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Abstract
Clinical prognostic models derived from large-
scale healthcare data can inform critical diagnos-
tic and therapeutic decisions. To enable off-the-
shelf usage of machine learning (ML) in prog-
nostic research, we developed AUTOPROGNOSIS:
a system for automating the design of predic-
tive modeling pipelines tailored for clinical prog-
nosis. AUTOPROGNOSIS optimizes ensembles of
pipeline configurations efficiently using a novel
batched Bayesian optimization (BO) algorithm
that learns a low-dimensional decomposition of
the pipelines’ high-dimensional hyperparameter
space in concurrence with the BO procedure.
This is achieved by modeling the pipelines’ per-
formances as a black-box function with a Gaus-
sian process prior, and modeling the “similari-
ties” between the pipelines’ baseline algorithms
via a sparse additive kernel with a Dirichlet prior.
Meta-learning is used to warmstart BO with ex-
ternal data from “similar” patient cohorts by cali-
brating the priors using an algorithm that mimics
the empirical Bayes method. The system auto-
matically explains its predictions by presenting
the clinicians with logical association rules that
link patients’ features to predicted risk strata. We
demonstrate the utility of AUTOPROGNOSIS using
9 major patient cohorts representing various as-
pects of cardiovascular patient care.

1. Introduction
In clinical medicine, prognosis refers to the risk of future
health outcomes in patients with given features. Prognos-
tic research aims at building actionable predictive models
that can inform clinicians about future course of patients’
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clinical conditions in order to guide screening and thera-
peutic decisions. With the recent abundance of data link-
ages, electronic health records, and bio-repositories, clini-
cal researchers have become aware that the value conferred
by big, heterogeneous clinical data can only be realized
with prognostic models based on flexible machine learn-
ing (ML) approaches. There is, however, a concerning gap
between the potential and actual utilization of ML in prog-
nostic research; the reason being that clinicians with no ex-
pertise in data science find it hard to manually design and
tune ML pipelines (Luo et al., 2017).

To fill this gap, we developed AUTOPROGNOSIS, an auto-
mated ML (AutoML) framework tailored for clinical prog-
nostic modeling. AUTOPROGNOSIS takes as an input data
from a patient cohort, and uses such data to automatically
configure ML pipelines. Every ML pipeline comprises all
stages of prognostic modeling: missing data imputation,
feature preprocessing, prediction, and calibration. The sys-
tem handles different types of clinical data, including lon-
gitudinal and survival (time-to-event) data, and automati-
cally explains its predictions to the clinicians via an “inter-
preter” module which outputs clinically interpretable asso-
ciations between patients’ features and predicted risk strata.
An overview of the system is provided in Figure 1.

The core component of AUTOPROGNOSIS is an algorithm
for configuring ML pipelines using Bayesian optimization
(BO) (Snoek et al., 2012). Our BO algorithm models the
pipelines’ performances as a black-box function, the input
to which is a “pipeline configuration”, i.e. a selection of
algorithms and hyperparameter settings, and the output of
which is the performance (predictive accuracy) achieved
by such a configuration. We implement BO with a Gaus-
sian process (GP) prior on the black-box function. To deal
with the high-dimensionality of the pipeline configuration
space, we capitalize on the fact that for a given dataset,
the performance of one ML algorithm may not be cor-
related with that of another algorithm. For instance, it
may be the case that the observed empirical performance
of logistic regression on a given dataset does not tell us
much information about how a neural network would per-
form on the same dataset. In such a case, both algorithms
should not share the same GP prior, but should rather be
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Figure 1. Illustration for exemplary outputs of AUTOPROGNOSIS.

modeled independently. Our BO learns such a decompo-
sition of algorithms from data in order to break down the
high-dimensional optimization problem into a set of lower-
dimensional sub-problems. We model the decomposition
of algorithms via an additive kernel with a Dirichlet prior
on its structure, and learn the decomposition from data in
concurrence with the BO iterations. We also propose a
batched (parallelized) version of the BO procedure, along
with a computationally efficient algorithm for maximizing
the BO acquisition function.

AUTOPROGNOSIS follows a principled Bayesian approach
in all of its components. The system implements post-hoc
construction of pipeline ensembles via Bayesian model av-
eraging, and implements a meta-learning algorithm that
utilizes data from external cohorts of “similar” patients us-
ing an empirical Bayes method. In order to resolve the ten-
sion between accuracy and interpretability, which is crucial
for clinical decision-making (Cabitza et al., 2017), the sys-
tem presents the clinicians with a rule-based approximation
for the learned ML pipeline by mining for logical associa-
tions between patients’ features and the model’s predicted
risk strata using a Bayesian associative classifier (Agrawal
et al., 1993; Kruschke, 2008).

