
A Reductions Approach to Fair Classification

A. Error and Fairness for Randomized Classifiers
Let D denote the distribution over triples (X,A, Y ). The accuracy of a classifier h ∈ H is measured by 0-1 error,
err(h) := PD[h(X) 6= Y ], which for a randomized classifier Q becomes

err(Q) := P
(X,A,Y )∼D,h∼Q

[h(X) 6= Y ] =
∑
h∈H

Q(h) err(h) .

The fairness constraints on a classifier h are Mµ(h) ≤ c. Recall that µj(h) := ED[gj(X,A, Y, h(X)) | Ej ]. For a
randomized classifier Q we define its moment µj as

µj(Q) := E
(X,A,Y )∼D,h∼Q

[
gj(X,A, Y, h(X))

∣∣∣ Ej] =
∑
h∈H

Q(h)µj(h) ,

where the last equality follows because Ej is independent of the choice of h.

B. Proof of Theorem 1
The proof follows immediately from the analysis of Freund & Schapire (1996) applied to the Exponentiated Gradient (EG)
algorithm (Kivinen & Warmuth, 1997), which in our specific case is also equivalent to Hedge (Freund & Schapire, 1997).

Let Λ := {λ ∈ R|K|+ : ‖λ′‖1 ≤ B} and Λ′ := {λ′ ∈ R|K|+1
+ : ‖λ′‖1 = B}. We associate any λ ∈ Λ with the λ′ ∈ Λ′

that is equal to λ on coordinates 1 through |K| and puts the remaining mass on the coordinate λ′|K|+1.

Consider a run of Algorithm 1. For each λt, let λ′t ∈ Λ′ be the associated element of Λ′. Let rt := Mµ̂(ht)− ĉ and let
r′t ∈ R|K|+1 be equal to rt on coordinates 1 through |K| and put zero on the coordinate r′t,|K|+1. Thus, for any λ and the
associated λ′, we have, for all t,

λ>rt = (λ′)>r′t , (7)

and, in particular,

λ>t
(
Mµ̂(ht)− ĉ

)
= λ>t rt = (λ′t)

>r′t . (8)

We interpret r′t as the reward vector for the λ-player. The choices of λ′t then correspond to those of the EG algorithm with
the learning rate η. By the assumption of the theorem we have ‖r′t‖∞ = ‖rt‖∞ ≤ ρ. The regret bound for EG, specifically,
Corollary 2.14 of Shalev-Shwartz (2012), then states that for any λ′ ∈ Λ′,

T∑
t=1

(λ′)>r′t ≤
T∑
t=1

(λ′t)
>r′t +

B log(|K|+ 1)

η
+ ηρ2BT︸ ︷︷ ︸

=:ζT

.

Therefore, by equations (7) and (8), we also have for any λ ∈ Λ,

T∑
t=1

λ>rt ≤
T∑
t=1

λ>t rt + ζT . (9)
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This regret bound can be used to bound the suboptimality of L(Q̂T , λ̂T ) in λ̂T as follows:

L(Q̂T ,λ) =
1

T

T∑
t=1

(
êrr(ht) + λ>

(
Mµ̂(ht)− ĉ

))
=

1

T

T∑
t=1

(
êrr(ht) + λ>rt

)
≤ 1

T

T∑
t=1

(
êrr(ht) + λ>t rt

)
+
ζT
T

(10)

=
1

T

T∑
t=1

L(ht,λt) +
ζT
T

≤ 1

T

T∑
t=1

L(Q̂T ,λt) +
ζT
T

(11)

= L
(
Q̂T ,

1

T

T∑
t=1

λt

)
+
ζT
T

= L(Q̂T , λ̂T ) +
ζT
T

. (12)

Equation (10) follows from the regret bound (9). Equation (11) follows because L(ht,λt) ≤ L(Q,λt) for all Q by the
choice of ht as the best response of the Q-player. Finally, equation (12) follows by linearity of L(Q,λ) in λ. Thus, we have
for all λ ∈ Λ,

