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In this appendix, we present some preliminary results on the
convergence of MISSION. For the sake of exposition, we
will consider the full-gradient descent version of MISSION,
and we will prove that the iterates converge geometrically
upto a small additive error. In order to establish this proof,
we make an assumption (Assumption 1) about the hashing
scheme; see Section 0.1 for more on this.

We begin by establishing some notation. We will assume
that the data satisfies the following linear model:

y = Xβ∗ + w, (1)

where y ∈ Rn is the vector of observation,X ∈ Rn×p is the
data matrix, w ∈ Rn is the noise vector, and β∗ ∈ Rp is the
unknown k−sparse regression vector. We will let ψ and ϕ
respectively denote the hashing and the (top-k) heavy-hitters
operation. We will let βt denote the output of MISSION in
step t. In general, we will let the vector h ∈ Rm denote
the hash table. Finally, as before, we will let Hk denote the
projection operation onto the set of all k−sparse vectors.
We will make the following assumption about the hashing
mechanism:

Assumption 1. For any h ∈ Rm, there exists an βh ∈ Rp

such that the following hold

1. ψ(βh) = h, that is, the hash table contents can be set
to h by hashing the vector βh.

2. ‖βh −Hk(βh)‖2 ≤ ε1

This assumption requires the hashing algorithm to be such
that there exists a nearly sparse vector that can reproduce
any state of the hash table exactly. This is reasonable since
the hash table is a near optimal “code” for sparse vectors in
Rp. See Section 0.1 for more on this.
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We will next state a straightforward lemma about the sketch-
ing procedure

Lemma 1. There exist constants ε2, C1 > 0 such that
provided that the size m of the hash table satisfies m ≥
C1k log

2 p, the following holds for any β ∈ Rp with proba-
bility at least 1− δ1:

‖ϕ(ψ(β))−Hk(β)‖2 ≤ ε2 (2)

This lemma follows directly from the definition of the Count-
Sketch, and we will not prove here.

We next state the main theorem that we will show.

Theorem 1. For any δ ∈
(
0, 13
)

and ρ ∈ (0, 0.5), there is
a constant C > 0 such that the following statement holds
with probability at least 1− 3δ

∥∥βt+1 − β∗
∥∥
2
≤ 2ρ

∥∥βt − β∗
∥∥
2
+ 2

√
σ2
w(1 + µ)k log p

n

+ 2ε1 + 3ε2, (3)

provided that n > Ck log p, m > Ck log2 p, and that
Assumption 1 holds.

Notice that since ρ < 0.5, the above theorem guarantees
geometric convergence. This implies that the overall error
is of the order of the additive constants ε1 and ε2.

Before we prove this theorem, we will collect some lemmas
that will help us prove our result.

Lemma 2. Suppose X ∈ Rn×p has i.i.d N (0, 1
n ) en-

tries. Then for constants ρ, δ2 > 0, there exists a constant
C2(δ) > 0 such that if n ≥ C2k log p such that for any pair
of unit-norm k−sparse vectors β1, β2 ∈ Sp−1, the following
holds with probability at least 1− δ2.

|〈Xβ1, Xβ2〉 − 〈β1, β2〉| ≤ ρ. (4)

Proof. Note that E[〈Xβ1, Xβ2〉] = 〈β1, β2〉. For a fixed
pair of β1, β2, the proof follows from a standard Chernoff
bound argument after observing that 〈Xβ1, Xβ2〉 can be
written as a sum of products of independent Gaussian ran-
dom variables. The rest of the proof follows from a standard
covering argument, which gives the requirement on n.
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Lemma 3. Suppose X has i.i.d entries drawn according to
N (0, n−1), and w ∼ N (0, σ2

wIn) is drawn independently
of X . Then, for any constant δ3 > 0, there are constants
C3, µ > 0 such that for all unit norm k−sparse β ∈ Sp−1,
the following holds with probability at least 1− δ3:

〈β,XTw〉 ≤
√
σ2
w(1 + µ)k log p

n
(5)

provided n ≥ C3k log p.

Proof. Notice that for a fixed β, 〈β,XTw〉 = 〈Xβ,w〉
has the same distribution as 1√

n
‖w‖2 〈β,w2〉, where w2 ∼

N (0, In) is independent of w. Now, we can use concentra-
tion inequalities of chi-squared random variables to show
that there is a constant C ′3 > 0

P
[
‖w‖22 ≥ σ

2
w(1 + µ1)n

]
≤ e−C

′
3n. (6)

Similarly, from chi-squared concentration, there is a con-
stant C ′′3 > 0

P
[
|〈β,w2〉|2 ≥ 1 + µ2

]
≤ e−C

′′
3 (7)

Now, with a standard covering argument, we know that there
is a constant C ′′′3 > 0 such that provided n > C ′′′3 k log p,
the following holds for at least 1− δ3 for any k−sparse β:

〈β,ATw〉 = 〈Aβ,w〉

≤
√
σ2
w(1 + µ)nk log p

n
.

