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Abstract

Deep generative models have recently yielded en-
couraging results in producing subjectively realis-
tic samples of complex data. Far less attention has
been paid to making these generative models inter-
pretable. In many scenarios, ranging from scien-
tific applications to finance, the observed variables
have a natural grouping. It is often of interest to
understand systems of interaction amongst these
groups, and latent factor models (LFMs) are an at-
tractive approach. However, traditional LFMs are
limited by assuming a linear correlation structure.
We present an output interpretable VAE (oi-VAE)
for grouped data that models complex, nonlinear
latent-to-observed relationships. We combine a
structured VAE comprised of group-specific gen-
erators with a sparsity-inducing prior. We demon-
strate that oi-VAE yields meaningful notions of
interpretability in the analysis of motion capture
and MEG data. We further show that in these
situations, the regularization inherent to oi-VAE
can actually lead to improved generalization and
learned generative processes.

1. Introduction

Many datasets of interest in machine learning are com-
prised of high-dimensional, complex objects. Often, one
is interested in describing these observations using a low-
dimensional latent subspace that captures the statistical vari-
ations. Such approaches fall under the umbrella of factor
analysis (Bishop, 2016), where we wish to learn a mapping
between the latent and observed spaces. The motivation is
two-fold: (i) factor models provide a compact representation
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of the data, and (ii) the mapping can be used to describe the
correlation structure of the high-dimensional data. In many
applications, we are particularly interested in mappings that
elucidate interpretable interactions.

The challenge arises from the push and pull between inter-
pretability and expressivity in factor modeling approaches.
Methods emphasizing interpretability have focused primar-
ily on linear models, resulting in lower expressivity. A
popular choice in these settings is to consider sparse lin-
ear factor models (Zhao et al., 2016; Carvalho et al., 2008).
However, it is well known that neural (Vejmelka et al., 2010),
genomic (Prill et al., 2010), and financial data (Harvey et al.,
1994), for example, exhibit complex nonlinearities.

Recently, there has been a significant amount of work on ex-
pressive models for complex, high dimensional data. In par-
ticular, deep generative models (Kingma & Welling, 2013;
Rezende et al., 2014; Goodfellow et al., 2014; Damianou &
Lawrence, 2013) have proven wildly successful in efficiently
modeling complex observations—such as images—as non-
linear mappings of simple latent representations. These
nonlinear maps are based on deep neural networks that pa-
rameterize an observation distribution, often referred to as
the generator. We focus on the class of variational autoen-
coders (VAEs) (Kingma & Welling, 2013). Unlike linear
models which posit a latent variable per observation, VAEs
introduce a mapping from observations to a distribution
on the latent space; when parameterized by a deep neu-
ral network, this mapping is called the inference network.
The generator and inference network are jointly trained to
minimize a variational objective.

The VAE can be viewed as a nonlinear factor model that
provides a scalable means of learning latent representations.
The focus, however, has primarily been on their use as a
generative mechanism. One shortcoming of the VAE is that,
due to the tangled web of connections between neural net-
work layers, it is not possible to interpret how changes in
the latent code influence changes in the observations—as
in linear latent factor models. For example, imagine you
are trying to synthesize human body poses. One might
hope to have a disentangled representation where a given
latent dimension controls a subset of highly correlated body
parts; unfortunately, the standard VAE cannot yield these
types of interpretations. Another shortcoming of the VAE
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is that training—as in most neural network-based models—
typically requires a massive amount of data. In many appli-
cations, we have limited access to training data.

One natural way to encourage disentangled latent repre-
sentations is by introducing structure and sparsity into the
generator. Specifically, we propose an output interpretable
VAE (oi-VAE) that factorizes the generator across obser-
vation dimensions, with a separate generator per group of
variables. The generators are coupled both through a shared
latent space, and by jointly training with a single inference
network. We also introduce a sparsity-inducing penalty that
leads each latent dimension to influence a limited subset of
groups, resulting in a disentangled latent representation. We
develop an amortized variational inference algorithm for a
collapsed objective, allowing us to use efficient proximal
updates to learn latent-dimension-to-group interactions.

