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A. Generalization of the ASR algorithm with
Regularization

In this section, we shall present a generalized version of
the ASR algorithm that relaxes the assumption that each set
Sa is of the same fixed cardinality m, and each set Sa is
compared the same number of times L. The intuition behind
this generalization is that each comparison carries an equal
amount of information, and thus, we should give a higher
preference to the empirical estimates p̂i|Sa

corresponding to
sets with more comparisons. Furthermore, comparisons on
smaller sets are more reliable than comparisons on larger
sets. In general, sets with larger cardinality should have
proportionately more comparisons. Lastly, in practice, we
often encounter comparison data for which the random walk
P̂ on the comparison graph Gc is not strongly connected.
We can resolve this issue through regularization. With these
in mind, we update our algorithm as discussed below:

Given general comparison data Y′ = {(Sa,ya)da=1}, where
Sa ⊆ [n] is of cardinality |Sa|, and ya = (y1

a, . . . , y
La
a ), we

define d′i for each i ∈ [n] as

d′i :=
∑

a∈[d]:i∈Sa

(
La
|Sa|

+ λ

)

where λ is a regularization parameter. Intuitively, one
can think of the regularization as adding λ|Sa| pseudo-
comparisons to each set Sa, with each item in the set win-
ning an equal λ times. Furthermore, we define ni|Sa

to be
the number of times item i ∈ Sa won in a |Sa|-way com-
parison amongst items in Sa, i.e. for all a ∈ [d], for all
i ∈ Sa,

ni|Sa
:=

La∑
l=1

1[yla = i] (7)

Using the above notation, we set up a Markov chain P̂′ ∈
Rn×n+ such that entry (i, j) is

P̂ ′ij :=
1

d′i

∑
a∈[d]:i,j∈Sa

(
nj|Sa

+ λ

|Sa|

)
(8)

One can verify that this non-negative matrix is indeed row
stochastic, hence corresponds to the transition matrix of a
Markov chain. One can also verify that this construction
reduces to a regularized version of P̂ (Eq. (2)) when all
sets are of an equal size and are compared an equal number
of times, and is identical to P̂ when λ = 0. Lastly, we
define the matrix D′ as a diagonal matrix, with diagonal
entry D′ii := d′i, ∀i ∈ [n]. Similar to ASR, we compute
the stationary distribution of P̂′, and output a (normalized)
D′−1 transform of this stationary distribution.

Algorithm 3 Generalized-ASR

Input Markov chain P̂′ (according to Eq. (8))
Initialize π̂ = ( 1

n , · · · ,
1
n )> ∈ ∆n

while estimates do not converge do
π̂′ ← P̂′>π̂′

end while
Output ŵ′ = D′−1π̂′

‖D′−1π̂′‖1

B. Proof of Proposition 1
Proposition 1. Given items [n] and comparison data Y =
{(Sa,ya)}da=1, let π̂ be the stationary distribution of the
Markov chain P̂ constructed by ASR, and let ŵLSR be the
stationary distribution of the Markov chain P̂LSR. Then
ŵLSR = D−1π̂

‖D−1π̂‖1 . The same result is also true for ŵRC for
the case of pairwise comparisons.

Proof. Consider the estimates ŵ = D−1π̂/‖D−1π̂‖1 re-
turned by the ASR algorithm upon convergence. In order
to prove this lemma it is sufficient to prove that DŵLSR is
an invariant measure (an eigenvector associated with eigen-
value 1) of the Markov chain P̂ corresponding to the ASR
algorithm.

Since ŵLSR is the stationary distribution (also an eigenvector
corresponding to eigenvalue 1) of P̂LSR, we have

ŵLSR = (P̂LSR)>ŵLSR.