We conclude the paper by conducting a set of experiments
on multiple patient cohorts representing various aspects
of cardiovascular patient care, and show that prognostic
models learned by AUTOPROGNOSIS outperform widely
used clinical risk scores and existing AutoML frameworks.

Related work: To the best of our knowledge, none of the
existing AutoML frameworks, such as AUTO-WEKA (Kot-
thoff et al., 2016), AUTO-SKLEARN (Feurer et al., 2015), and
TPOT (Olson & Moore, 2016) use principled GP-based BO
to configure ML pipelines. All of the existing frameworks
model the sparsity of the pipelines’ hyperparameter space
via frequentist tree-based structures. Both AUTO-WEKA and
AUTO-SKLEARN use BO, but through tree-based heuristics,
such as random forest models and tree Parzen estimators,

whereas TPOT uses a tree-based genetic programming al-
gorithm. Previous works have refrained from using prin-
cipled GP-based BO because of its statistical and com-
putational complexity in high-dimensional hyperparameter
spaces. Our algorithm makes principled, high-dimensional
GP-based BO possible by learning a sparse additive ker-
nel decomposition for the GP prior. This approach confers
many advantages as it captures the uncertainty about the
sparsity structure of the GP prior, and allows for principled
approaches for (Bayesian) meta-learning and ensemble
construction that are organically connected to the BO pro-
cedure. In Section 5, we compare the performance of AU-
TOPROGNOSIS with that of AUTO-WEKA, AUTO-SKLEARN,
and TPOT, demonstrating the superiority of our algorithm.

Various previous works have addressed the problem of
high-dimensional GP-based BO. (Wang et al., 2013) identi-
fies a low-dimensional effective subspace for the black-box
function via random embedding. However, in the AutoML
setup, this approach cannot incorporate our prior knowl-
edge about dependencies between the different hyperpa-
rameters (we know the sets of hyperparameters that are “ac-
tivated” upon selecting an algorithm (Hutter et al., 2011)).
This prior knowledge was captured by the Arc-kernel pro-
posed in (Swersky et al., 2014), and similarly in (Jenatton
et al., 2017), where a BO algorithm for domains with tree-
structured dependencies was proposed. Unfortunately, both
methods require full prior knowledge of the dependencies
between the hyperparameters, and hence cannot be used
when jointly configuring hyperparameters across multiple
algorithms, since the correlations of the performances of
different algorithms are not known a priori. (Bergstra et al.,
2011) proposed a naı̈ve approach that defines an indepen-
dent GP for every set of hyperparameters that belong to the
same algorithm. Since it does not share any information be-
tween the different algorithms, this approach would require
trying all combinations of algorithms in a pipeline exhaus-
tively. (In our system, there are 4,800 possible pipelines.)
Our model solves the problems above via a data-driven
kernel decomposition, through which only relevant groups
of hyperparameters share a common GP prior, thereby bal-
ancing the trade-off between “information sharing” among
hyperparameters and statistical efficiency.

2. AUTOPROGNOSIS: A Practical System for
Automated Clinical Prognostic Modeling

Consider a dataset D = {(xi, yi)}ni=1 for a cohort of n pa-
tients, with xi being patient i’s features, and yi being the
patient’s clinical endpoint. AUTOPROGNOSIS takes D as an
input, and outputs an automatically configured prognostic
model which predicts the patients’ risks, along with “ex-
planations” for the predicted risk strata. This Section pro-
vides an overview of the components of AUTOPROGNOSIS;
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Figure 2. A schematic depiction of AUTOPROGNOSIS. Every ML pipeline comprises imputation, feature processing, prediction, and
calibration algorithms. The ensemble construction and interpreter modules are included in the system as post-processing steps.

a schematic depiction of the system is shown in Figure 2.

The core component of AUTOPROGNOSIS is an algorithm
that automatically configures ML pipelines, where every
pipeline comprises algorithms for missing data imputation
(�), feature preprocessing (♣), prediction (•), and calibra-
tion (⋆). Table 1 lists the baseline algorithms adopted by
the system in all the stages of a pipeline. The imputation
and calibration stages are particularly important for clinical
prognostic modeling (Blaha, 2016), and are not supported
in existing AutoML frameworks. The total number of hy-
perparameters in AUTOPROGNOSIS is 106, which is less than
those of AUTO-WEKA (786) and AUTO-SKLEARN (110). The
pipeline configuration algorithm uses Bayesian optimiza-
tion to estimate the performance of different pipeline con-
figurations in a scalable fashion by learning a structured
kernel decomposition that identifies algorithms with cor-
related performance. Details of the Bayesian optimization
algorithm are provided in Sections 3 and 5.

