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Abstract
Deep generative models have recently yielded en-
couraging results in producing subjectively realis-
tic samples of complex data. Far less attention has
been paid to making these generative models inter-
pretable. In many scenarios, ranging from scien-
tific applications to finance, the observed variables
have a natural grouping. It is often of interest to
understand systems of interaction amongst these
groups, and latent factor models (LFMs) are an at-
tractive approach. However, traditional LFMs are
limited by assuming a linear correlation structure.
We present an output interpretable VAE (oi-VAE)
for grouped data that models complex, nonlinear
latent-to-observed relationships. We combine a
structured VAE comprised of group-specific gen-
erators with a sparsity-inducing prior. We demon-
strate that oi-VAE yields meaningful notions of
interpretability in the analysis of motion capture
and MEG data. We further show that in these
situations, the regularization inherent to oi-VAE
can actually lead to improved generalization and
learned generative processes.

1. Introduction
Many datasets of interest in machine learning are com-
prised of high-dimensional, complex objects. Often, one
is interested in describing these observations using a low-
dimensional latent subspace that captures the statistical vari-
ations. Such approaches fall under the umbrella of factor
analysis (Bishop, 2016), where we wish to learn a mapping
between the latent and observed spaces. The motivation is
two-fold: (i) factor models provide a compact representation
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of the data, and (ii) the mapping can be used to describe the
correlation structure of the high-dimensional data. In many
applications, we are particularly interested in mappings that
elucidate interpretable interactions.

The challenge arises from the push and pull between inter-
pretability and expressivity in factor modeling approaches.
Methods emphasizing interpretability have focused primar-
ily on linear models, resulting in lower expressivity. A
popular choice in these settings is to consider sparse lin-
ear factor models (Zhao et al., 2016; Carvalho et al., 2008).
However, it is well known that neural (Vejmelka et al., 2010),
genomic (Prill et al., 2010), and financial data (Harvey et al.,
1994), for example, exhibit complex nonlinearities.

Recently, there has been a significant amount of work on ex-
pressive models for complex, high dimensional data. In par-
ticular, deep generative models (Kingma & Welling, 2013;
Rezende et al., 2014; Goodfellow et al., 2014; Damianou &
Lawrence, 2013) have proven wildly successful in efficiently
modeling complex observations—such as images—as non-
linear mappings of simple latent representations. These
nonlinear maps are based on deep neural networks that pa-
rameterize an observation distribution, often referred to as
the generator. We focus on the class of variational autoen-
coders (VAEs) (Kingma & Welling, 2013). Unlike linear
models which posit a latent variable per observation, VAEs
introduce a mapping from observations to a distribution
on the latent space; when parameterized by a deep neu-
ral network, this mapping is called the inference network.
The generator and inference network are jointly trained to
minimize a variational objective.

The VAE can be viewed as a nonlinear factor model that
provides a scalable means of learning latent representations.
The focus, however, has primarily been on their use as a
generative mechanism. One shortcoming of the VAE is that,
due to the tangled web of connections between neural net-
work layers, it is not possible to interpret how changes in
the latent code influence changes in the observations—as
in linear latent factor models. For example, imagine you
are trying to synthesize human body poses. One might
hope to have a disentangled representation where a given
latent dimension controls a subset of highly correlated body
parts; unfortunately, the standard VAE cannot yield these
types of interpretations. Another shortcoming of the VAE
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is that training—as in most neural network-based models—
typically requires a massive amount of data. In many appli-
cations, we have limited access to training data.

One natural way to encourage disentangled latent repre-
sentations is by introducing structure and sparsity into the
generator. Specifically, we propose an output interpretable
VAE (oi-VAE) that factorizes the generator across obser-
vation dimensions, with a separate generator per group of
variables. The generators are coupled both through a shared
latent space, and by jointly training with a single inference
network. We also introduce a sparsity-inducing penalty that
leads each latent dimension to influence a limited subset of
groups, resulting in a disentangled latent representation. We
develop an amortized variational inference algorithm for a
collapsed objective, allowing us to use efficient proximal
updates to learn latent-dimension-to-group interactions.