L(Q̂T , λ̂T ) ≥ L(Q̂T ,λ)− ζT
T

. (13)

Also, for any Q,

L(Q, λ̂T ) =
1

T

T∑
t=1

L(Q,λt) (14)

≥ 1

T

T∑
t=1

L(ht,λt) (15)

≥ 1

T

T∑
t=1

L(ht, λ̂T )− ζT
T

(16)

= L(Q̂T , λ̂T )− ζT
T

, (17)

where equation (14) follows by linearity of L(Q,λ) in λ, equation (15) follows by the optimality of ht with respect to λ̂t,
equation (16) from the regret bound (9), and equation (17) by linearity of L(Q,λ) in Q. Thus, for all Q,

L(Q̂T , λ̂T ) ≤ L(Q, λ̂T ) +
ζT
T

. (18)

Equations (13) and (18) immediately imply that for any T ≥ 1,

νT ≤
ζT
T

=
B log(|K|+ 1)

ηT
+ ηρ2B ,

proving the first part of the theorem.

The second part of the theorem follows by plugging in η = ν
2ρ2B and verifying that if T ≥ 4ρ2B2 log(|K|+1)

ν2 then

νT ≤
B log(|K|+ 1)

ν
2ρ2B ·

4ρ2B2 log(|K|+1)
ν2

+
ν

2ρ2B
· ρ2B =

ν

2
+
ν

2
.
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C. Proofs of Theorems 2 and 3
The bulk of this appendix proves the following theorem, which will immediately imply Theorems 2 and 3.

Theorem 4. Let (Q̂, λ̂) be any ν-approximate saddle point of L with

ĉk = ck + εk and εk ≥
∑
j∈J

|Mk,j |

(
2Rnj (H) +

2
√
nj

+

√
ln(2/δ)

2nj

)
.

Let Q? minimize err(Q) subject to Mµ(Q) ≤ c. Then with probability at least 1− (|J|+ 1)δ, the distribution Q̂ satisfies

err(Q̂) ≤ err(Q?) + 2ν + 4Rn(H) +
4√
n

+

√
2 ln(2/δ)

n
,

and for all k, γk(Q̂) ≤ ck +
1 + 2ν

B
+ 2εk .

Let Λ := {λ ∈ R|K|+ : ‖λ′‖1 ≤ B} denote the domain of λ. In the remainder of the section, we assume that we are given a
pair (Q̂, λ̂) which is a ν-approximate saddle point of L, i.e.,

L(Q̂, λ̂) ≤ L(Q, λ̂) + ν for all Q ∈ ∆,

and L(Q̂, λ̂) ≥ L(Q̂,λ)− ν for all λ ∈ Λ.
(19)

We first establish that the pair (Q̂, λ̂) satisfies an approximate version of complementary slackness. For the statement and
proof of the following lemma, recall that γ̂(Q) = Mµ̂(Q), so the empirical fairness constraints can be written as γ̂(Q) ≤ ĉ
and the Lagrangian L can be written as

L(Q,λ) = êrr(Q) +
∑
k∈K

λk(γ̂k(Q)− ĉk) . (20)

Lemma 1 (Approximate complementary slackness). The pair (Q̂, λ̂) satisfies∑
k∈K

λ̂k(γ̂k(Q̂)− ĉk) ≥ Bmax
k∈K

(
γ̂k(Q̂)− ĉk

)
+
− ν ,

where we abbreviate x+ = max{x, 0} for any real number x.

Proof. We show that the lemma follows from the optimality conditions (19). We consider a dual variable λ defined as

λ =

{
0 if γ̂(Q̂) ≤ ĉ,
Bek? otherwise, where k? = arg maxk[γ̂k(Q̂)− ĉk],

where ek denotes the kth vector of the standard basis. Then we have by equations (19) and (20) that

êrr(Q̂) +
∑
k∈K

λ̂k(γ̂k(Q̂)− ĉk) = L(Q̂, λ̂)

≥ L(Q̂,λ)− ν = êrr(Q̂) +
∑
k∈K

λk(γ̂k(Q̂)− ĉk)− ν ,

and the lemma follows by our choice of λ.