The factorization of generators across dimensions is read-
ily apparent when the data are inherently group structured.
There are many applications where this is the case. In the
analysis of neuroimaging data, studies are typically done at
the level of regions of interest that aggregate over cortically-
localized signals. In genomics, there are different treatment
regimes. In finance, the data might be described in terms
of asset classes (stocks, bonds, ...). And for motion cap-
ture data, multiple angle measurements are grouped by their
associated joints. In these group-structured scenarios we
may additionally garner interpretability from the 0i-VAE
mappings. For example, we may learn that a given latent
dimension controls a collection of highly correlated joints—
e.g., joints in a limb—that comprise a system of interest.
A side benefit of this structured oi-VAE framework is its
ability to handle scenarios with limited amounts of data.

We evaluate the 0i-VAE on motion capture and magnetoen-
cephalography datasets. In these scenarios where there is a
natural notion of groupings of observations, we demonstrate
the interpretability of the learned features and how these
structures of interaction correspond to physically meaning-
ful systems. Furthermore, in such cases we show that the
regularization employed by oi-VAE leads to better gener-
alization and synthesis capabilities, especially in limited
training data scenarios or when the training data might not
fully capture the observed space of interest. In addition, we
found that o0i-VAE produces unconditional samples that are
qualitatively superior to standard VAEs due to oi-VAE’s bias
towards disentangled representations in the latent space.

2. Background

Nonlinear factor analysis aims to relax the strict linearity
assumption of classical factor analysis and has a long history
in the statistics community. The work of (Gibson, 1959)
initially circumvented the issues of linear factor analysis by

discretizing continuous nonlinearities. However, (McDon-
ald, 1962) was the first to develop a parametric nonlinear
factor analysis model. Significant progress has been made
since then as described in Yalcin & Amemiya (2001), in-
cluding developments in the Bayesian context (Arminger
& Muthén, 1998). Recent work in machine learning has
also considered similar approaches leveraging Gaussian pro-
cesses (Lawrence, 2003; Damianou et al., 2012). Despite
the resemblance to autoencoding models (Ballard, 1987)—
especially in the age of “disentanglement”—little work ex-
ists exploring connections between the two.

The study of deep generative models is an active area of
research in the machine learning community. The varia-
tional autoencoder (VAE) (Kingma & Welling, 2013) is one
such example that efficiently trains a generative model via
amortized inference (see also Rezende et al., 2014). Though
deep generative models like the VAE have demonstrated an
ability to produce convincing samples of complex data (cf.,
Archer et al., 2015; Johnson et al., 2017), the learned la-
tent representations are not readily interpretable due to the
entangled interactions between latent dimensions and the
observations, as depicted in Fig. 2. We further review the
VAE specification in Sec. 3 and its implementation in Sec. 5.

A common approach to encourage simple and interpretable
models is through use of sparsity inducing penalties such
as the lasso (Tibshirani, 1994) and group lasso (Yuan &
Lin, 2006). These methods work by shrinking many model
parameters toward zero and have seen great success in re-
gression models, covariance selection (Danaher et al.), and
linear factor analysis (Hirose & Konishi, 2012). The group
lasso penalty is of particular interest to us as it simultane-
ously shrinks entire groups of model parameters toward zero.
The usage of group lasso penalties for learning structured
inputs to neural networks was explored in Tank et al. (2018)
previously, and was inspirational to this work.

To specify a valid generative model, we focus on sparsity-
inducing priors for the parameters of the generator net-
work. Historically, the spike-and-slab prior (Mitchell
& Beauchamp, 1988) was used to encourage sparsity in
Bayesian models. The prior consists of a two-component
mixture with mass on a model parameter being exactly zero.
Unfortunately, inference in spike-and-slab models is diffi-
cult because of the combinatorial nature of the resulting pos-
terior. A more computationally tractable family arises from
the class of global-local shrinkage priors (Polson & Scott,
2010). One popular example is the horseshoe prior (Bhadra
et al., 2016). However, these priors do not result in exact
zeros, making interpretability difficult.

