A. Proof of Theorem 2

Without loss of generality, let’s assume that \(r_{\text{max}} \) is 1. This can be obtained by dividing all \(r_{\text{min}} \) by \(r_{\text{min}} \). \(r_{\text{min}} \) in the processed instance is then in fact the ratio of \(r_{\text{min}} \) and \(r_{\text{max}} \) of the original instance. Let \(\mathbf{x}_{i,a}^R \) and \(\beta_a^R \) denote the value of assignments and priority scores at the end of \(R \) iterations of Algorithm 2 (before the processing in the last step was done to handle over-allocated advertisers). And, let \(\mathbf{x}_{i,a}^M \) denote the feasible assignments obtained after the processing in the last step of the algorithm. Let \(\text{weight}(M) := \sum_{i,a \in \mathcal{E}} r_{i,a} \mathbf{x}_{i,a}^M \) denote the weight of this feasible fractional matching \(M \).

Now, initially, \(\beta_a = (1 + \epsilon)^{-R}. \) From Lemma 3, we have that for every \(a \), either \(\sum_{i \in N_a} \mathbf{x}_{i,a}^R \in [(1 + \epsilon)^{-2} C_a, (1 + \epsilon)^2 C_a] \), i.e., the advertiser budget constraint is approximately satisfied; or, we will have that \(\beta_a \) was continuously increased/decreased by \((1 + \epsilon) \) factor for all \(R \) iterations, so that \(\beta_a^R \) is either 1 or \((1 + \epsilon)^{-2R}. \) Let us call the first set of advertisers where the budget constraint is approximately satisfied as \(\mathcal{E}. \) For these advertisers, \(|C_a - \sum_{i \in N_a} \mathbf{x}_{i,a}| \leq 3\epsilon C_a \) for any \(\epsilon \leq 1. \) Also, \(\beta_a^R \geq (1 + \epsilon)^{-2R}. \) Among the second set, let \(\mathcal{O} \) be the set of advertisers \(a \in \mathcal{A} \) with \(\beta_a^R = (1 + \epsilon)^{-2R}. \) Here, \(\beta_a \) was continuously decreased in order to decrease the allocation, and these advertisers will be over-allocated in the end. For the remaining \(a \notin \mathcal{E}, a \notin \mathcal{O}, \) we have \(\beta_a^R = 1. \)

Using the upper bound from (10), and substituting the value of \(\beta_a^R \), we have that

\[
\text{OPT}_\lambda \leq \sum_{i,a} r_{i,a} \mathbf{x}_{i,a}^R + \sum_{a \in \mathcal{O}} 2R \epsilon \lambda (C_a - \sum_{i \in N_a} \mathbf{x}_{i,a}^R) + \sum_{a \in \mathcal{E}} 2R \epsilon \lambda (3\epsilon C_a) + \lambda \sum_{i,a} \mathbf{x}_{i,a}^R \log(1/\mathbf{x}_{i,a}^R)
\]

The terms for rest of the advertisers \(a \notin \mathcal{O}, a \notin \mathcal{E} \) do not appear in above because \(\log(1/\beta_a^R) = \log(1) = 0 \) for those \(a. \)

Next, we relate the above upper bound to the weight and entropy of the feasible fractional matching \(M. \) The matching \(M \) was created by removing \(\sum_{i \in N_a} \mathbf{x}_{i,a}^R - C_a \) edges from \(\mathbf{x}_{i,a}^R \) for every over-allocated advertiser \(a. \) Therefore, weight of matching \(M \) is at least

\[
\text{weight}(M) \geq \sum_{i,a} r_{i,a} \mathbf{x}_{i,a}^R - \sum_a \left(\sum_{i \in N_a} \mathbf{x}_{i,a}^R - C_a \right) + \sum_{a \in \mathcal{E}} 3\epsilon C_a - \sum_{a \in \mathcal{O}} \left(\sum_{i \in N_a} \mathbf{x}_{i,a}^R - C_a \right)
\]