Next two lemmas bound the empirical error of Q̂ and also bound the amount by which Q̂ violates the empirical fairness
constraints.

Lemma 2 (Empirical error bound). The distribution Q̂ satisfies êrr(Q̂) ≤ êrr(Q) + 2ν for any Q satisfying the empirical
fairness constraints, i.e., any Q such that γ̂(Q) ≤ ĉ.
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Proof. Assume that Q satisfies γ̂(Q) ≤ ĉ. Since λ̂ ≥ 0, we have

L(Q, λ̂) = êrr(Q) + λ̂
>(

γ̂(Q)− ĉ
)
≤ êrr(Q) .

The optimality conditions (19) imply that
L(Q̂, λ̂) ≤ L(Q, λ̂) + ν .

Putting these together, we obtain

L(Q̂, λ̂) ≤ êrr(Q) + ν .

We next invoke Lemma 1 to lower bound L(Q̂, λ̂) as

L(Q̂, λ̂) = êrr(Q̂) +
∑
k∈K

λ̂k(γ̂k(Q̂)− ĉk) ≥ êrr(Q̂) +Bmax
k∈K

(
γ̂k(Q̂)− ĉk

)
+
− ν

≥ êrr(Q̂)− ν .

Combining the upper and lower bounds on L(Q̂, λ̂) completes the proof.

Lemma 3 (Empirical fairness violation). Assume that the empirical fairness constraints γ̂(Q) ≤ ĉ are feasible. Then the
distribution Q̂ approximately satisfies all empirical fairness constraints:

max
k∈K

(
γ̂k(Q̂)− ĉk

)
≤ 1 + 2ν

B
.

Proof. Let Q satisfy γ̂(Q) ≤ ĉ. Applying the same upper and lower bound on L(Q̂, λ̂) as in the proof of Lemma 2, we
obtain

êrr(Q̂) +Bmax
k∈K

(
γ̂k(Q̂)− ĉk

)
+
− ν ≤ L(Q̂, λ̂) ≤ êrr(Q) + ν .

We can further upper bound êrr(Q)− êrr(Q̂) by 1 and use x ≤ x+ for any real number x to complete the proof.

It remains to lift the bounds on empirical classification error and constraint violation into the corresponding bounds on true
classification error and the violation of true constraints. We will use the standard machinery of uniform convergence bounds
via the (worst-case) Rademacher complexity.

Let F be a class of functions f : Z → [0, 1] over some space Z. Then the (worst-case) Rademacher complexity of F is
defined as

Rn(F) := sup
z1,...,zn∈Z

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(zi)

∣∣∣∣∣
]
,

where the expectation is over the i.i.d. random variables σ1, . . . , σn with P[σi = 1] = P[σi = −1] = 1/2.

We first prove concentration of generic moments derived from classifiers h ∈ H and then move to bounding the deviations
from true classification error and true fairness constraints.

Lemma 4 (Concentration of moments). Let g : X×A×{0, 1}×{0, 1} → [0, 1] be any function and let D be a distribution
over (X,A, Y ). Then with probability at least 1− δ, for all h ∈ H,∣∣∣Ê[g(X,A, Y, h(X))

]
− E

[
g(X,A, Y, h(X))

]∣∣∣ ≤ 2Rn(H) +
2√
n

+

√
ln(2/δ)

2n
,

where the expectation is with respect to D and the empirical expectation is based on n i.i.d. draws from D.

Proof. Let F := {fh}h∈H be the class of functions fh : (x, y, a) 7→ g
(
x, y, a, h(x)

)
. By Theorem 3.2 of Boucheron et al.

(2005), we then have with probability at least 1− δ, for all h,∣∣∣Ê[g(X,A, Y, h(X))
]
− E

[
g(X,A, Y, h(X))

]∣∣∣ =
∣∣∣Ê[fh]− E[fh]

∣∣∣ ≤ 2Rn(F) +

√
ln(2/δ)

2n
. (21)
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We will next bound Rn(F) in terms of Rn(H). Since h(x) ∈ {0, 1}, we can write

fh(x, y, a) = h(x)g(x, a, y, 1) +
(

1− h(x)
)
g(x, a, y, 0) = g(x, a, y, 0) + h(x)

(
g(x, a, y, 1)− g(x, a, y, 0)

)
.