Following the definition (Eq. (4)) of P̂LSR, we have the
following relation for all 1 ≤ i ≤ n

ŵLSR
i = ŵLSR

i

1− ε
∑
j 6=i

∑
a:i,j∈Sa

pj|Sa


+ ε
∑
j 6=i

∑
a:i,j∈Sa

pj|Sa
ŵLSR
j

=⇒
∑
j 6=i

∑
a:i,j∈Sa

pj|Sa
ŵLSR
i =

∑
j 6=i

∑
a:i,j∈Sa

pj|Sa
ŵLSR
j .

We shall use this relation to prove that P̂>DŵLSR =
DŵLSR, where P̂ is the transition matrix corresponding
to the Markov chain constructed by ASR. Consider the ith
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coordinate [P̂>DŵLSR]i of the vector P̂>DŵLSR

[P̂>DŵLSR]i =
1

di

∑
a:i∈Sa

pi|Sa
diŵ

LSR
i

+
∑
j 6=i

1

dj

∑
b:i,j∈Sb

pj|Sb
djŵ

LSR
j

=
∑
a:i∈Sa

pi|Sa
ŵLSR
i +

∑
j 6=i

∑
b:i,j∈Sb

pj|Sb
ŵLSR
i

=
∑
a:i∈Sa

(
∑
j∈Sa

pj|Sa
)ŵLSR

i

=
∑
a:i∈Sa

ŵLSR
i

= diŵ
LSR
i = [DŵLSR]i ,

where the second equality follows from the relation we
proved earlier. Furthermore, this identity holds for all 1 ≤
i ≤ n, from which we can conclude P̂>DŵLSR = DŵLSR.
Furthermore, if the respective Markov chains induced by
the comparison data are ergodic, then the corresponding
stationary distributions must be unique, which is sufficient
to prove both LSR and ASR return the same estimates upon
convergence.

Since Luce spectral ranking is a generalization of the rank
centrality algorithm, the transition matrix P̂LSR is identical
to the transition matrix P̂RC in the pairwise comparison set-
ting after setting ε = 1

dmax
, and thus, we can also conclude

P̂>DŵRC = DŵRC. Thus, the statement of the lemma
follows.

C. Proof of Proposition 2
Proposition 2. Let the probability transition matrix P for
our random walk be as defined in Eq. (1). Let PRC and PLSR

be as defined in Eq. (3) and Eq. (4), respectively. Then

dmin

dmax
µ(P) ≤ µ(PRC) ≤ µ(P) ,

and
εdminµ(P) ≤ µ(PLSR) ≤ µ(P) ,

where ε = O( 1
dmax

).

In order to prove this lemma, we will use the following result
due to (Diaconis & Saloff-Coste, 1993) which compares the
spectral gaps of two reversible random walks.
Lemma 3. (Diaconis & Saloff-Coste, 1993) Let Q and P
be reversible Markov chains on a finite set [n] representing
random walks on a graph G = ([n], E), i.e. Pij = Qij = 0
for all (i, j) /∈ E. Let ν and π be the stationary distribu-
tions of Q and P, respectively. Then the spectral gaps of Q
and P are related as

µ(P)

µ(Q)
≥ α

β

where α := min(i,j)∈E{πiPij/νiQij} and β :=
maxi∈[n]{πi/νi}.

We are now ready to prove Proposition 2.

Proof. (of Proposition 2) To prove this lemma, we shall
leverage the above comparison lemma due to (Diaconis
& Saloff-Coste, 1993), that compares the spectral gaps of
two arbitrary reversible Markov Chains. Let P (Eq. (2))
be the reversible Markov chain corresponding to ASR with
stationary distribution π = Dw/‖Dw‖1, and let PLSR

(Eq. (4)) be the reversible Markov chain corresponding to
LSR (RC in the pairwise case) with stationary distribution
πLSR. Then by Lemma 3,

µ(PLSR)

µ(P)
≥ α

β

where

α := min
(i,j):∃a s.t. i,j∈Sa

(
πLSR
i P LSR

ij

πiPij

)
,

β := max
i∈[n]

(
πLSR
i

πi

)
.