Proof of Theorem 1 If we let ht denote the contents of
the hash table at round t, notice that we have the following:
xt+1 = ϕ(ht+1). The (full gradient descent version of the)
MISSION algorithm proceeds by updating the hash table
with hashes of the gradient updates. Therefore, we have the
following relationship:

ht+1 = ht + ψ
(
ηXTX(β∗ − βt) +XTw

)
, (8)

where βt is the output of the algorithm at round t. Notice
that βt = ϕ(ht). According to Assumption 1, we know that
there exists a vector β̃t such that ψ(β̃t) = ht. We will use
this observation next. Notice that the output of round t+ 1
maybe written as follows:

βt+1 = ϕ
(
ht + ψ

(
ηXTX(β∗ − βt) +XTw

))
= ϕ

(
ψ
(
β̃t + ηXTX(β∗ − βt) +XTw

))
.

Now, we will estimate how close the output of the algorithm
gets to β∗ in round t+1 in terms of how close the algorithm
got in round t. Notice that

∥∥βt+1 − β∗
∥∥
2

=
∥∥∥ϕ(ψ (β̃t + ηXTX(β∗ − βt) +XTw

))
− β∗

∥∥∥
2

≤
∥∥∥Hk

(
β̃t + ηXTX(β∗ − βt) +XTw

)
− β∗

∥∥∥
2
+ ε2,

(9)

which follows from Lemma 1. We will next consider the
first term from above. For notational ease, we will set
γt+1 , β̃t+ ηXTX(β∗−βt)+XTw. Observe that Hk is
an orthogonal projection operator, and that β∗ is k−sparse,
therefore we have that

∥∥Hk

(
γt+1

)
− γt+1

∥∥2
2
≤
∥∥γt+1 − β∗

∥∥2
2
. (10)

Adding and subtracting β∗ on the left side and cancelling
out the common terms, we have the following.

∥∥Hk(γ
t+1)− β∗

∥∥2
2

≤ 2〈Hk(γ
t+1)− β∗, γt+1 − β∗〉

= 2〈Hk(γ
t+1)− β∗, β̃t + ηXTX(β∗ − βt) +XTw − β∗〉

= 2〈Hk(γ
t+1)− β∗, βt + ηXTX(β∗ − βt) +XTw − β∗〉
+ 2〈Hk(γ

t+1)− β∗, βt − β̃t〉
(a)

≤ 2〈Hk(γ
t+1)− β∗, βt + ηXTX(β∗ − βt) +XTw − β∗〉

+ 2
∥∥Hk(γ

t+1)− β∗
∥∥
2

∥∥∥ϕ(ψ(β̃t))− β̃t
∥∥∥
2

≤ 2〈Hk(γ
t+1)− β∗, βt + ηXTX(β∗ − βt) +XTw − β∗〉

+ 2
∥∥Hk(γ

t+1)− β∗
∥∥
2

(∥∥∥Hk(β̃
t)− β̃t

∥∥∥
2
+∥∥∥Hk(β̃

t)− ϕ(ψ(β̃t))
∥∥∥
2

)
(b)

≤ 2〈Hk(γ
t+1)− β∗, βt + ηXTX(β∗ − βt) +XTw − β∗〉
+ 2

∥∥Hk(γ
t+1)− β∗

∥∥
2
(ε1 + ε2) , (11)

where (a) follows form the Cauchy-Schwarz inequality and
from the definition of β̃t, (b) follows from Assumption 1
and Lemma 1. We will now turn our attention to the first
inner-product in (11). With some rearrangement of terms,
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one can see that

〈Hk(γ
t+1)− β∗, βt + ηXTX(β∗ − βt) +XTw − β∗〉

= 〈Hk(γ
t+1)− β∗, βt − β∗〉 − η〈X

(
Hk(γ

t+1)− β∗
)
,

X(βt − β∗)〉+ η〈Hk(γ
t+1)− β∗, XTw〉

(a)

≤ ρ
∥∥Hk(γ

t+1)− β∗
∥∥
2

∥∥βt − β∗
∥∥
2

+ 〈Hk(γ
t+1)− β∗, XTw〉

(b)

≤ ρ
∥∥Hk(γ

t+1)− β∗
∥∥
2

∥∥βt − β∗
∥∥
2

+
∥∥Hk(γ

t+1)− β∗
∥∥
2

√
σ2
w(1 + µ)k log p

n
(12)

where (a) follows from Lemma 2 and setting η = 1. (b)
follows from Lemma 3.

Putting (11) and (12), we get∥∥Hk

(
γt+1

)
− γt

∥∥
2
≤ 2ρ

∥∥βt − β∗
∥∥
2

+ 2

√
σ2
w(1 + µ)k log p

n
+ 2 (ε1 + ε2) .

(13)

Putting this together with (9) gives us the desired result.

0.1. On Assumption 1

In the full-gradient version of the MISSION algorithm, one
might modify the algorithm explicitly to ensure that As-
sumption 1. Towards this end, one would simply ensure that
the gradients vector is attenuated on all but its top k entries
at each step. It is not hard to see that this clean-up step will
ensure that Assumption 1 holds and the rest of the proof
simply goes through.

In MISSION as presented in the manuscript, we employ
stochastic gradient descent (SGD). While the above proof
needs to be modified for it to be applicable to this case, our
simulations suggest that this clean-up step is unnecessary
here. We suspect that this is due to random cancellations
that are introduced by the SGD. This is indeed an exciting
avenue for future work.