A sophisticated hierarchical Bayesian prior for sparse group
linear factor analysis has recently been developed by Zhao
et al. (2016). This prior encourages both a sparse set of
factors to be used as well as having the factors themselves



Output Interpretable VAE (0i-VAE)

across groups, however we chose to model each separately.
Critically, the latent representatianis shared across all of
the group-speci ¢ generators. In particular:

z N (01) ®)
x@ N (f9(2);Dy): @)

To this point, our speci ed group-structured VAE can de-
scribe within-group and cross-group correlation structure.
However, one of the primary goals of this framework is to
capture interpretable relationships between groups through

Figure 1.VAE (left) and o0i-VAE (ight) generative models. The the latent representation.

0i-VAE considers group-speci ¢ generators and a linear latent-to- . -
: ) ) . . . Inspired by the sparse factor analysis literature, we extract
generator mapping with weights from a single latent dimension

to a speci ¢ group sharing the same color. The grOLIIC)_sp‘,:urs,gotions of interpretabl'e interactiqns by encquraging sparse
prior is applied over these grouped weights in order to promotd@t€nt-to-group mappings. Spe(c)l cally, Vxe Insert a group-
a disentangled latent representation in which a particular laten®P€ci ¢ linear transformatiof '9 2 RP * between the
component only interacts with a sparse subset of groups. latent representatianand the group generatbf®

. . . x@ N (F W 92);Dg): (5)
be sparse. The resulting model admits an ef cient EM al-
gorithm. This builds on previous work on group factor \we refer tow (9 as the latent-to-group matrix. For sim-
analysis (Virtanen et al., 2012; Klami et al., 2015). Sparpiicity, we assume that each generator has input dimension
sity |_nducmg hierarchical Baye5|an priors he_lve also beemy. When the th column of the latent-to-group matrix for
applied to learn the complexity of the Bayesian deep NelYsroupg, W 9 is all zeros then thith latent dimensiorg; ,
ral networks (Louizos et al., 2017; Ghosh & Doshi-Velez,,, I ; ; '

? ' “will have no in uence on group in the generative process.

2017). Our focus, however, is on using (structured) sparsityry induce this column-wise sparsity, we place a hierarchical

inducing hierarchical Bayesian priors in the context of deepBayesian prior on the column/ © a5 follows (Kyung
learning for the sake of interpretability, as in linear factor g

analysis, rather than model selection. etal., 2010):
2 p+1 2
. . Gamma D= 6
3. The 0i-VAE model 9 2 2 ©)
(9) .2
W' N 0; g @)

We frame our proposed output interpretable VAE (0i-VAE)
method using the same terminology as the VAE. x &

RP denote & -dimensional observation arzd2 RK de-
note the associated latent representation of xed dimensio
K. We then write the generative process of the model as:

where Gamma( ) is de ned by shape and rate. The rate
I;?arameter de nes the amount of sparsity, with larger
implying more column-wise sparsity W (9. Marginal-
izing over gj induces group sparsity over the columns of
z N (0;1) (1) W (9; the MAP of the resulting posterior is equivalent to a
x N (f (2);D); (2) 9roup lasso penalized objective (Kyung et al., 2010).

Unlike linear factor models, the deep structure of our
model allows rescaling of the parameters across layer
boundaries without affecting the end behavior of the net-

with parameters. Note that the formulation in Eq2) is work (Neyshabur et al., 2015). In particular, it is possible—

i jor— ) -
simpler than that described in Kingma & Welling (2013) af‘d n fa_‘Ct encouraged bghawor to learn a satidf) ma .
: drices with very small weights and a subsequent layer with

where the noise variances were observation speci c. Thi . . . ;

simplifying assumption is common with traditional factor very Ia_lrge_z Welghts th._at nullify the shnnl_(gge mp_osed by th_e

models, but could easily be relaxed. §parsﬂy-mducmg prior. In order to _m|t|g_ate this we addi-
tionally place a standard normal prior with xed scale on

When our observations admit a natural grouping over the the parameters of each generative netwogk,N (0;1).