From the definition of P, and PLSR, we have

Pij =
1

di

∑
a∈[d]:i,j∈Sa

wj∑
k∈Sa

wk
,

PLSR
ij = ε

∑
a∈[d]:i,j∈Sa

wj∑
k∈Sa

wk

From the above equations and Proposition 1, it is easy to
see that

α = ε‖Dw‖1, and

β =
‖Dw‖1
dmin

=⇒ µ(PLSR) ≥ εdmin(µ(P))

Following an identical line of reasoning, we have

µ(P)

µ(PLSR)
≥ α′

β′

where

α′ = min
(i,j):∃a s.t. i,j∈Sa

(
πiPij

πLSR
i P LSR

ij

)
,

β′ = max
i∈[n]

(
πi
πLSR
i

)
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From the definition of P, and PLSR, we have

α′ =
1

‖Dw‖1ε
, and

β′ =
dmax

‖Dw‖1

=⇒ µ(P) ≥ 1

εdmax
(µ(PLSR)) .

Since ε ≤ 1/dmax, we get the following comparison be-
tween the spectral gaps of the Markov chains corresponding
to the two approaches

εdminµ(P) ≤ µ(PLSR) ≤ µ(P) .

The same analysis works for the Markov chain PRC con-
structed by rank centrality for the pairwise comparison case
with ε = 1/dmax, from which we can conclude

dmin

dmax
µ(P) ≤ µ(PRC) ≤ µ(P) .

D. Proof of Theorem 1
Theorem 1. Given items [n] and comparison data Y =
{(Sa,ya)}da=1, let each set Sa of cardinality m be com-
pared L times, with outcomes ya = (y1

a, · · · , yLa ) produced
as per a MNL model with parameters w = (w1, . . . , wn),
such that ‖w‖1 = 1. If the random walk P̂ (Eq. (2)) on the
comparison graph Gc([n], E) induced by the comparison
data Y is strongly connected, then the ASR algorithm (Al-
gorithm 1) converges to a unique distribution ŵ, which with
probability ≥ 1 − 3n−(C2−50)/25 satisfies the following
error bound

‖w − ŵ‖TV ≤
C κdavg

µ(P) dmin

√
max{m, log(n)}

L
,

where κ = log
(

davg

dminwmin

)
, wmin = mini∈[n] wi, davg =∑

i∈[n] widi, dmin = mini∈[n] di, µ(P) is the spectral gap
of the random walk P (Eq. (1)), and C is any constant.

Let us first state the concentration inequality for multinomial
distributions due to (Devroye, 1983), which will be useful
in proving this theorem.

Lemma 4 (Multinomial distribution inequality). (Devroye,
1983) Let Y1, . . . , Yn be a sequence of n independent ran-
dom variables drawn from the multinomial distribution with
parameters (p1, . . . , pk). Let Xi be the number of times i
occurs in the n draws, i.e. Xi =

∑n
j=1 1[Yj = i]. For all

ε ∈ (0, 1), and all k satisfying k/n ≤ ε2/20, we have

P (

k∑
i=1

|Xi − npi| ≥ nε) ≤ 3 exp(−nε2/25).

To prove Theorem 1, we shall first prove a bound on the
total variation distance between the stationary states π and
π̂ of the transition matrices P and P̂ respectively. We shall
then prove a bound on the distance between the true weights
w and estimates ŵ in terms of the distance between π and
π̂.

An important result in the stability theory of Markov chains
shows a connection between the stability of a chain and its
speed of convergence to equilibrium (Mitrophanov, 2005).
In fact, we can bound the sensitivity of a Markov chain under
perturbation as a function of the convergence rate of the
chain, with the accuracy of the sensitivity bound depending
on the sharpness of the bound on the convergence rate. The
following theorem is a specialization of Theorem 3.1 of
(Mitrophanov, 2005), which gives perturbation bounds for
Markov chains with general state spaces.