Since
∣∣g(x, a, y, 0)

∣∣ ≤ 1 and
∣∣g(x, a, y, 1) − g(x, a, y, 0)

∣∣ ≤ 1, we can invoke Theorem 12(5) of Bartlett & Mendelson
(2002) for bounding function classes shifted by an offset, in our case g(x, a, y, 0), and Theorem 4.4 of Ledoux & Talagrand
(1991) for bounding function classes under contraction, in our case g(x, a, y, 1)− g(x, a, y, 0), yielding

Rn(F) ≤ 1√
n

+Rn(H) .

Together with the bound (21), this proves the lemma.

Lemma 5 (Concentration of loss). With probability at least 1− δ, for all Q ∈ ∆,

|êrr(Q)− err(Q)| ≤ 2Rn(H) +
2√
n

+

√
ln(2/δ)

2n
.

Proof. We first use Lemma 4 with g : (x, a, y, ŷ) 7→ 1{y 6= ŷ} to obtain, with probability 1− δ, for all h,

∣∣∣êrr(h)− err(h)
∣∣∣ =

∣∣∣Ê[fh]− E[fh]
∣∣∣ ≤ 2Rn(H) +

2√
n

+

√
ln(2/δ)

2n
.

The lemma now follows for any Q by taking a convex combination of the corresponding bounds on h ∈ H.7

Finally, we show a result for the concentration of the empirical constraint violations to their population counterparts. We
will actually show the concentration of the individual moments µ̂j(Q) to µj(Q) uniformly for all Q ∈ ∆. Since M is
a fixed matrix not dependent on the data, this also directly implies concentration of the constraints γ̂(Q) = Mµ̂(Q) to
γ(Q) = Mµ(Q). For this result, recall that nj = |{i ∈ [n] : (Xi,Ai,Yi) ∈ Ej}| and p?j = P[Ej ].

Lemma 6 (Concentration of conditional moments). For any j ∈ J, with probability at least 1− δ, for all Q,

∣∣µ̂j(Q)− µj(Q)
∣∣ ≤ 2Rnj

(H) +
2
√
nj

+

√
ln(2/δ)

2nj
.

If np?j ≥ 8 log(2/δ), then with probability at least 1− δ, for all Q,

∣∣µ̂j(Q)− µj(Q)
∣∣ ≤ 2Rnp?j /2(H) + 2

√
2

np?j
+

√
ln(4/δ)

np?j
.

Proof. Our proof largely follows the proof of Lemma 2 of Woodworth et al. (2017), with appropriate modifications for our
more general constraint definition. Let Sj := {i ∈ [n] : (Xi,Ai,Yi) ∈ Ej} be the set of indices such that the corresponding
examples fall in the event Ej . Note that we have defined nj = |Sj |. Let D(·) denote the joint distribution of (X,A, Y ).
Then, conditioned on i ∈ Sj , the random variables gj(Xi,Ai,Yi,h(Xi)) are i.i.d. draws from the distribution D(· | Ej), with
mean µj(h). Applying Lemma 4 with gj and the distribution D(· | Ej) therefore yields, with probability 1− δ, for all h,

∣∣µ̂j(h)− µj(h)
∣∣ ≤ 2Rnj

(H) +
2
√
nj

+

√
ln(2/δ)

2nj
,

The lemma now follows by taking a convex combination over h.
7The same reasoning applies for general error, err(h) = E[gerr(X,A,Y,h(X))], by using g = gerr in Lemma 4.
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Proof of Theorem 4. We now use the lemmas derives so far to prove Theorem 4. We first use Lemma 6 to bound the gap
between the empirical and population fairness constraints. The lemma implies that with probability at least 1− |J|δ, for all
k ∈ K and all Q ∈ ∆, ∣∣γ̂k(Q)− γk(Q)