The factorization of generators across dimensions is read-
ily apparent when the data are inherently group structured.
There are many applications where this is the case. In the
analysis of neuroimaging data, studies are typically done at
the level of regions of interest that aggregate over cortically-
localized signals. In genomics, there are different treatment
regimes. In finance, the data might be described in terms
of asset classes (stocks, bonds, . . . ). And for motion cap-
ture data, multiple angle measurements are grouped by their
associated joints. In these group-structured scenarios we
may additionally garner interpretability from the oi-VAE
mappings. For example, we may learn that a given latent
dimension controls a collection of highly correlated joints—
e.g., joints in a limb—that comprise a system of interest.
A side benefit of this structured oi-VAE framework is its
ability to handle scenarios with limited amounts of data.

We evaluate the oi-VAE on motion capture and magnetoen-
cephalography datasets. In these scenarios where there is a
natural notion of groupings of observations, we demonstrate
the interpretability of the learned features and how these
structures of interaction correspond to physically meaning-
ful systems. Furthermore, in such cases we show that the
regularization employed by oi-VAE leads to better gener-
alization and synthesis capabilities, especially in limited
training data scenarios or when the training data might not
fully capture the observed space of interest. In addition, we
found that oi-VAE produces unconditional samples that are
qualitatively superior to standard VAEs due to oi-VAE’s bias
towards disentangled representations in the latent space.

2. Background
Nonlinear factor analysis aims to relax the strict linearity
assumption of classical factor analysis and has a long history
in the statistics community. The work of (Gibson, 1959)
initially circumvented the issues of linear factor analysis by

discretizing continuous nonlinearities. However, (McDon-
ald, 1962) was the first to develop a parametric nonlinear
factor analysis model. Significant progress has been made
since then as described in Yalcin & Amemiya (2001), in-
cluding developments in the Bayesian context (Arminger
& Muthén, 1998). Recent work in machine learning has
also considered similar approaches leveraging Gaussian pro-
cesses (Lawrence, 2003; Damianou et al., 2012). Despite
the resemblance to autoencoding models (Ballard, 1987)—
especially in the age of “disentanglement”—little work ex-
ists exploring connections between the two.

The study of deep generative models is an active area of
research in the machine learning community. The varia-
tional autoencoder (VAE) (Kingma & Welling, 2013) is one
such example that efficiently trains a generative model via
amortized inference (see also Rezende et al., 2014). Though
deep generative models like the VAE have demonstrated an
ability to produce convincing samples of complex data (cf.,
Archer et al., 2015; Johnson et al., 2017), the learned la-
tent representations are not readily interpretable due to the
entangled interactions between latent dimensions and the
observations, as depicted in Fig. 2. We further review the
VAE specification in Sec. 3 and its implementation in Sec. 5.

A common approach to encourage simple and interpretable
models is through use of sparsity inducing penalties such
as the lasso (Tibshirani, 1994) and group lasso (Yuan &
Lin, 2006). These methods work by shrinking many model
parameters toward zero and have seen great success in re-
gression models, covariance selection (Danaher et al.), and
linear factor analysis (Hirose & Konishi, 2012). The group
lasso penalty is of particular interest to us as it simultane-
ously shrinks entire groups of model parameters toward zero.
The usage of group lasso penalties for learning structured
inputs to neural networks was explored in Tank et al. (2018)
previously, and was inspirational to this work.

To specify a valid generative model, we focus on sparsity-
inducing priors for the parameters of the generator net-
work. Historically, the spike-and-slab prior (Mitchell
& Beauchamp, 1988) was used to encourage sparsity in
Bayesian models. The prior consists of a two-component
mixture with mass on a model parameter being exactly zero.
Unfortunately, inference in spike-and-slab models is diffi-
cult because of the combinatorial nature of the resulting pos-
terior. A more computationally tractable family arises from
the class of global-local shrinkage priors (Polson & Scott,
2010). One popular example is the horseshoe prior (Bhadra
et al., 2016). However, these priors do not result in exact
zeros, making interpretability difficult.