components, we write = [x® ;::::x(®)] for each of the

G groups. We model the components within each grougspecial cases of the 0i-VAE There are a few notable spe-

g 2 [G] with separate generative network¢’ parameter- cial cases of our 0i-VAE framework. When we treat the

ized by 4. Itis possible to share generatér parametgrs observations as forming a single group, the model resembles

whereD is a diagonal matrix containing the marginal vari-
ances of each componentxf The generator is encoded
with the functionf () specied as a deep neural network
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a traditional VAE since there is a single generator. Howeverperiments of Sec. 6.3. Likewise, in our motion capture
the sparsity inducing prior still has an effect that differs from experiments of Sec. 6.2, we see (again from Table 1) how
the standard VAE. In particular, by shrinking columns of we can treat collections of joints as a system that covary in
W (dropping theg superscript) the prior will essentially en- meaningful ways within a given human motion category.

courage a sparse sut_)set of the cpmponerﬂst@be used to Proadly speaking, the relationship between dimensions of
explain the data, similar to a traditional sparse factor model;

Note that the's themselves will still be standard normal, - and Qbser_vational groups can be_ thought Of asa bipartite
but the columns oW will dictate which components are, graph in which we can quickly identify correlation and inde-

used. This regularization may be advantageous even in thoendence relationships among the groups themselves. The
! 9 Y 9 eoility to expose or refute correlations among observational

classical, single-group setting as it can provide mproved"‘roups is attractive as an exploratory scienti ¢ tool inde-

generalization perfqrmance m_the case of limited trammggtendent of building a generative model. This is especially
data. Another special case arises when the generator net- . . :
works are given by the identity mapping. In this case theuseful since standard measures of corrglathn are I.|near, leav-
S T 7 ng much to be desired in the face of high-dimensional data
s)(/vith many potential nonlinear relationships. Our hope is
Shat 0i-VAE serves as one initial tool to spark a new wave
of interest in nonlinear factor models and their application

to complicated and rich data across a variety of elds.

W (9 and the 0i-VAE reduces to a classical group spar
linear factor model.

4. Interpretability of the oi-VAE . . :
It is worth emphasizing that the goalnstto learn sparse

In 0i-VAE, each latent factor in uences a sparse set of therepresentations in thes. Sparsity inz may be desirable

observational groups. The interpretability garnered fromin certain contexts, but it does not actually provide any

this sparse structure is two-fold: interpretability in the data generating process. Still, we nd
that o0i-VAE does prune dimensions that are not necessary

Disentanglement of latent embeddings By associating in synthetic examples.
each component af with only a sparse subset of the obser-
vational groups, we are able to quickly identifisentangled 5, CoIIapsed variational inference
representations in the latent space. That is, by penalizing
interactions between the componentg @ind each of the  Traditionally, VAEs are learned by applying stochastic gradi-
groups, we effectively force the model to arrive at a repre€nt methods directly to the evidence lower bound (ELBO):
sentation that minimizes correlation across the components logp(x) Eq (in[logp (x:2) logq (zix)I:
of z, encouraging each dimension to capture distinct modes gp q (2 [OgP 16 9q Xk
of variation. For example, in Table 1 we see that each of thevhereq (zjx) denotes the amortized posterior distribution
dimensions of the latent space learned on motion capturef z given observatiorx, parameterized by a neural net-
recordings of human motion corresponds to a direction ofvork with weights . Using a neural network to param-
variation relevant to only a subset of the joints (groups) thaketerize the observation distributigefxjz) as in Eq.(1)
are used in speci ¢ submotions related to walking. Addi-makes the expectation in the ELBO intractable. To address
tionally, it is observed that although the VAE and 0i-VAE this, the VAE employs Monte Carlo variational inference
have similar reconstruction performance the meaningfullfyMCVI) (Kingma & Welling, 2013): The troublesome ex-
disentangled latent representation allows 0i-VAE to produceyectation is approximated with samples of the latent vari-
superior unconditional random samples. ables from the variational distribution, q (zjx), where

g (zjx) is reparameterizedo allow differentiating through
Discovery of group interactions Disregarding any inter- the expectation operator in order to reduce gradient variance.

?St in the Iea}rned represergtat![nrﬁich Iéltent (1_|merl1$|on We extend the basic VAE amortized inference procedure to
IN uences only a sparse subset ot the observational group corporate our sparsity inducing prior over the columns of

Ag such, We can view the o_bservatlonal groups associateg latent-to-group matrices. The naive approach of optimiz-
with a speci c latent dimension as a related system of sorts.