In order to cope with the diverse nature of clinical data and
health outcomes, AUTOPROGNOSIS pipelines are enriched
with three modes of operation: (a) classification mode, (b)
temporal mode, and (c) survival mode. The classification
mode handles datasets with binary clinical outcomes (Yoon
et al., 2017). In this mode, the baseline predictive mod-
els include all algorithms in the scikit-learn library
(Pedregosa et al., 2011), in addition to other powerful al-
gorithms, such as XGBoost (Chen & Guestrin, 2016). The
temporal mode handles longitudinal and time series data
(Alaa et al., 2017) by applying the classification algorithms
above on data residing in a sliding window within the time
series, which we parametrize by the sequence time (Hripc-
sak et al., 2015). The survival mode handles time-to-event
data, and involves all the classification algorithms above, in
addition to survival models such as Cox proportional haz-
ards model and survival forests (Ishwaran et al., 2008), and
models for multiple competing risks (Fine & Gray, 1999).

The meta-learning module is a pre-processing step that
is used to warmstart BO using data from external cohorts,

whereas the ensemble construction and interpreter mod-
ules post-process the BO outputs. All of the three module
run with a relatively low computational burden. Details of
the three modules are provided in Sections 4 and 5.

3. Pipeline Configuration via Bayesian
Optimization with Structured Kernels

Let (Ad,Af ,Ap,Ac) be the sets of all missing data im-
putation, feature processing, prediction, and calibration al-
gorithms considered in AUTOPROGNOSIS (Table 1), respec-
tively. A pipeline P is a tuple of the form:�� ��P = (Ad, Af , Ap, Ac)

where Av ∈ Av, ∀v ∈ {d, f, p, c}. The space of all pos-
sible pipelines is given by P = Ad ×Af ×Ap ×Ac. Thus,
a pipeline is a selection of algorithms from the elements
of Table 1. An exemplary pipeline can be specified as fol-
lows: P = {MICE,PCA,Random Forest, Sigmoid}. The to-
tal number of pipelines in AUTOPROGNOSIS is |P| = 4, 800.

The specification of a pipeline configuration is completed
by determining the hyperparameters of its constituting al-
gorithms. The space of hyperparameter configurations for
a pipeline is Θ = Θd×Θf ×Θp×Θc, where Θv = ∪aΘ

a
v ,

for v ∈ {d, f, p, c}, with Θa
v being the space of hyperpa-

rameters associated with the ath algorithm in Av. Thus,
a pipeline configuration Pθ ∈ PΘ is a selection of algo-
rithms P ∈ P , and hyperparameter settings θ ∈ Θ; PΘ is
the space of all possible pipeline configurations.

3.1. The Pipeline Selection & Configuration Problem

The main goal of AUTOPROGNOSIS is to identify the best
pipeline configuration P ∗

θ∗ ∈ PΘ for a given patient cohort
D via J-fold cross-validation as follows:

P ∗
θ∗ ∈ argmaxPθ∈PΘ

1
J

∑J
i=1 L(Pθ;D(i)

train,D
(i)
valid), (1)

where L is a given accuracy metric (AUC-ROC, c-index,
etc), D(i)

train and D(i)
valid are training and validation splits of D
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Pipeline Stage Algorithms
� Data Imputation � missForest (2) � Median (0) � Most-frequent (0) � Mean (0) � EM (1)

� Matrix completion (2) � MICE (1) � None (0)
♣ Feature process. ♣ Feature agglo. (4) ♣ Kernel PCA (5) ♣ Polynomial (3) ♣ Fast ICA (4) ♣ PCA (2)

♣ R. kitchen sinks (2) ♣ Nystroem (5) ♣ Linear SVM (3) ♣ Select Rates (3) ♣ None (0)
• Prediction • Bernoulli NB (2) • AdaBoost (4) • Decision Tree (4) • Grad. Boost. (6) • LDA (4)

• Gaussian NB (0) • XGBoost (5) • Extr. R. Trees (5) • Light GBM (5) • L. SVM (4)
• Multinomial NB (2) • R. Forest (5) • Neural Net. (5) • Log. Reg. (0) • GP (3)
• Ridge Class. (1) • Bagging (4) • k-NN (1) • Surv. Forest (5) • Cox Reg. (0)

⋆ Calibration ⋆ Sigmoid (0) ⋆ Isotonic (0) ⋆ None (0)

Table 1. List of algorithms included in every stage of the pipeline. Numbers in brackets correspond to the number of hyperparameters.

in the ith fold. The optimization problem in (1) is dubbed
the Pipeline Selection and Configuration Problem (PSCP).
The PSCP can be thought of as a generalization for the
combined algorithm selection and hyperparameter opti-
mization (CASH) problem in (Feurer et al., 2015; Kotthoff
et al., 2016), which maximizes an objective with respect to
selections of single algorithms from the set Ap, rather than
selections of full-fledged pipelines from PΘ.