A sophisticated hierarchical Bayesian prior for sparse group
linear factor analysis has recently been developed by Zhao
et al. (2016). This prior encourages both a sparse set of
factors to be used as well as having the factors themselves
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Figure 1.VAE (left) and oi-VAE (right) generative models. The
oi-VAE considers group-speci�c generators and a linear latent-to-
generator mapping with weights from a single latent dimension
to a speci�c group sharing the same color. The group-sparse
prior is applied over these grouped weights in order to promote
a disentangled latent representation in which a particular latent
component only interacts with a sparse subset of groups.

be sparse. The resulting model admits an ef�cient EM al-
gorithm. This builds on previous work on group factor
analysis (Virtanen et al., 2012; Klami et al., 2015). Spar-
sity inducing hierarchical Bayesian priors have also been
applied to learn the complexity of the Bayesian deep neu-
ral networks (Louizos et al., 2017; Ghosh & Doshi-Velez,
2017). Our focus, however, is on using (structured) sparsity-
inducing hierarchical Bayesian priors in the context of deep
learning for the sake of interpretability, as in linear factor
analysis, rather than model selection.

3. The oi-VAE model

We frame our proposed output interpretable VAE (oi-VAE)
method using the same terminology as the VAE. Letx 2
RD denote aD-dimensional observation andz 2 RK de-
note the associated latent representation of �xed dimension
K . We then write the generative process of the model as:

z � N (0; I ) (1)

x � N (f � (z); D ); (2)

whereD is a diagonal matrix containing the marginal vari-
ances of each component ofx. The generator is encoded
with the functionf � (�) speci�ed as a deep neural network
with parameters� . Note that the formulation in Eq.(2) is
simpler than that described in Kingma & Welling (2013)
where the noise variances were observation speci�c. This
simplifying assumption is common with traditional factor
models, but could easily be relaxed.

When our observationsx admit a natural grouping over the
components, we writex = [ x (1) ; : : : ; x (G) ] for each of the
G groups. We model the components within each group
g 2 [G] with separate generative networksf (g)

� g
parameter-

ized by� g. It is possible to share generator parameters� g

across groups, however we chose to model each separately.
Critically, the latent representationz is shared across all of
the group-speci�c generators. In particular:

z � N (0; I ) (3)

x (g) � N (f (g)
� g

(z); D g): (4)

To this point, our speci�ed group-structured VAE can de-
scribe within-group and cross-group correlation structure.
However, one of the primary goals of this framework is to
capture interpretable relationships between groups through
the latent representation.

Inspired by the sparse factor analysis literature, we extract
notions of interpretable interactions by encouraging sparse
latent-to-group mappings. Speci�cally, we insert a group-
speci�c linear transformationW (g) 2 Rp� K between the
latent representationz and the group generatorf (g) :

x (g) � N (f (g)
� (W (g) z); D g): (5)

We refer toW (g) as the latent-to-group matrix. For sim-
plicity, we assume that each generator has input dimension
p. When thej th column of the latent-to-group matrix for
groupg, W (g)

�;j , is all zeros then thej th latent dimension,zj ,
will have no in�uence on groupg in the generative process.
To induce this column-wise sparsity, we place a hierarchical
Bayesian prior on the columnsW (g)

�;j as follows (Kyung
et al., 2010):


 2
gj � Gamma

�
p + 1

2
;

� 2

2

�
(6)

W (g)
� ;j � N (0; 
 2

gj I ) (7)

where Gamma(�; �) is de�ned by shape and rate. The rate
parameter� de�nes the amount of sparsity, with larger�
implying more column-wise sparsity inW (g) . Marginal-
izing over
 2

gj induces group sparsity over the columns of
W (g) ; the MAP of the resulting posterior is equivalent to a
group lasso penalized objective (Kyung et al., 2010).

Unlike linear factor models, the deep structure of our
model allows rescaling of the parameters across layer
boundaries without affecting the end behavior of the net-
work (Neyshabur et al., 2015). In particular, it is possible—
and in fact encouraged behavior—to learn a set ofW (g) ma-
trices with very small weights and a subsequent layer with
very large weights that nullify the shrinkage imposed by the
sparsity-inducing prior. In order to mitigate this we addi-
tionally place a standard normal prior with �xed scale on
the parameters of each generative network,� g � N (0; I ).