For example, in neuroscience often our goal is to uncovel¥ variational distributions foréi andw (:?) will not result
functionally-connected brain networks. In this setting wein true sparsity of the columna/ (;c}])- Instead, we consider a
may split the signal into groups based on a standard parcé}ollapsed variational objective function. Since our sparsity
lation. Then networks can be identi ed by inspecting theinducing prior ovetW (;?) is marginally equivalent to the
subset of groups in uenced by a component in the latentonvex group lasso penalty we can use proximal gradient
code,z;. Such an approach is attractive in the context ofdescent on the collapsed objective and obtain true group
analyzing functional connectivity from MEG data where sparsity (Parikh & Boyd, 2013). Following the standard
we seek modules of highly correlated regions. See the eXAE approach of Kingma & Welling (2013), we use sim-
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ple point estimates for the variational distributions on theAlgorithm 1 Collapsed VI for 0i-VAE
neural network parametews = W ®; W () and

Input: datax(), sparsity,parameter

Let=L(;; W)+ jw @i

repeat
Calculater L, r LT andr w L.
Update and with an optimizer of your choice.
LetWi+1 = Wy rwl.

We construct a collapsed variational objective by marginal- ~ for all groupsg andj =1 to K do

where the mean and variances are parameterized by an in- gi )

ference network with parameters

5.1. The collapsed objective

izing the gj to computdogp(x) as: Setw @ w ij(g)jj2
~ T iw P |
N o, ) ) end for
log  p(xjz;W; )p(z)p(Wj “)p( “)p( )d “dz until convergence in botfl and o ij(.?)jjz
z z N ' :

a (zix)=q (zix)

; - whereprox (x) is the proximal operator for the function
Eq (zi%) ['09D(XJ§(;W; ) KL (g (zjx)jip(z)) prox (x) p P

f . For example, ih(x) is the indicator function for a con-

+log p( ) iiw (jv-')jjz vex set then the proximal operator is simply the projection
gij operator onto the set and the update in @Jis projected
L L(: s W) gradient. Expanding the de nition girox,, in Eq.(9), one

can see that the proximal step corresponds to minimizing
Importantly, the columns of the latent-to-group matricesh(x) plus a quadratic approximation ¢§x) centered orx;.
W @ appear in a 2-norm penalty in the collapsed ELBOFOrh(x) = jjXjj2, the proximal operator is given by
This is exactly a group lasso penalty on the columns of X
w (;?) and encourages the entire column to be set to zero. proxy, (x) = iiXiis (lixjj2 )+ (10)

Now our goal becomes maximizing this collapsed ELBO

over ; ; andW. Since this objective contains a standardwhere(v). , max(0;v) (Parikh & Boyd, 2013). Geometri-
group lasso penalty, we can leverage ef cient proximal gracally, this operator reduces the normaoby , and shrinks
dient descent updates on the latent-to-group matkides X's With jixjj2 to zero. This operator is especially
as detailed in Sec. 5.2. Proximal algorithms achieve bette¢onvenient since it is both cheap to compute and results in
rates of convergence than sub-gradient methods and hafachine-precision zeros, unlike many Bayesian approaches
shown great success in solving convex objectives with groufi® sparsity that result in small but non-zero values and thus
lasso penalties. We can use any off-the-shelf optimizatiofieduire an extra thresholding step to attain exact zeros.

method for the remaining neural net parameteg@and . \we experimented with standard (non-collapsed) variational
_ _ inference as well other schemes, but found that collapsed
5.2. Proximal gradient descent variational inference with proximal updates provided faster

Proximal gradient descent algorithms are a broad class of Oﬁpnvergence and succeeded in identifying sparser mod-

timization techniques for separable objectives with both dif—eIS than other techniques. In practice we apply proximal

ferentiable and potentially non-differentiable components,StOChaSt'C gr§d|ent updates per Eg).on theW matnces
and Adam (Kingma & Ba, 2014) on the remaining parame-

nlin g(x) + h(x): (8) ters. See Alg. 1 for complete pseudocode.