3.2. Solving the PSCP via Bayesian Optimization

The objective in (1) has no analytic form, and hence we
treat the PSCP as a black-box optimization problem. In
particular, we assume that 1

J

∑J
i=1 L(Pθ;D(i)

train,D
(i)
valid) is a

noisy version of a black-box function f : Λ → R, were
Λ = Θ× P, and use BO to search for the pipeline con-
figuration P ∗

θ∗ that maximizes the black-box function f(.)
(Snoek et al., 2012). The BO algorithm specifies a Gaus-
sian process (GP) prior on f(.) as follows:

f ∼ GP(µ(Λ), k(Λ,Λ′)), (2)

where µ(Λ) is the mean function, encoding the expected
performance of different pipeline, and k(Λ,Λ′) is the co-
variance kernel (Rasmussen & Williams, 2006), encoding
the similarity between the different pipelines.

3.3. Bayesian Optimization via Structured Kernels

The function f is defined over the D-dimensional space Λ,
where D = dim(Λ) is given by

D = dim(P) +
∑

v∈{d,f,p,c}
∑

a∈Av
dim(Θa

v). (3)

In AUTOPROGNOSIS, the domain Λ is high-dimensional,
with D = 106. (The dimensionality of Λ can be calculated
by summing up the number of pipeline stages and the num-
ber of hyperparameters in Table 1.) High-dimensionality
renders standard GP-based BO infeasible as both the sam-
ple complexity of nonparametric estimation and the com-
putational complexity of maximizing the acquisition func-
tion are exponential in D (Györfi et al., 2006; Kandasamy

et al., 2015). For this reason, existing AutoML frameworks
have refrained from using GP priors, and relied instead on
scalable tree-based heuristics (Feurer et al., 2015; Kotthoff
et al., 2016). Despite its superior performance, recent em-
pirical findings have shown that plain-vanilla GP-based BO
is feasible only for problems with D ≤ 10 (Wang et al.,
2013). Thus, the deployment of GP-based BO has been
limited to hyperparameter optimization for single, pre-
defined ML models via tools such as Google’s Visier
and HyperTune (Golovin et al., 2017). AUTOPROGNOSIS

overcomes this challenge by leveraging the structure of the
PSCP problem as we show in what follows.

3.3.1. THE STRUCTURE OF THE PSCP PROBLEM

The key idea of our BO algorithm is that for a given dataset,
the performance of a given group of algorithms may not
be informative of the performance of another group of
algorithms. Since the kernel k(Λ,Λ′) encodes the corre-
lations between the performances of the different pipeline
configurations, the underlying “informativeness” structure
that relates the different hyperparameters can be expressed
via the following sparse additive kernel decomposition:

k(Λ,Λ′) =
∑M

m=1km(Λ(m),Λ′(m)
), (4)

where Λ(m) ∈ Λ(m), ∀m ∈ {1, . . .,M}, with {Λ(m)}m being
a set of disjoint subspaces of Λ. (That is, ∪mΛ(m) = Λ,
and Λ(m) ∩ Λ(m′) = ∅.) The subspaces are assigned mu-
tually exclusive subsets of the dimensions of Λ, so that∑

mdim(Λ(m)) = D. The structure of the kernel in (4) is
unknown a priori, and needs to be learned from data. The
kernel decomposition breaks down f as follows:

f(Λ) =
∑M

m=1fm(Λ(m)). (5)

The additively sparse structure in (4) gives rise to a statis-
tically efficient BO procedure. That is, if f is γ-smooth,
then our additive kernels reduce sample complexity from
O(n

−γ
2γ+D ) to O(n

−γ
2γ+Dm ), where Dm is the maximum

number of dimensions in any subspace (Raskutti et al.,
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Figure 3. Illustration for a exemplary subspace decomposition {Λ(m)}3m=1.

2009; Yang et al., 2015). (Similar improvements hold for
the cumulative regret (Kandasamy et al., 2015).)