Theorem 2. (Mitrophanov, 2005) Consider two discrete-
time Markov chains P and P̂, with finite state space Ω =
{1, . . . , n}, n ≥ 1, and stationary distributions π and π̂,
respectively. If there exist positive constants 1 < R < ∞
and ρ < 1 such that

max
x∈Ω
‖Pt(x, ·)− π‖TV ≤ Rρt, ∀t ∈ N

then for E := P− P̂, we have

‖π − π̂‖TV ≤
(
t̂+

1

1− ρ

)
· ‖E‖∞ .

where t̂ = log(R)/ log(1/ρ), and ‖ ·‖∞ is the matrix norm
induced by the L∞ vector norm.

It is well known that all ergodic Markov chains satisfy the
conditions imposed by Theorem 2. In order to obtain sharp
bounds on the convergence rate, we shall leverage the fact
that the (unperturbed) Markov chain corresponding to the
ideal transition probability matrix P is time-reversible.

Theorem 3. (Diaconis & Stroock, 1991) Let P be an ir-
reducible, reversible Markov chain with finite state space
Ω = {1, . . . , n}, n ≥ 1, and stationary distribution π. Let
λ2 := λ2(P) be the second largest eigenvalue of P in terms
of absolute value. Then for all x ∈ Ω, t ∈ N,

‖Pt(x, ·)− π‖TV ≤

√
1− π(x)

4π(x)
λt2

Comparing these bounds with the conditions imposed by
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Theorem 2, we can observe that

ρ = λ2,

R = max
i∈[n]

√
1− π(i)

4π(i)

= max
i∈[n]

√
‖Dw‖1 − widi

4widi

≤

√
davg

4dminwmin
,

where wmin = mini∈[n] wi. Substituting these values into
the perturbation bounds of Theorem 2, we get

t̂+
1

1− ρ
=

log(davg/(4dminwmin))

2 log(1/λ2(P))
+

1

1− λ2(P)

≤
log(davg/(4dminwmin))

2(1− λ2(P))
+

1

1− λ2(P)

<
κ

2µ(P)
, where κ = log(

2davg

dminwmin
)

Now, the next step is to show that the perturbation error
E := P− P̂ is bounded in terms of the matrix L∞ norm.

Lemma 5. For E := P − P̂, we have with probability
≥ 1− 3n−(C2−50)/25,

‖E‖∞ ≤ C
√

max{m, log n}
L

where C is any constant.

Proof. By definition, ‖E‖∞ = maxi
∑n
j=1 |P̂ij−Pij |. Fix

any row i ∈ [n]. The probability that the absolute row sum
exceeds a fixed positive quantity t is given by

P (

n∑
j=1

|P̂ij − Pij | ≥ t)

= P (

n∑
j=1

| 1
di

∑
a:i,j∈Sa

(p̂j|Sa
− pj|Sa

)| ≥ t)

= P (

n∑
j=1

| 1
di

∑
a:i,j∈Sa

1

L

L∑
l=1

(1(yla = j)− pj|Sa
)| ≥ t)

≤ P (

n∑
j=1

∑
a:i,j∈Sa

|
L∑
l=1

(1(yla = j)− pj|Sa
)| ≥ Ldit)

= P (
∑
a:i∈Sa

∑
j∈Sa

|
L∑
l=1

(1(yla = j)− pj|Sa
)| ≥ Ldit)

≤ diP (
∑
j∈Sa

|
L∑
l=1

(1(yal = j)− pj|Sa
)| ≥ Ldit

di
)

with the final pair of inequalities following from rearranging
the terms in the summations and applying union bound. We
leverage the multinomial distribution concentration inequal-
ity (Lemma 4) of Devroye (1983) to obtain the following
bound for any set Sa for any m satisfying a technical condi-
tion m/L ≤ t2/20.