whereg(x) is differentiable andh(x) is potentially non- 6. Experiments
smooth or non-differentiable (Parikh & Boyd, 2013).
Stochastic proximal algorithms are well-studied for convex
optimization problems. Recent work has shown that somer evaluate oi-VAE's ability to identify sparse models on
variants are guaranteed to converge to a rst-order statiofe|l-understood data, we generatd 8 images with one
ary point even if the objective is comprised of a non-conveXrandomly selected row of pixels shaded and additive noise
g(x) as long as the non-smoatifx) is convex (Reddi etal., corrupting the entire image. We then built and trained an
2016). The usual tactic is to take gradient stepgIOf)  0i-VAE model on the images with each group de ned as an
followed by “corrective”proximalsteps to respett(x): entire row of pixels in the image. We used@udimensional
latent space in order to encourage the model to associate
Xest = ProXp (X 1 9(%t)) (®)  each dimension af with a unique row in the image. Results

6.1. Synthetic data
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(@) (b) (©) (d)
Figure 2.0i-VAE results on synthetic bars data. (a) Example image
and (b) oi-VAE reconstruction. Learned oi-VA® (;’f) for (c)
=1 and (d) = 0 (group structure, but no sparsity). In this
case, training and test error numbers are nearly identical.

are shown in Fig. 2. Our 0i-VAE successfully disentangles

each of the dimensions afto correspond to exactly one

row (group) of the image. We also trained an oi-VAE model

with a16-dimensional latent space (see the Supplement) anBiigure 3.0i-VAE results on motion capture data with = 4, 8,

see that when additional latent components are not needé#d16 latent dimensions. Rows correspond to group generators for

to describe any group they are pruned from the model. ~ €ach of the joints in the skeleton, columns correspond to individual
dimensions of the latent code, and values in the heatmap show

the strength of the latent-to-group mappirvgé;?). Note, joints

that experience little motion when walking—clavicles, ngers, and
Using data collected from CMU's motion capture databas€oes—have been effectively pruned from the latent code in all 3
we evaluated oi-VAE's ability to handle complex physical models.

constraints and interactions across groups of joint angles

while simultaneously identifying a sparse decomposition

of human motion. The dataset consists of 11 examples cfentshead, upperneck , lowerneck separately from
walking and one example ddrisk walking fromthe Ifingers ,Ithumb . To help interpret the learned disen-
same subject. The recordings measure 59 joint angles splidangled latent representation, for tke= 16 embedding
across 29 distinct joints. The joint angles were normalizedve provide lists of the 3 joints per dimension that are most
from their full ranges to lie between zero and one. We treastrongly in uenced by that component. From these lists,
the set of measurements from each distinct joint as a groupye see how the learned decomposition of the latent rep-
since each joint has anywhere from 1 to 3 observed degreegesentation has an intuitive anatomical interpretation. For
of freedom, this setting demonstrates how oi-VAE can hanexample, one of the very prominent features is feature 14,
dle variable-sized groups. For training, we randomly samplavhich jointly in uences thethorax , upperback , and

1to 10walking trials, resulting in up to 3791 frames. Our lowerback . Collectively, these results clearly demon-
experiments evaluate the following performance metricsstrate how the oi-VAE provides meaningful interpretability.
interpretability of the learned interaction structure amongsiVe emphasize that it is not even possible to make these
groups and of the latent representation; test log-likelihoodtypes of images or lists for the VAE.

assessing the model's generalization ability; and both “%Bne might be concerned that by gaining interpretability, we

ditional and unconditional samples to evaluate the quallt)fose out on expressivity. However, as we demonstrate in

of the learned generative process. In all experiments, WE_bie 2 and Figs. 4-5, the regularization provided by our

use d: 1(.1 Fordfulrths'géjeta(ijls 0 CAtge spe(i:]caéion (I)f all Pparsity-inducing penalty actually leads to as good or better
considered models ( andor- ) see the Supp emenperformance. We rst examine 0i-VAE and VAE's ability
To begin, we train our oi-VAE on the full set of 10 train- to generalize to held out data. To examine robustness to
ing trials with the goal of examining the learned latent-to-different amounts of training data, we consider training on
group mappings. To explore how the learned disentanglethcreasing numbers afalk trials and testing on a single
latent representation varies with latent dimendionwe  heldout example of eithevalk orbrisk walk . The lat-
useK = 4, 8, and16. The results are summarized in ter represents an example of data that is a variation of what
Fig. 3. We see that & increases, individual “features” was trained on, whereas the former is a heldout example,
(i.e., components af) are re ned to capture more local- very similar to the training data. In Table 2, we see the
ized anatomical structures. For example, feature 2 in théene t of the regularization in 0i-VAE in both test scenarios
K =4 case turns into feature 7 in the = 16 case, butin in the limited data regime. Unsurprisingly, for the full 10
that case we also add feature 3 to capture just variations dfials, there are little to no differences between the general-
Ifingers |, lthumb separate fronmead, upperneck , ization abilities of 0i-VAE and VAE (though of course the
lowerneck . Likewise, feature 2 wheiK = 16 repre- 0i-VAE still provides interpretability). We highlight that