Special cases of the oi-VAE There are a few notable spe-
cial cases of our oi-VAE framework. When we treat the
observations as forming a single group, the model resembles
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a traditional VAE since there is a single generator. However,
the sparsity inducing prior still has an effect that differs from
the standard VAE. In particular, by shrinking columns of
W (dropping theg superscript) the prior will essentially en-
courage a sparse subset of the components ofz to be used to
explain the data, similar to a traditional sparse factor model.
Note that thez's themselves will still be standard normal,
but the columns ofW will dictate which components are
used. This regularization may be advantageous even in the
classical, single-group setting as it can provide improved
generalization performance in the case of limited training
data. Another special case arises when the generator net-
works are given by the identity mapping. In this case, the
only transformation of the latent representation is given by
W (g) and the oi-VAE reduces to a classical group sparse
linear factor model.

4. Interpretability of the oi-VAE

In oi-VAE, each latent factor in�uences a sparse set of the
observational groups. The interpretability garnered from
this sparse structure is two-fold:

Disentanglement of latent embeddings By associating
each component ofz with only a sparse subset of the obser-
vational groups, we are able to quickly identifydisentangled
representations in the latent space. That is, by penalizing
interactions between the components ofz and each of the
groups, we effectively force the model to arrive at a repre-
sentation that minimizes correlation across the components
of z, encouraging each dimension to capture distinct modes
of variation. For example, in Table 1 we see that each of the
dimensions of the latent space learned on motion capture
recordings of human motion corresponds to a direction of
variation relevant to only a subset of the joints (groups) that
are used in speci�c submotions related to walking. Addi-
tionally, it is observed that although the VAE and oi-VAE
have similar reconstruction performance the meaningfully
disentangled latent representation allows oi-VAE to produce
superior unconditional random samples.

Discovery of group interactions Disregarding any inter-
est in the learned representationz, each latent dimension
in�uences only a sparse subset of the observational groups.
As such, we can view the observational groups associated
with a speci�c latent dimension as a related system of sorts.
For example, in neuroscience often our goal is to uncover
functionally-connected brain networks. In this setting we
may split the signal into groups based on a standard parcel-
lation. Then networks can be identi�ed by inspecting the
subset of groups in�uenced by a component in the latent
code,zi . Such an approach is attractive in the context of
analyzing functional connectivity from MEG data where
we seek modules of highly correlated regions. See the ex-

periments of Sec. 6.3. Likewise, in our motion capture
experiments of Sec. 6.2, we see (again from Table 1) how
we can treat collections of joints as a system that covary in
meaningful ways within a given human motion category.

Broadly speaking, the relationship between dimensions of
z and observational groups can be thought of as a bipartite
graph in which we can quickly identify correlation and inde-
pendence relationships among the groups themselves. The
ability to expose or refute correlations among observational
groups is attractive as an exploratory scienti�c tool inde-
pendent of building a generative model. This is especially
useful since standard measures of correlation are linear, leav-
ing much to be desired in the face of high-dimensional data
with many potential nonlinear relationships. Our hope is
that oi-VAE serves as one initial tool to spark a new wave
of interest in nonlinear factor models and their application
to complicated and rich data across a variety of �elds.

It is worth emphasizing that the goal isnot to learn sparse
representations in thez's. Sparsity inz may be desirable
in certain contexts, but it does not actually provide any
interpretability in the data generating process. Still, we �nd
that oi-VAE does prune dimensions that are not necessary
in synthetic examples.

5. Collapsed variational inference

Traditionally, VAEs are learned by applying stochastic gradi-
ent methods directly to the evidence lower bound (ELBO):

logp(x) � Eq� (zjx ) [logp� (x ; z) � logq� (zjx)];

whereq� (zjx) denotes the amortized posterior distribution
of z given observationx, parameterized by a neural net-
work with weights� . Using a neural network to param-
eterize the observation distributionp(x jz) as in Eq.(1)
makes the expectation in the ELBO intractable. To address
this, the VAE employs Monte Carlo variational inference
(MCVI) (Kingma & Welling, 2013): The troublesome ex-
pectation is approximated with samples of the latent vari-
ables from the variational distribution,z � q� (zjx), where
q� (zjx) is reparameterizedto allow differentiating through
the expectation operator in order to reduce gradient variance.