P (
∑
j∈Sa

|
L∑
l=1

(1(yal = j)− pj|Sa
)| ≥ Lt) ≤ 3 exp(

−Lt2

25
)

Thus, using union bound, the probability that any absolute
row sum exceeds t is at most 3ndmax exp(−Lt2/25). By
selection of t = 5C ′

√
max{m, log n}/L, we get

P

(
‖E‖∞ ≥ 5C ′

√
max{m, log n}

L

)

≤ 3n2 exp

(
−25C ′2Lmax{m, log n}

25L

)
≤ 3n−(C′2−2)

substituting C = 5C ′ proves our claim. Lastly, one can ver-
ify that the aforementioned choice of t satisfies the technical
condition imposed by Lemma 4 for any n,m and L.

Combining the results of Theorem 2, Theorem 3, and Theo-
rem 5 gives us a high confidence total variation error bound
on the stationary states π and π̂ of the ideal and perturbed
Markov chains P and P̂ respectively. Thus, with confidence
≥ 1− 3n−(C2−50)/25, we have

‖π − π̂‖TV ≤
Cκ

µ(P)

√
max{m, log n}

L
, (9)

where κ = log(2davg/(dminwmin)).

The last step in our scheme is to prove that the linear transfor-
mation D−1π̂ preserves this error bound up to a reasonable
factor.

Lemma 6. Under the conditions of Theorem 1, let π =
Dw/‖Dw‖1 and π̂ = Dŵ/‖Dŵ‖1 be the unique station-
ary distributions of the Markov chains P (Eq. (1)) and P̂
(Eq. (2)) respectively. Then we have

‖w − ŵ‖TV ≤
davg

dmin
‖π − π̂‖TV .

Proof. We shall divide our proof into two cases.
Case 1: ‖Dŵ‖1 ≥ ‖Dw‖1.
Let us define the set A = {i : wi ≥ ŵi}, and the set
A′ = {j : πj ≥ π̂j}. When ‖Dŵ‖1 ≥ ‖Dw‖1, it is easy
to see that A ⊆ A′.
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Consider the total variation distance ‖w − ŵ‖TV between
the true preferences w and our estimates ŵ. By definition,

‖w − ŵ‖TV =
∑
i∈A

(wi − ŵi)

=
∑
i∈A

wi

(
1− ŵi

wi

)
=
∑
i∈A

wi

(
1− ŵidi

widi

)
≤
∑
i∈A

wi

(
1− ŵidi‖Dw‖1

widi‖Dŵ‖1

)
=
∑
i∈A

wi

(
1− π̂i

πi

)
=
∑
i∈A

wi

(
(πi − π̂i)‖Dw‖1

widi

)
≤
∑
j∈A′

wj

(
(πj − π̂j)‖Dw‖1

wjdj

)

=
∑
j∈A′

(
(πj − π̂j)‖Dw‖1

dj

)

≤ ‖Dw‖1
dmin

∑
j∈A′

(πj − π̂j) =
davg

dmin
‖π − π̂‖TV

Case 2, where ‖Dŵ‖1 < ‖Dw‖1 follows symmetrically,
giving us the inequality

‖w − ŵ‖TV ≤
‖Dŵ‖1
dmin

‖π − π̂‖TV

≤ ‖Dw‖1
dmin

‖π − π̂‖TV =
davg

dmin
‖π − π̂‖TV

where the last inequality follows from the assumption of
Case 2, proving our claim.

Combining the above lemma with Eq. (9) gives us the state-
ment of the theorem.

E. Proof of Corollary 1
Corollary 1. In the setting of Theorem 1, the ASR algo-
rithm converges to a unique distribution ŵ, which with
probability ≥ 1 − 3n−(C2−50)/25 satisfies the following
error bound:

‖w − ŵ‖TV ≤
Cmb2 κ davg

ξ dmin

√
max{m, log(n)}

L
,

where b = maxi,j∈[n]
wi

wj
.

Corollary 1 follows from the following lemma which com-
pares the spectral gap of the matrix P with the spectral gap
of the graph Laplacian.