6.2. Motion Capture
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Table 1.Top 3 joints associated with each latent dimension.
Grayscale values determined W(;?)- We see kinematically
associated joints associated with each latent dimension.

DiM. | TOP3JOINTS

1 left foot, left lower leg, left upper leg

2 head, upper neck, lower neck

3 left thumb, left hand, left upper arm

4 left wrist, left upper arm, left lower arm

5 left lower leg, left upper leg, right lower leg

6 upper back, thorax, lower back

7 left hand, left thumb, upper back

8 head, upper neck, lower back

9 right lower arm, right wrist, right upper arm

10 | head, upper neck, lower neck Figure 4.Samples an oi-VAE model trained on walking data and
11 | thorax, lower back, upper back conditioned on an out-of-sample video frame. We can see that
12 left upper leg, right fqot, root 0i-VAE has learned noise patterns that re ect the natural gait.

13 lower back, thorax, right upper leg

14 thorax, upper back, lower back

15 right upper leg, right lower leg, left upper leg

16 right foot, right upper leg, left foot

when we have both a limited amount of training data that
might not be fully representative of the full possible dataset
of interest (e.g., all types of walking), the regularization
provided by oi-VAE provides dramatic improvements for
generalization. Finally, in almost all scenarios, the more de-
composed o0i-VAEK = 16 setting has better or comparable
performance to smallé¢ settings. We leave choositg

and investigating the effects of pruning to future work.

Next, we turn to assessing the learned 0i-VAE's generativesigure 5.Representative unconditional samples from o0i-VAE and
process relative to that of the VAE. In Fig. 4 we take our testvAE trained onwalk trials. 0i-VAE generates physically realistic
trial of walk , run each frame through the learned inferencewalking poses while VAE sometimes produces implausible ones.
network to get a set of approximate posteriors. For every

suchq (zjx), we sample 32 times from the distribution with great temporal resolution and good spatial resolution.
and run each sample through the generator networks t8&nalyzing this data holds great promise for understanding
synthesize a batch of reconstructions. To fully explore thehe neural underpinnings of cognitive behaviors and for char-
space of human motion the learned generators can captuegterizing neurological disorders such as autism. A common
we take 10Qinconditionalsamples from both the 0i-VAE  step when analyzing MEG data is to project the MEG sen-
and VAE models and show a representative subset in Fig. 8or data intassource-spacevhere we obtain observations
The full set of 100 random samples from both oi-VAE and over time on a mesh (5-1(]( Vertices) of the cortical sur-
VAE are provided in the Supplement. Note that even wherface (Gramfort et al., 2013). The resulting source-space
trained on the full set of 1@alk trials where we see little to  signals likely live on a low-dimensional manifold making
no difference in test log-likelihood between the 0i-VAE and methods such as the VAE attractive. Still, neuroscientists
VAE, we do see that the learned generator for the 0i-VAE ishave meticulously studied particular brain regions of interest
more representative of physically plausible human motiorand what behaviors they are involved in by hand.

poses. We attribute this to the fact that the test log-likelihood

does not encourage quality unconditional samples, but ¥/€ @Pply our 0i-VAE method to infer low-rank represen-

disentangled latent representation should yield qualitativelj2tions of source-space MEG data where the groups are
better results on samples from the prior. speci ed as the 40regions de ned in the HCP-MMP1

brain parcellation (Glasser et al., 2016). See Fig. 6(left).
The recordings were collected from a single subject per-
forming an auditory attention task where they were asked to
Magnetoencephalography (MEG) records the weak magnaintain their attention to one of two auditory streams. We
netic eld produced by the brain during cognitive activity use 106 trials each of length 385. We treat each time point

6.3. Magnetoencephalography
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Table 2.Test log-likelihood for VAE and oi-VAE trained on 1,2,5, or 10 trialsvedilk data. Table includes results for a testlk (same
as training) oibrisk walk trial (unseen in training). Bold numbers indicate the best performance. The standard VAE uses the same
structure as 0i-VAE for a consistent comparison (equivalent+o0 ).