We extend the basic VAE amortized inference procedure to
incorporate our sparsity inducing prior over the columns of
the latent-to-group matrices. The naive approach of optimiz-
ing variational distributions for
 2

gj andW (g)
�;j will not result

in true sparsity of the columnsW (g)
�;j . Instead, we consider a

collapsed variational objective function. Since our sparsity
inducing prior overW (g)

�;j is marginally equivalent to the
convex group lasso penalty we can use proximal gradient
descent on the collapsed objective and obtain true group
sparsity (Parikh & Boyd, 2013). Following the standard
VAE approach of Kingma & Welling (2013), we use sim-
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ple point estimates for the variational distributions on the
neural network parametersW =

�
W (1) ; � � � ; W (G)

�
and

� = ( � 1; : : : ; � G ). We takeq� (zjx) = N (� (x); � 2(x)))
where the mean and variances are parameterized by an in-
ference network with parameters� .

5.1. The collapsed objective

We construct a collapsed variational objective by marginal-
izing the
 2

gj to computelogp(x) as:

log
Z

p(x jz; W; � )p(z)p(Wj
 2)p(
 2)p(� ) d
 2 dz

= log
Z � Z

p(W; 
 2) d
 2
�

p(x jz; W; � )p(z)p(� )
q� (zjx)=q� (zjx)

dz

� Eq� (zjx ) [logp(x jz; W; � )] � KL (q� (zjx)jjp(z))

+ log p(� ) � �
X

g;j

jjW (g)
� ;j jj2

, L (�; �; W):

Importantly, the columns of the latent-to-group matrices
W (g)

�;j appear in a 2-norm penalty in the collapsed ELBO.
This is exactly a group lasso penalty on the columns of
W (g)

�;j and encourages the entire column to be set to zero.

Now our goal becomes maximizing this collapsed ELBO
over�; �; andW. Since this objective contains a standard
group lasso penalty, we can leverage ef�cient proximal gra-
dient descent updates on the latent-to-group matricesW
as detailed in Sec. 5.2. Proximal algorithms achieve better
rates of convergence than sub-gradient methods and have
shown great success in solving convex objectives with group
lasso penalties. We can use any off-the-shelf optimization
method for the remaining neural net parameters,� g and� .

5.2. Proximal gradient descent

Proximal gradient descent algorithms are a broad class of op-
timization techniques for separable objectives with both dif-
ferentiable and potentially non-differentiable components,

min
x

g(x) + h(x); (8)

whereg(x) is differentiable andh(x) is potentially non-
smooth or non-differentiable (Parikh & Boyd, 2013).
Stochastic proximal algorithms are well-studied for convex
optimization problems. Recent work has shown that some
variants are guaranteed to converge to a �rst-order station-
ary point even if the objective is comprised of a non-convex
g(x) as long as the non-smoothh(x) is convex (Reddi et al.,
2016). The usual tactic is to take gradient steps ong(x)
followed by “corrective”proximalsteps to respecth(x):

x t +1 = prox�h (x t � � r g(x t )) (9)

Algorithm 1 Collapsed VI for oi-VAE

Input: datax ( i ) , sparsity parameter�
Let ~L = L (�; �; W) + �

P
g;j jjW (g)

� ;j jj2.
repeat

Calculater � ~L , r � ~L , andr W ~L .
Update� and� with an optimizer of your choice.
Let Wt +1 = Wt � � r W ~L .
for all groupsg andj = 1 to K do

SetW (g)
� ;j  

W ( g )
� ;j

jj W ( g )
� ;j jj 2

�
jjW (g)

� ;j jj2 � ��
�

+
end for

until convergence in botĥL and� �
P

g;j jjW (g)
� ;j jj2

whereproxf (x) is the proximal operator for the function
f . For example, ifh(x) is the indicator function for a con-
vex set then the proximal operator is simply the projection
operator onto the set and the update in Eq.(9) is projected
gradient. Expanding the de�nition ofprox�h in Eq. (9), one
can see that the proximal step corresponds to minimizing
h(x) plus a quadratic approximation tog(x) centered onx t .
For h(x) = � jjxjj2, the proximal operator is given by

prox�h (x) =
x

jjxjj2
(jjxjj2 � �� )+ (10)

where(v)+ , max(0; v) (Parikh & Boyd, 2013). Geometri-
cally, this operator reduces the norm ofx by �� , and shrinks
x's with jjxjj2 � �� to zero. This operator is especially
convenient since it is both cheap to compute and results in
machine-precision zeros, unlike many Bayesian approaches
to sparsity that result in small but non-zero values and thus
require an extra thresholding step to attain exact zeros.