Each subspace Λ(m) ⊂ Λ contains the hyperparameters of
algorithms with correlated performances, whereas algo-
rithms residing in two different subspaces Λ(m) and Λ(m′)

have uncorrelated performances. Since a hyperparameter
in Θ is only relevant to f(.) when the corresponding algo-
rithm in P is selected (Hutter et al., 2009), then the decom-
position {Λ(m)}m must ensure that all the hyperparameters
of the same algorithm are bundled together in the same sub-
space. This a priori knowledge about the “conditional rele-
vance” of the dimensions of Λ makes it easier to learn the
kernel decomposition from data. Figure 3 provides an il-
lustration for an exemplary subspace decomposition for the
hyperparameters of a set of prediction, feature processing
and imputation algorithms. Since the structured kernel in
(4) is not fully specified a priori, we propose an algorithm
to learn it from the data in the next Section.

3.3.2. STRUCTURED KERNEL LEARNING

AUTOPROGNOSIS uses a Bayesian approach to learn the
subspace decomposition {Λ(m)}m in concurrence with the
BO procedure, where the following Dirichlet-Multinomial
prior is placed on the structured kernel (Wang et al., 2017):

α ∼ Dirichlet(M,γ), zv,a ∼ Multi(α), (6)

∀a ∈ Av, v ∈ {d, f, p, c}, where γ = {γm}m is the parame-
ter of a Dirichlet prior, α = {αm}m are the Multinomial
mixing proportions, and zv,a is an indicator variable that
determines the subspace to which the ath algorithm in Av

belongs. The kernel decomposition in (4) is learned by up-
dating the posterior distribution of {Λ(m)}m in every iter-
ation of the BO procedure. The posterior distribution over

the variables {zv,a}v,a and α is given by:

P(z, α |Ht, γ) ∝ P(Ht | z)P(z |α)P(α, γ), (7)

where z = {zv,a : ∀a ∈ Av,∀v ∈ {d, f, p, c}}, and Ht is the
history of evaluations of the black-box function up to iter-
ation t. Since the variables {zv,a}v,a are sufficient statis-
tics for the subspace decomposition, the posterior over
{Λ(m)}m is fully specified by (7) marginalized over α,
which can be evaluated using Gibbs sampling as follows:

P(zv,a = m | z/{zv,a},Ht) ∝ P(Ht | z) (|A(m)
v |+ γm),

where P(Ht | z) is the GP likelihood under the kernel in-
duced by z. The Gibbs sampler is implemented via the
Gumble-Max trick (Maddison et al., 2014) as follows:

ωm
i.i.d∼ Gumbel(0, 1), m ∈ {1, . . .,M}, (8)

zv,a∼ argmaxm P(Ht | z, zv,a = m)(|A(m)
v |+ γm) + ωm.

3.3.3. EXPLORATION VIA DIVERSE BATCH SELECTION

The BO procedure solves the PSCP problem by exploring
the performances of a sequence of pipelines {P 1

θ1 , P
2
θ2 , . . .}

until it (hopefully) converges to the optimal pipeline P ∗
θ∗ .

In every iteration t, BO picks a pipeline to evaluate using
an acquisition function A(Pθ;Ht) that balances between ex-
ploration and exploitation. AUTOPROGNOSIS deploys a 2-
step batched (parallelized) exploration scheme that picks B
pipelines for evaluation at every iteration t as follows:�



�
	Step 1: Select the frequentist kernel decomposition {Λ̂(m)}m

that maximizes the posterior P(z |Ht).�

�

�

�
Step 2: Select the B pipelines {P b

θ }Bb=1 with the highest val-
ues for the acquisition function {A(P b

θ ;Ht)}Bb=1, such that
each pipeline P b

θ , b ∈ {1, . . ., B}, involves a distinct pre-
diction algorithm from a distinct subspace in {Λ̂(m)}m.
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We use the well-known Upper Confidence Bound (UCB)
as acquisition function (Snoek et al., 2012). The decompo-
sition in (5) offers an exponential speed up in the overall
computational complexity of Step 2 since the UCB ac-
quisition function is maximized separately for every (low-
dimensional) component fm; this reduces the number of
computations from to O(n−D) to O(n−Dm). The batched
implementation is advantageous since sequential evalua-
tions of f(.) are time consuming as it involves training the
selected ML algorithms.

Step 2 in the algorithm above encourages exploration as
follows. In every iteration t, we select a “diverse” batch
of pipelines for which every pipeline is representative of a
distinct subspace in {Λ̂(m)}m. The batch selection scheme
above encourages diverse exploration without the need for
sampling pipelines via a determinantal point process with
an exponential complexity as in (Kathuria et al., 2016;
Nikolov, 2015; Wang et al., 2017). We also devise an
efficient backward induction algorithm that exploits the
structure of a pipeline to maximize the acquisition function
efficiently. (Details are provided in the supplement.)