Also, \(M \) retains all the edges allocated to \(a \in \mathcal{E} \) within a

\[
(1 + \epsilon)^2 \text{ factor, so that}
\]

\[
\text{weight}(M) \geq \frac{r_{\text{min}}}{(1 + \epsilon)^2} \sum_{a \in \mathcal{E}} C_a
\]

Substituting these observations in above upper bound for \(\text{OPT}_\lambda, \) along with

\[
R = \frac{1}{2\lambda} (1 + \lambda \log(N))
\]

(17)

Now, let,

\[
\epsilon = \frac{r_{\text{min}}}{8(2 + \lambda \log(N))} \delta
\]

so that the first term in the upper bound of (18) is at most \((1 + \frac{\delta}{2})\text{weight}(M). \) Now, we show that the next two terms approximate Entropy \((M) := \sum_{i,a} \mathbf{x}_{i,a}^R \log(1/\mathbf{x}_{i,a}^R). \) Recall that \(\mathbf{x}_{i,a}^M \) is the assignment of \(i,a \) in the fractional matching \(M, \) i.e., the assignment obtained after adjusting \(\mathbf{x}_{i,a}^R \) in the last step of Algorithm 2. This adjustment step ensures that \(\mathbf{x}_{i,a}^R \geq \mathbf{x}_{i,a}^M, \) and for any \(a \) with \(\mathbf{x}_{i,a}^R - \mathbf{x}_{i,a}^M > 0, \) we have \(\mathbf{x}_{i,a}^M \geq \frac{C_a}{|N_a|} \geq \frac{1}{N}. \) Therefore, it is easy to see that

\[
\sum_{i,a} \mathbf{x}_{i,a}^R \log(\frac{1}{\mathbf{x}_{i,a}^R}) - \sum_{i,a} \mathbf{x}_{i,a}^M \log(\frac{1}{\mathbf{x}_{i,a}^M}) \leq \sum_{i,a} (\mathbf{x}_{i,a}^R - \mathbf{x}_{i,a}^M) \log(N) = \sum_{a} (\sum_{i} \mathbf{x}_{i,a}^R - C_a)^+ \log(N).
\]

Then, using \(\sum_{i,a} \mathbf{x}_{i,a}^R - C_a \leq 3\epsilon C_a \) for \(a \in \mathcal{E}, \) relating \(\sum_{a \in \mathcal{E}} C_a \) to \(\text{weight}(M) \) as in (16), and substituting the choice of \(\epsilon, \) we obtain,

\[
\sum_{i,a} \mathbf{x}_{i,a}^R \log(\frac{1}{\mathbf{x}_{i,a}^R}) - \sum_{i,a} \mathbf{x}_{i,a}^M \log(\frac{1}{\mathbf{x}_{i,a}^M}) \leq \\sum_{a} (\sum_{i \in N_a} \mathbf{x}_{i,a}^R - C_a)^+ \log(N) \leq \sum_{a} (\sum_{i \in N_a} (\mathbf{x}_{i,a}^R - C_a)^+) \log(N) + \sum_{a \in \mathcal{O}} 3\epsilon C_a \log(N) \leq \sum_{a \in \mathcal{O}} (\sum_{i \in N_a} \mathbf{x}_{i,a}^R - C_a)^+ \log(N) + \frac{\delta}{2\lambda} \text{weight}(M)
\]
Substituting back in (18),

\[\text{OPT} \leq (1 + \delta) \text{weight}(M) + \lambda \text{Entropy}(M) \]

Finally, from (17), substituting value of \(\epsilon \) from (19), we have the number of iterations

\[R = \frac{1}{2e\lambda} (1 + \lambda \log(N)) \leq \frac{8}{r_{\text{min}}} \frac{(1 + \lambda \log(N))^2}{\lambda \delta} \]

Then, the theorem statement is obtained on substituting back \(r_{\text{min}}/r_{\text{max}} \) for \(r_{\text{min}} \).