We experimented with standard (non-collapsed) variational
inference as well other schemes, but found that collapsed
variational inference with proximal updates provided faster
convergence and succeeded in identifying sparser mod-
els than other techniques. In practice we apply proximal
stochastic gradient updates per Eq.(9) on theW matrices
and Adam (Kingma & Ba, 2014) on the remaining parame-
ters. See Alg. 1 for complete pseudocode.

6. Experiments

6.1. Synthetic data

To evaluate oi-VAE's ability to identify sparse models on
well-understood data, we generated8 � 8 images with one
randomly selected row of pixels shaded and additive noise
corrupting the entire image. We then built and trained an
oi-VAE model on the images with each group de�ned as an
entire row of pixels in the image. We used an8-dimensional
latent space in order to encourage the model to associate
each dimension ofz with a unique row in the image. Results
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(a) (b) (c) (d)

Figure 2.oi-VAE results on synthetic bars data. (a) Example image
and (b) oi-VAE reconstruction. Learned oi-VAEW ( g)

� ;j for (c)
� = 1 and (d)� = 0 (group structure, but no sparsity). In this
case, training and test error numbers are nearly identical.

are shown in Fig. 2. Our oi-VAE successfully disentangles
each of the dimensions ofz to correspond to exactly one
row (group) of the image. We also trained an oi-VAE model
with a16-dimensional latent space (see the Supplement) and
see that when additional latent components are not needed
to describe any group they are pruned from the model.

6.2. Motion Capture

Using data collected from CMU's motion capture database
we evaluated oi-VAE's ability to handle complex physical
constraints and interactions across groups of joint angles
while simultaneously identifying a sparse decomposition
of human motion. The dataset consists of 11 examples of
walking and one example ofbrisk walking from the
same subject. The recordings measure 59 joint angles split
across 29 distinct joints. The joint angles were normalized
from their full ranges to lie between zero and one. We treat
the set of measurements from each distinct joint as a group;
since each joint has anywhere from 1 to 3 observed degrees
of freedom, this setting demonstrates how oi-VAE can han-
dle variable-sized groups. For training, we randomly sample
1 to 10walking trials, resulting in up to 3791 frames. Our
experiments evaluate the following performance metrics:
interpretability of the learned interaction structure amongst
groups and of the latent representation; test log-likelihood,
assessing the model's generalization ability; and both con-
ditional and unconditional samples to evaluate the quality
of the learned generative process. In all experiments, we
use� = 1 . For further details on the speci�cation of all
considered models (VAE and oi-VAE), see the Supplement.

To begin, we train our oi-VAE on the full set of 10 train-
ing trials with the goal of examining the learned latent-to-
group mappings. To explore how the learned disentangled
latent representation varies with latent dimensionK , we
useK = 4 , 8, and16. The results are summarized in
Fig. 3. We see that asK increases, individual “features”
(i.e., components ofz) are re�ned to capture more local-
ized anatomical structures. For example, feature 2 in the
K = 4 case turns into feature 7 in theK = 16 case, but in
that case we also add feature 3 to capture just variations of
lfingers , lthumb separate fromhead , upperneck ,
lowerneck . Likewise, feature 2 whenK = 16 repre-

Figure 3.oi-VAE results on motion capture data withK = 4 , 8,
and16 latent dimensions. Rows correspond to group generators for
each of the joints in the skeleton, columns correspond to individual
dimensions of the latent code, and values in the heatmap show
the strength of the latent-to-group mappingsW ( g)

� ;j . Note, joints
that experience little motion when walking—clavicles, �ngers, and
toes—have been effectively pruned from the latent code in all 3
models.

sentshead , upperneck , lowerneck separately from
lfingers , lthumb . To help interpret the learned disen-
tangled latent representation, for theK = 16 embedding
we provide lists of the 3 joints per dimension that are most
strongly in�uenced by that component. From these lists,
we see how the learned decomposition of the latent rep-
resentation has an intuitive anatomical interpretation. For
example, one of the very prominent features is feature 14,
which jointly in�uences thethorax , upperback , and
lowerback . Collectively, these results clearly demon-
strate how the oi-VAE provides meaningful interpretability.
We emphasize that it is not even possible to make these
types of images or lists for the VAE.