Lemma 7. Let L := C−1A be the Laplacian of the undi-
rected graph Gc([n], E). Then the spectral gap µ(P) =
1− λ2(P) of the reversible Markov chain P (Eq. (2)) cor-
responding to the ASR algorithm is related to the spectral
gap ξ = 1− λ2(L) of the Laplacian as

µ(P) ≥ ξ

mb2

Proof. To prove this inequality, we shall leverage the com-
parison Lemma 3 of (Diaconis & Saloff-Coste, 1993), with
Q,ν = L,ν. From the definition of the Laplacian, it
is clear that for all i, νiLij = 1/2|E|. Furthermore,
νi = ci/2|E| ≥ di/2|E|, where ci is the number of unique
items i was compared with, which is trivially at least the
number of unique multiway comparisons of which i was a
part. Thus,

β := max
i∈[n]

πi
νi

= max
i∈[n]

widi/‖Dw‖1
ci/2|E|

≤ 2|E|wmax

‖Dw‖1

α := min
(i,j)∈E

πiPij
νiLij

= min
(i,j)∈E

widi
‖Dw‖1

1
di

∑
a:(i,j)∈Sa

wj∑
k∈Sa

wk

1/2|E|

≥ 2|E|w2
min

mwmax‖Dw‖1

Thus, α/β ≥ 1/mb2, which proves our claim.

F. Proof of Corollary 2
Corollary 2. If the conditions of Theorem 1 are satisfied,
and if the number of edges in the comparison graph Gc
are O(n poly(log n)), i.e. |E| = O(n poly(log n)), then in
order to ensure a total variation error of o(1), the required
number of comparisons per set is upper bounded as

L = O
(
µ(P)−2 poly(log n)

)
= O

(
ξ−2m3 poly(log n)

)
.

Hence, the sample complexity, i.e. total number of m-way
comparisons needed to estimate w with error o(1), is given
by |E| × L = O

(
ξ−2m3 n poly(log n)

)
.

In order to prove the above corollary we first give the fol-
lowing claim.
Claim 1. Given items [n], and comparison graph Gc =
([n], E) induced by comparison data Y = {Sa,ya}da=1, let
the vector of true MNL parameters be w = (w1, . . . , wn).
Furthermore, let di represent the number of unique compar-
isons of which item i ∈ [n] was a part. Then we have

davg =
∑
i∈[n]

widi ≤
2wmax|E|
wminn

,



Accelerated Spectral Ranking

where wmax = maxi∈[n] wi, and wmin = minj∈[n] wj .

Proof. Clearly,

wmin

∑
i∈[n]

widi ≤
1

n

∑
i∈[n]

widi ≤
wmax

n

∑
i∈[n]

di,

The statement of the lemma follows by realizing that∑
i∈[n] di ≤

∑
i∈[n] ci ≤ 2|E|.

Proof. (of Corollary 2) Substituting the above bound on
davg in the sample complexity bounds of Corollary 1, we get
the following guarantee on the total variation error between
the estimates ŵ and the true weight vector w

‖w − ŵ‖TV ≤
Cmb3 κ |E|
n ξ dmin

√
max{m, log(n)}

L
,

where b = wmax

wmin
. Furthermore, this guarantee holds with

probability ≥ 1 − 3n−(C2−50)/25. From this, we can con-
clude that if

L ≥ max{m, log(n)}
(

10mb3 κ |E|
n ξ dmin

)2

,

then it is sufficient to guarantee that ‖w − ŵ‖TV = o(1)
with probability ≥ 1 − 3n−2. Trivially bounding κ =
O(log n), and from the assumptions b = O(1) and |E| =
O(n poly(log n)), we can conclude

L = O(ξ−2m3poly(log n))

where the additional m factor comes from trivially bound-
ing max{m, log n} ≤ m log n. This gives us a sample
complexity bound of

|E| × L = O(ξ−2m3 n poly(log n))

for our algorithm, which proves the corollary.

G. Proof of Lemma 2
Lemma 2. For any realization of comparison data Y, there
is a one-to-one correspondence d each iteration of the mes-
sage passing algorithm (2) and the corresponding power
iteration of the ASR algorithm (1), and both algorithms
return the same estimates ŵ for any Y.