4. Ensemble Construction & Meta-learning
In this Section, we discuss the details of the ensemble Con-
struction and meta-learning modules; details of the inter-
preter module are provided in the next Section.

4.1. Post-hoc Ensemble Construction

The frequentist approach to pipeline configuration is to
pick the pipeline with the best observed performance from
the set {P 1

θ1 , . . ., P
t
θt} explored by the BO algorithm in Sec-

tion 3.3.3. However, such an approach does not capture the
uncertainty in the pipelines’ performances, and wastefully
throws away t− 1 of the evaluated pipelines. On the con-
trary, AUTOPROGNOSIS makes use of all such pipelines via
post-hoc Bayesian model averaging, where it creates an
ensemble of weighted pipelines

∑
i wiP

i
θi . Model averag-

ing is particularly useful in cohorts with small sample sizes,
where large uncertainty about the pipelines’ performances
would render frequentist solutions unreliable.

The ensemble weight wi = P(P i∗

θi
∗ = P i

θi |Ht) is the poste-
rior probability of P i

θ being the best performing pipeline:

wi=
∑

z P(P
i∗

θi
∗ = P i

θi | z,Ht) · P(z |Ht), (9)

where i∗ is the pipeline configuration with the best (true)
generalization performance. The weights in (9) are com-
puted by Monte Carlo sampling of kernel decompositions
via the posterior P(z |Ht), and then sampling the pipelines’
performances from the posterior f | z,Ht. Note that, un-
like the ensemble builder of AUTOSKLEARN (Feurer et al.,
2015), the weights in (9) account for correlations between

different pipelines, and hence it penalizes combinations of
“similar” pipelines even if they are performing well. More-
over, our post-hoc approach allows building ensembles
without requiring extra hyperparameters: in AUTOWEKA,
ensemble construction requires a 5-fold increase in the
number of hyperparameters (Kotthoff et al., 2016).

4.2. Meta-learning via Empirical Bayes

The Bayesian model used for solving the PSCP problem in
Section 3 can be summarized as follows:

f ∼ GP(µ, k | z), z ∼ Multi(α), α ∼ Dirichlet(M,γ).

The speed of convergence of BO depends on the calibra-
tion of the prior’s hyperparameters (M,γ, µ, k). An ag-
nostic prior would require many iterations to converge to
satisfactory pipeline configurations. To warmstart the BO
procedure for a new cohort D, we incorporate prior infor-
mation obtained from previous runs of AUTOPROGNOSIS on
a repository of K complementary cohorts {D1, . . .,DK}.
Our meta-learning approach combines {H1

t1 , . . .,H
M
tK} (op-

timizer runs on the K complementary cohorts) with the
data in D to obtain an empirical Bayes estimate (M̂, γ̂, µ̂, k̂).

Our approach to meta-learning works as follows. For ev-
ery complementary dataset Dk, we create a set of 55 meta-
features M(Dk), 40 of which are statistical meta-features
(e.g. number of features, size of data, class imbalance, etc),
and the remaining 15 are clinical meta-features (e.g. lab
tests, vital signs, ICD-10 codes, diagnoses, etc). For every
complementary dataset in Dj , we optimize the hyperparam-
eters (M̂j , γ̂j , µ̂j , k̂j) via marginal likelihood maximization.
For a new cohort D, we compute a set of weights {ηj}j ,
with ηj = ℓj/

∑
k ℓk, where ℓj = ∥M(D)−M(Dj)∥1, and

calibrate its prior (M,γ, µ, k) by setting it to be the average
of the estimates (M̂j , γ̂j , µ̂j , k̂j), weighted by {ηj}j .

Existing methods for meta-learning focus only on identify-
ing well-performing pipelines from other datasets, and use
them for initializing the optimization procedure (Brazdil
et al., 2008; Feurer et al., 2015). Conceptualizing meta-
learning as an empirical Bayes calibration procedure al-
lows the transfer of a much richer set of information across
datasets. Through the method described above, AUTO-
PROGNOSIS can import information on the smoothness of
the black-box function (k), the similarities among base-
line algorithms (γ,M), and the expected pipelines’ perfor-
mances (µ). This improves not only the initialization of the
BO procedure, but also the mechanism by which it explores
the pipelines’ design space.