One might be concerned that by gaining interpretability, we
lose out on expressivity. However, as we demonstrate in
Table 2 and Figs. 4-5, the regularization provided by our
sparsity-inducing penalty actually leads to as good or better
performance. We �rst examine oi-VAE and VAE's ability
to generalize to held out data. To examine robustness to
different amounts of training data, we consider training on
increasing numbers ofwalk trials and testing on a single
heldout example of eitherwalk or brisk walk . The lat-
ter represents an example of data that is a variation of what
was trained on, whereas the former is a heldout example,
very similar to the training data. In Table 2, we see the
bene�t of the regularization in oi-VAE in both test scenarios
in the limited data regime. Unsurprisingly, for the full 10
trials, there are little to no differences between the general-
ization abilities of oi-VAE and VAE (though of course the
oi-VAE still provides interpretability). We highlight that
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Table 1.Top 3 joints associated with each latent dimension.
Grayscale values determined byW ( g)

� ;j . We see kinematically
associated joints associated with each latent dimension.

DIM . TOP 3 JOINTS

1 left foot, left lower leg, left upper leg
2 head, upper neck, lower neck
3 left thumb, left hand, left upper arm
4 left wrist, left upper arm, left lower arm
5 left lower leg, left upper leg, right lower leg
6 upper back, thorax, lower back
7 left hand, left thumb, upper back
8 head, upper neck, lower back
9 right lower arm, right wrist, right upper arm
10 head, upper neck, lower neck
11 thorax, lower back, upper back
12 left upper leg, right foot, root
13 lower back, thorax, right upper leg
14 thorax, upper back, lower back
15 right upper leg, right lower leg, left upper leg
16 right foot, right upper leg, left foot

when we have both a limited amount of training data that
might not be fully representative of the full possible dataset
of interest (e.g., all types of walking), the regularization
provided by oi-VAE provides dramatic improvements for
generalization. Finally, in almost all scenarios, the more de-
composed oi-VAEK = 16 setting has better or comparable
performance to smallerK settings. We leave choosingK
and investigating the effects of pruning to future work.

Next, we turn to assessing the learned oi-VAE's generative
process relative to that of the VAE. In Fig. 4 we take our test
trial of walk , run each frame through the learned inference
network to get a set of approximate posteriors. For every
suchq� (zjx), we sample 32 times from the distribution
and run each sample through the generator networks to
synthesize a batch of reconstructions. To fully explore the
space of human motion the learned generators can capture,
we take 100unconditionalsamples from both the oi-VAE
and VAE models and show a representative subset in Fig. 5.
The full set of 100 random samples from both oi-VAE and
VAE are provided in the Supplement. Note that even when
trained on the full set of 10walk trials where we see little to
no difference in test log-likelihood between the oi-VAE and
VAE, we do see that the learned generator for the oi-VAE is
more representative of physically plausible human motion
poses. We attribute this to the fact that the test log-likelihood
does not encourage quality unconditional samples, but a
disentangled latent representation should yield qualitatively
better results on samples from the prior.

6.3. Magnetoencephalography

Magnetoencephalography (MEG) records the weak mag-
netic �eld produced by the brain during cognitive activity

Figure 4.Samples an oi-VAE model trained on walking data and
conditioned on an out-of-sample video frame. We can see that
oi-VAE has learned noise patterns that re�ect the natural gait.

Figure 5.Representative unconditional samples from oi-VAE and
VAE trained onwalk trials. oi-VAE generates physically realistic
walking poses while VAE sometimes produces implausible ones.

with great temporal resolution and good spatial resolution.
Analyzing this data holds great promise for understanding
the neural underpinnings of cognitive behaviors and for char-
acterizing neurological disorders such as autism. A common
step when analyzing MEG data is to project the MEG sen-
sor data intosource-spacewhere we obtain observations
over time on a mesh (� 5-10K vertices) of the cortical sur-
face (Gramfort et al., 2013). The resulting source-space
signals likely live on a low-dimensional manifold making
methods such as the VAE attractive. Still, neuroscientists
have meticulously studied particular brain regions of interest
and what behaviors they are involved in by hand.