Proof. In the message passing algorithm, the item to set
messages m(r)

i→a in round r correspond to the estimates of
the item weights. One can verify that the estimate ŵ(r)

of item i in round r evolves according to the following
equation.

ŵ
(r+1)
i =

1

di

∑
a:i∈Sa

pi|Sa
·
∑
j∈Sa

ŵ
(r)
j .

We can represent this system of equations compactly using
the following matrices. Let V̂ ∈ Rd×n be a matrix such
that

V̂ai :=

{
pi|Sa

di
if (i, a) ∈ E

0 otherwise
, (10)

and B ∈ Rn×d be a matrix such that

Bia :=

{
1 if (i, a) ∈ E
0 otherwise

, (11)

Thus, we can represent the weight update from round (r) to
round (r + 1) as

ŵ(r+1) = (BV̂)>ŵ(r) = M̂>ŵ(r)

= (M̂>)rŵ(0) ,

where M̂ := BV̂, with entry (i, j) of M̂ being

M̂ij :=
1

dj

∑
a:i,j∈Sa

pj|Sa
. (12)

The above equation implies that the message passing al-
gorithm is essentially a power iteration on the matrix M̂.
Now, it is easy to see that M̂ = DP̂D−1 where P̂ is the
transition matrix constructed by ASR (Eq. (2)). Therefore,
there is a one-to-one correspondence between the power
iterations on M̂ and P̂. More formally, if we initialize
with ŵ(0) in the power iteration on M̂, and initialize with
π̂(0) = Dŵ(0) in the power iteration on P, then the it-
erates at the r-th step will be related as π̂(r) = Dŵ(r).
Furthermore, if π̂ is the stationary distribution of P̂, then
ŵ = D−1π̂ is the corresponding dominant left eigenvector
of M̂, i.e. D−1π̂ = M̂>D−1π̂. Also, ŵ is exactly the
estimate (after normalization) returned by both the ASR and
the message passing algorithm upon convergence. Thus, we
can conclude that the message passing algorithm is identical
to ASR for any realization of comparison data generated
according to the MNL model.

H. Additional Experimental Results
In this section we will describe additional experimental re-
sults comparing our algorithm and the RC/LSR algorithms
on various synthetic and real world datasets. Since we
require additional regularization when the random walk in-
duced by comparison data is reducible, we will first describe
the regularized version of the RC and LSR algorithms (reg-
ularized version of our algorithm is given in Appendix A).

H.1. RC and LSR algorithms with regularization

In this section, for the sake of completeness, we state the
regularized version of the RC (Negahban et al., 2017) and
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Table 2. Statistics for real world datasets
Dataset n m d total choices
Youtube 21207 2 394007 1138562
GIF-amusement 6118 2 75649 77609
GIF-anger 6119 2 64830 66505
GIF-contentment 6118 2 70230 72175
GIF-excitement 6119 2 80493 82564
GIF-happiness 6119 2 104801 107816
GIF-pleasure 6119 2 86499 88959
GIF-relief 6112 2 38770 39853
GIF-sadness 6118 2 63577 65263
GIF-satisfaction 6118 2 78401 80474
GIF-shame 6116 2 46249 47550
GIF-surprise 6118 2 63850 65591
SFWork 6 3-6 12 5029
SFShop 8 4-8 10 3157

LSR (Maystre & Grossglauser, 2015) algorithms.7 These
algorithms are based on computing the stationary distribu-
tion of a Markov chain. In the case of pairwise comparisons,
for a regularization parameter λ > 0, the Markov chain
P̂′RC := [P̂ ′RC

ij ], where, ∀i, j ∈ [n],

P̂ ′RC
ij :=

{
1

dmax

(
nj|{i,j}+λ

nj|{i,j}+ni|{i,j}+2λ

)
, if i 6= j

1− 1
dmax

∑
j′ 6=i P̂

′RC
ij , if i = j

and nj|{i,j} is defined according to Eq. (7). In the case
of multi-way comparisons, the Markov chain P̂′LSR :=
[P̂ ′LSR
ij ], where, ∀i, j ∈ [n],