5. Evaluation of AUTOPROGNOSIS

In this section, we assess the ability of AUTOPROGNOSIS to
automatically make the right prognostic modeling choices
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MAGGIC UK Biobank UNOS-I UNOS-II SEER-I SEER-II SEER-III SEER-IV SEER-V SEER-VI

AUTOPROGNOSIS

vanilla 0.76 ± .004 0.71 ± .004 0.66 ± .002 0.65 ± .001 0.68 ± .002 0.66 ± .005 0.61 ± .001 0.69 ± .002 0.64 ± .002 0.65 ± .003

best predictor Grad. Boost XGBoost AdaBoost Rand. Forest Cox PH Cox PH S. Forest Cox PH S. Forest Cox PH

+ ensembles 0.77 ± .002 0.73 ± .003 0.66 ± .001 0.66 ± .001 0.68 ± .002 0.67 ± .003 0.62 ± .001 0.69 ± .002 0.66 ± .002 0.65 ± .002

+ meta-learning 0.77 ± .004 0.72 ± .004 0.65 ± .002 0.65 ± .002 0.72 ± .003 0.68 ± .003 0.64 ± .001 0.71 ± .003 0.69 ± .003 0.66 ± .002

full-fledged 0.78 ± .004 0.74 ± .003 0.66 ± .001 0.66 ± .001 0.73 ± .003 0.69 ± .003 0.64 ± .001 0.72 ± .002 0.70 ± .003 0.67 ± .002

AUTO-SKLEARN 0.76 ± .003 0.72 ± .004 0.64 ± .002 0.63 ± .002 0.67 ± .002 0.51 ± .005 0.60 ± .001 0.65 ± .004 0.64 ± .002 0.61 ± .003

AUTO-WEKA 0.75 ± .003 0.72 ± .005 0.65 ± .001 0.62 ± .002 0.66 ± .002 0.54 ± .004 0.59 ± .002 0.68 ± .003 0.63 ± .004 0.63 ± .002

TPOT 0.74 ± .006 0.68 ± .005 0.63 ± .003 0.61 ± .003 0.64 ± .003 0.59 ± .003 0.57 ± .002 0.67 ± .004 0.62 ± .005 0.61 ± .003

Clinical Score 0.70 ± .007 0.70 ± .003 0.62 ± .001 0.56 ± .001 — — — — — —

Cox PH 0.75 ± .005 0.71 ± 0.002 0.63 ± .001 0.59 ± .001 0.71 ± .003 0.65 ± .004 0.62 ± .002 0.72 ± .003 0.68 ± .003 0.67 ± .002

Table 2. Performance of the different prognostic models in terms of the AUC-ROC with 5-fold cross-validation. Bold numbers corre-
spond to the best result. The “best predictor” row lists the prediction algorithms picked by vanilla AUTOPROGNOSIS.

when confronted with a variety of clinical datasets with dif-
ferent meta-features.

5.1. Cardiovascular Disease Cohorts

We conducted experiments on 9 cardiovascular cohorts that
correspond to the following aspects of patient care:

• Preventive care: We considered a major cohort for pre-
ventive cardiology: the Meta-analysis Global Group in
Chronic heart failure database (MAGGIC), which holds
data for 46,817 patients gathered from multiple clinical
studies (Wong et al., 2014).

• Heart transplant wait-list management: We extracted
data from the United Network for Organ Sharing (UNOS)
database, which holds information on all heart transplants
conducted in the US between the years 1985 to 2015. Co-
hort UNOS-I is a pre-transplant population of 36,329 car-
diac patients who were enrolled in a transplant wait-list.

• Post-transplant follow-up: Cohort UNOS-II is a post-
transplant population of 60,400 patients in the US who un-
derwent a transplant between the years 1985 to 2015.

• Cardiovascular comorbidities: We extracted 6 cohorts
from the Surveillance, Epidemiology, and End Results
(SEER) cancer registries, which cover approximately 28%
of the US population (Yoo & Coughlin, 2018). We pre-
dict cardiac deaths in patients diagnosed with breast cancer
(SEER-I), colorectal cancer (SEER-II), Leukemia (SEER-
III), respiratory cancers (SEER-IV), digestive system can-
cer (SEER-V), and urinary system cancer (SEER-VI).

The first three groups of datasets (colored in red) were col-
lected for cohorts of patients diagnosed with (or at risk for)
cardiac diseases, and so they shared a set of meta-features,
including a large number of cardiac risk factors, low cen-
soring rate, and moderate class imbalance. The last group
of datasets (colored in blue) was collected for cohorts of

cancer patients for whom cardiac diseases are potential co-
morbidities. These datasets shared a different set of meta-
features, including a small number of cardiac risk factors,
high censoring rate, and severe class imbalance. Our exper-
iments will demonstrate the ability of AUTOPROGNOSIS to
adapt its modeling choices to these different clinical setups.