We apply our oi-VAE method to infer low-rank represen-
tations of source-space MEG data where the groups are
speci�ed as the� 40 regions de�ned in the HCP-MMP1
brain parcellation (Glasser et al., 2016). See Fig. 6(left).
The recordings were collected from a single subject per-
forming an auditory attention task where they were asked to
maintain their attention to one of two auditory streams. We
use 106 trials each of length 385. We treat each time point
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Table 2.Test log-likelihood for VAE and oi-VAE trained on 1,2,5, or 10 trials ofwalk data. Table includes results for a testwalk (same
as training) orbrisk walk trial (unseen in training). Bold numbers indicate the best performance. The standard VAE uses the same
structure as oi-VAE for a consistent comparison (equivalent to� = 0 ).

STANDARD WALK BRISK WALK

# TRIALS 1 2 5 10 1 2 5 10

VAE (K = 16 ) � 3; 518 � 251 18 114 � 723; 795 � 15; 413; 445 � 19; 302; 644 � 19; 303; 072
OI-VAE (K = 4 ) � 2; 722 � 214 27 70 � 664; 608 � 13; 438; 602 � 19; 289; 548 � 19; 302; 680
OI-VAE (K = 8 ) � 3; 196 � 195 29 75 � 283; 352 � 10; 305; 693 � 19; 356; 218 � 19; 302; 764
OI-VAE (K = 16 ) � 3; 550 � 188 31 108 � 198; 663 � 6; 781; 047 � 19; 299; 964 � 19; 302; 924

of each trial as an i.i.d. observation resulting in� 41K ob-
servations. For details on the speci�cation of all considered
models, see the Supplement.

For each region we compute the average source-space
activity over all vertices in each region resulting in 44-
dimensional observations. We applied oi-VAE withK = 20,
� = 10, and Alg. 1 for10; 000iterations. In Fig. 6 we de-
pict the learned group-weightsjjW (g)

�;j jj2 for all groupsg
and componentsj . We observe that each component man-
ifests itself in a sparse subset of the regions. Next, we
dig into speci�c latent components and evaluate whether
each in�uences a subset of regions in a neuroscienti�cally
interpretable manner.

Figure 6.(Left) The regions making up the HCP-MMP1 parcella-
tion de�ning the groups. (Right) Latent-to-group mappings indi-
cate that each latent component in�uences a sparse set of regions.

For a given latent componentzj , the valuejjW (g)
�;j jj2 allows

us to interpret how much componentj in�uences region
g. We visualize some of these weights for two prominent
learned components in Fig. 7. Speci�cally, we �nd that
component 6 captures the regions that make up thedorsal
attention networkpertaining to an auditory spatial task, viz.,
early visual, auditory sensory areas as well as inferior pari-
etal sulcus and the region covering the right temporoparietal
junction (Lee et al., 2014). We also �nd that component 15
corresponds to regions associated with thedefault mode net-
work, viz., medial prefrontal as well as posterior cingulate
cortex (Buckner et al., 2008). Again the oi-VAE leads to
interpretable results that align with meaningful and previ-
ously studied physiological systems. These systems can be

Figure 7.In�uence of z6 (top) andz15 (bottom) on the HCP-
MMP1 regions. Active regions (shaded) correspond to thedorsal
attention networkanddefault mode network, respectively.

further probed through functional connectivity analysis. See
the Supplement for the analysis of more components.

7. Conclusion

We proposed an output interpretable VAE (oi-VAE) that can
be viewed as either a nonlinear group latent factor model
or as a structured VAE with disentangled latent embed-
dings. The approach combines deep generative models
with a sparsity-inducing prior that leads to our ability to ex-
tract meaningful notions of latent-to-observed interactions
when the observations are structured into groups. From
this interaction structure, we can infer correlated systems of
interaction amongst the observational groups. In our motion
capture and MEG experiments we demonstrated that the
resulting systems are physically meaningful. Importantly,
this interpretability does not appear to come at the cost of ex-
pressiveness, and in our group-structured case can actually
lead to improved generalization and generative processes.

In contrast to alternative approaches for nonlinear group
sparse factor analysis, leveraging the amortized inference
associated with VAEs leads to computational ef�ciencies.
We see even more signi�cant gains through our proposed
collapsed objective. The proximal updates we can apply
lead quickly to true sparsity.

Note that nothing fundamentally prevents applying this ar-
chitecture to other generative modelsdu jour. Extending this
work to generative adversarial models, for example, should
be straightforward (Goodfellow et al., 2014). Oy-vey!