P̂ ′LSR
ij :=

{
ε
∑
a∈[d]:i,j∈Sa

(
nj|Sa+λ

|Sa|

)
, if i 6= j

1− ε
∑
j′ 6=i P̂

′LSR
ij , if i = j

where ε is a quantity small enough to make the diagonal
entries of P̂′LSR non negative, and nj|Sa

is again defined
according to Eq. (7).

H.2. Synthetic Datasets

In this section, we give additional experimental results for
various other values of parameters m and n. The plots are
given in the figures below. The general trends observed from
these experiments are exactly as predicted by our theoretical
analysis. In particular, we note that even in the case of a star
graph topology, the convergence rate of ASR remains es-
sentially the same with increasing n, while the performance
of RC and LSR degrades smoothly. This really conveys the
low dependence on the ratio dmax/dmin.

7See Section 3.3 in Negahban et al. (2017) for more details.

H.3. Real Datasets

In this section, we provide additional experimental results
for more datasets, and additional values of the regularization
parameter λ. We conducted experiments on the YouTube
dataset (Shetty, 2012), various GIF datasets (Rich et al.),
and the SFwork and SFshop (Koppelman & Bhat, 2006)
datasets. Below we briefly describe each of these datasets
(additional statistics are given in Table 2).

1. YouTube Comedy Slam Preference Data. This
dataset is due to a video discovery experiment on
YouTube in which users were shown a pair of videos
and were asked to vote for the video they found funnier
out of the two.8

2. GIFGIF datasets. These datasets are due to a exper-
iment that tries to understand the emotional content
present in animated GIFs. In this experiment users are
shown a pair of GIFs and asked to vote for the GIF that
most accurately represents a particular emotion. These
votes are collected for several different emotions.9

3. SF datasets. These datasets are from a survey of trans-
portation preferences around the San Francisco Bay
Area in which citizens were asked to vote on their
preferred commute option amongst different options.10

As expected, the peak log likelihood decreases with increas-
ing λ, as this regularization parameter essentially dampens
the information imparted by the comparison data. We also
plot degree distributions of these real world datasets in order
to explore the behavior of the ratio dmax/dmin in practice.
In particular, we observe that this quantity does not really
behave like a constant, and is very large in most cases. This
is particularly evident in the Youtube dataset, where the de-
gree distribution closely follows the power law relationship
with n.

8See https://archive.ics.uci.edu/ml/
datasets/YouTube+Comedy+Slam+Preference+
Data for more details.

9 See http://gif.gf for more details.
10 These datasets are available at https://github.com/

sragain/pcmc-nips.
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Figure 3. Results on synthetic data: L1 error vs. number of iterations for our algorithm, ASR, compared with the RC algorithm (for
m = 2) on data generated from the MNL/BTL model with the random and star graph topologies.
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Figure 4. Results on synthetic data: L1 error vs. number of iterations for our algorithm, ASR, compared with the LSR algorithm (for
m = 3) on data generated from the MNL/BTL model with the random and star graph topologies.
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Figure 5. Results on synthetic data: L1 error vs. number of iterations for our algorithm, ASR, compared with the LSR algorithm (for
m = 5) on data generated from the MNL/BTL model with the random and star graph topologies.
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Figure 6. Degree distributions of various real world datasets.
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Figure 7. Results on real data: Log-likelihood vs. number of iterations for our algorithm, ASR, compared with the RC algorithm (for
pairwise comparison data) and the LSR algorithm (for multi-way comparison data), all with regularization parameter set to 0.2.
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Figure 8. Results on real data: Log-likelihood vs. number of iterations for our algorithm, ASR, compared with the RC algorithm (for
pairwise comparison data) and the LSR algorithm (for multi-way comparison data), all with regularization parameter set to 1.