∣∣ =
∣∣∣Mk

(
µ̂(Q)− µ(Q)

)∣∣∣
≤
∑
j∈J

|Mk,j |
∣∣∣µ̂j(Q)− µj(Q)

∣∣∣
≤
∑
j∈J

|Mk,j |

(
2Rnj

(H) +
2
√
nj

+

√
ln(2/δ)

2nj

)
≤ εk . (22)

Note that our choice of ĉ along with equation (22) ensure that γ̂k(Q?) ≤ ĉk for all k ∈ K. Using Lemma 2 allows us to
conclude that

êrr(Q̂) ≤ êrr(Q?) + 2ν .

We now invoke Lemma 5 twice, once for êrr(Q̂) and once for êrr(Q?), proving the first statement of the theorem.

The above shows that Q? satisfies the empirical fairness constraints, so we can use Lemma 3, which together with
equation (22) yields

γk(Q̂) ≤ γ̂k(Q̂) + εk ≤ ĉk +
1 + 2ν

B
+ εk = ck +

1 + 2ν

B
+ 2εk ,

proving the second statement of the theorem.

We are now ready to prove Theorems 2 and 3

Proof of Theorem 2. The first part of the theorem follows immediately from Assumption 1 and Theorem 4 (with δ/2 instead
of δ). The statement in fact holds with probability at least 1− (|J|+ 1)δ/2. For the second part, we use the multiplicative
Chernoff bound for binomial random variables. Note that E[nj ] = np?j , and we assume that np?j ≥ 8 ln(2/δ), so the
multiplicative Chernoff bound implies that nj ≤ np?j/2 with probability at most δ/2. Taking the union bound across all j
and combining with the first part of the theorem then proves the second part.

Proof of Theorem 3. This follows immediately from Theorem 1 and the first part of Theorem 2.

D. Additional Experimental Results
In this appendix we present more complete experimental results. We present experimental results for both the training and
test data. We evaluate the exponentiated-gradient as well as the grid-search variants of our reductions. And, finally, we
consider extensions of reweighting and relabeling beyond the specific tradeoffs proposed by Kamiran & Calders (2012).
Specifically, we introduce a scaling parameter that interpolates between the prescribed tradeoff (specific importance weights
or the number of examples to relabel) and the unconstrained classifier (uniform weights or zero examples to relabel). The
training data results are shown in Figure 2. The test set results are shown in Figure 3.
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Figure 2. Training classification error versus constraint violation, with respect to DP (top two rows) and EO (bottom two rows). Markers
correspond to the baselines. For our two reductions and the interpolants between reweighting (or relabeling) and the unconstrained
classifier, we varied their tradeoff parameters and plot the Pareto frontiers of the sets of classifiers obtained for each method. Because the
curves of the different methods often overlap, we use vertical dashed lines to indicate the lowest constraint violations. All data sets have
binary protected attributes except for adult4, which has four protected attribute values, so relabeling is not applicable and grid search is
not feasible for this data set. The exponentiated-gradient reduction dominates or matches other approaches as expected since it solves
exactly for the points on the Pareto frontier of the set of all classifiers in each considered class.
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Figure 3. Test classification error versus constraint violation, with respect to DP (top two rows) and EO (bottom two rows). Markers
correspond to the baselines. For our two reductions and the interpolants between reweighting (or relabeling) and the unconstrained
classifier, we show convex envelopes of the classifiers taken from the training Pareto frontier of each method (i.e., the same classifiers as
shown in Figure 2). Because the curves of the different methods often overlap, we use vertical dashed lines to indicate the lowest constraint
violations. All data sets have binary protected attributes except for adult4, which has four protected attribute values, so relabeling
is not applicable and grid search is not feasible for this data set. We show 95% confidence bands for the classification error of the
exponentiated-gradient reduction and 95% confidence intervals for the constraint violation of post-processing. The exponentiated-gradient
reduction dominates or matches performance of all other methods up to statistical uncertainty.