STANDARD WALK BRISK WALK
# TRIALS | 1 2 5 10 | 1 2 5 10
VAE (K =16) 3;518 251 18 114 723,795 15;413; 445 19; 302 644 19; 303,072
OI-VAE (K =4) 2,722 214 27 70 664; 608 13; 438,602 19;289; 548 19; 302, 680
oI-VAE (K =8) 3;196 195 29 75 283,352 10; 305; 693 19; 356,218 19; 302, 764

0I-VAE (K =16) 3;550 188 31 108 198; 663 6;781;047 19;299; 964 19;302 924

of each trial as an i.i.d. observation resulting it 1K ob-
servations. For details on the speci cation of all considered
models, see the Supplement.

For each region we compute the average source-space
activity over all vertices in each region resulting in 44-
dimensional observations. We applied o0i-VAE with= 20,

= 10, and Alg. 1 forlQ; 000iterations. In Fig. 6 we de-

ict the learned group-weighjisVV (9jj, for all groups
b group Ghiv j 2 groupsg Figure 7.In uence of z¢ (top) andzis (bottom) on the HCP-

and components. We observe that each component man . . )
P L b MMP1 regions. Active regions (shaded) correspond tadibrsal

ifests itself in a sparse subset of the regions. Next, we . .
o . attention networlanddefault mode networkespectively.
dig into speci c latent components and evaluate whether

each in uences a subset of regions in a neuroscienti cally

interpretable manner. further probed through functional connectivity analysis. See
the Supplement for the analysis of more components.

7. Conclusion

We proposed an output interpretable VAE (0i-VAE) that can
be viewed as either a nonlinear group latent factor model
or as a structured VAE with disentangled latent embed-
dings. The approach combines deep generative models
with a sparsity-inducing prior that leads to our ability to ex-
tract meaningful notions of latent-to-observed interactions
Figure 6.(Left) The regions making up the HCP-MMP1 parcella- when the observations are structured into groups. From
tion de ning the groups. (Right) Latent-to-group mappings indi- this interaction structure, we can infer correlated systems of
cate that each latent component in uences a sparse set of regiorigteraction amongst the observational groups. In our motion
capture and MEG experiments we demonstrated that the
resulting systems are physically meaningful. Importantly,
For a given latent component, the valugjWw (;?)J'J' 2 allows this interpretability does not appear to come at the cost of ex-
us to interpret how much compongnin uences region pressiveness, and in our group-structured case can actually
g. We visualize some of these weights for two prominentlead to improved generalization and generative processes.
learned components in Fig. 7. Speci cally, we nd that

component 6 captures the regions that make ugéhsal In contrast to alternative approaches for nonlinear group

attention networlpertaining to an auditory spatial task, viz sparse factor analysis, leveraging the amortized inference
9 ysp '~ associated with VAEs leads to computational ef ciencies.

early visual, auditory sensory areas as well as inferior par, oo .
. X . : \(\/e see even more signi cant gains through our proposed
etal sulcus and the region covering the right temporoparieta

junction (Lee et al., 2014). We also nd that component 15|collé':1ps¢(1|ott>1e;:t|ve. The_tproxmal updates we can apply
corresponds to regions associated withdb&ult mode net- cad quickly to flue sparsity.

work, viz., medial prefrontal as well as posterior cingulate Note that nothing fundamentally prevents applying this ar-
cortex (Buckner et al., 2008). Again the 0i-VAE leads to chitecture to other generative moddisjour. Extending this
interpretable results that align with meaningful and previwork to generative adversarial models, for example, should
ously studied physiological systems. These systems can b straightforward (Goodfellow et al., 2014). Oy-vey!



