arxiv.org/abs/1612.00101, 2016.

Huang, R., Achlioptas, P., Guibas, L., and Ovsjanikov, M.
Latent space representation for shape analysis and learn-
ing. http://arxiv.org/abs/1806.03967, 2018.

Jakob, W. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

Rustamov, R. M., Ovsjanikov, M., Azencot, O., Ben-Chen,
M., Chazal, F., and Guibas, L. Map-based exploration of
intrinsic shape differences and variability. ACM Trans.
Graph., 32(4), July 2013.

Sung, M., Kim, V. G., Angst, R., and Guibas, L. J. Data-
driven structural priors for shape completion. ACM Trans-
actions on Graphics (TOG), 34(6):175, 2015.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. Octree gen-
erating networks: Efficient convolutional architectures
for high-resolution 3d outputs. CoRR, abs/1703.09438,
2017.

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum,
J. Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.
(eds.), NIPS. 2016.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In IEEE CVPR, 2015.

Yi, L., Kim, V. G., Ceylan, D., Shen, I., Yan, M., Su, H.,
Lu, C., Huang, Q., Sheffer, A., and Guibas, L. J. A
scalable active framework for region annotation in 3d
shape collections. ACM Trans. Graph., 35(6), 2016.



Supplementary - Learning Representations and Generative Models for 3D Point Clouds

Figure 12. The 32 centers of the GMM fitted to the latent codes, and decoded using the decoder of the AE-EMD.

Figure 13. Our completion network might fail to preserve some
of the style information in the partial point cloud, even though a
reasonable shape is produced.