5.2. Performance of AUTOPROGNOSIS

Table 2 shows the performance of various competing prog-
nostic modeling approaches evaluated in terms of the area
under receiver operating characteristic curve (AUC-ROC)
with 5-fold cross-validation1. We compared the perfor-
mance of AUTOPROGNOSIS with the clinical risk scores used
for predicting prognosis in each cohort (MAGGIC score in
MAGGIC and UNOS-I (Wong et al., 2014) and IMPACT
score in UNOS-II (Weiss et al., 2011)). We also compared
with various AutoML frameworks, including AUTO-WEKA

(Kotthoff et al., 2016), AUTO-SKLEARN (Feurer et al., 2015),
and TPOT (Olson & Moore, 2016). Finally, we compared
with a standard Cox proportional hazards (Cox PH) model,
which is the model most commonly used in clinical prog-
nostic research.

Table 2 demonstrates the superiority of AUTOPROGNOSIS to
all the competing models on all the cohorts under consid-
eration. This reflects the robustness of our system since
the 9 cohorts had very different characteristics. In many
experiments, the learned kernel decomposition reflected an
intuitive clustering of algorithms by the similarity of their
structure. For instance, Figure 4 shows one subspace in
the frequentist decomposition learned by AUTOPROGNOSIS

over the BO iterations for the MAGGIC cohorts. We can
see that all ensemble methods in the imputation and pre-
diction stages that use decision-trees as their base learners
were lumped together in the same subspace.

1All algorithms were allowed to run for a maximum of 10
hours to ensure a fair comparison.
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Figure 4. The learned kernel decomposition for MAGGIC.

5.3. The “Interpreter”

Albeit accurate, models built by AUTOPROGNOSIS would
generally be hard for a clinician to “interpret”. To address
this issue, AUTOPROGNOSIS deploys an interpreter module
(see Figure 2) that takes as an input the learned model for
a given cohort, in addition to a set of actionable risk strata
R, and outputs an “explanation” for its predictions in terms
of a set of logical association rules of the form:

C1 ∧ C2 ∧ . . . ∧ Cl(r) =⇒ r, ∀r ∈ R, (10)

where {C1, . . ., Cl(r)} is a set of Boolean conditions asso-
ciated with risk stratum r. The association rules are ob-
tained via a Bayesian associative classifier (Ma & Liu,
1998; Agrawal et al., 1993; Kruschke, 2008; Luo, 2016),
with a prior over association rules, and a posterior com-
puted based on target labels that correspond to the outputs
of the learned model discretized via the strata in R. The
Bayesian approach allows incorporating prior knowledge
(from clinical literature) about “likely” association rules.

We report one example for an explanation provided by the
interpreter module based on our experiments on the MAG-
GIC cohort. For this cohort, the standard risk score exhib-
ited a low AUC-ROC for patients with Type-2 Diabetes. On
the contrary, AUTOPROGNOSIS performed almost equally
well in the two subgroups. The interpreter provided an
explanation for the improved predictions through the fol-
lowing association rule:�� ��Diabetic ∧ Lipid-lowering ∧ (Age ≥ 40) =⇒ High risk

None of these risk factors were included in the standard
guidelines. That is, the interpreter indicates that a better
stratification, with new risk factors such the usage of lipid-
lowering drugs, is possible for diabetic patients. Clinicians
can use the interpreter as a data-driven hypothesis genera-
tor that prompts new risk factors and strata for subsequent
research.

5.4. Learning to Pick the Right Model and
AUTOPROGNOSIS as a Clairvoyant

We split up Table 2 into 2 groups of columns: group 1 (left)
contains cohorts obtained from cardiology studies, whereas
group 2 (right) contains cohorts obtained from cancer stud-
ies, with cardiac secondary outcomes. As mentioned ear-
lier, the two groups had different meta-features. We tracked
the modeling choices made by vanilla AUTOPROGNOSIS (no
ensembles or meta-learning) in both groups (“best predic-
tor” row in Table 2). For all datasets in group 2, AUTO-
PROGNOSIS decided that survival modeling (using Cox PH
model or survival forests) is the right model. This is be-
cause, with the high prevalence of censored time-to-event
data, survival models are more data-efficient than operat-
ing on binarized survival labels and removing patients lost
to follow-up. When given richer datasets with a large num-
ber of relevant features, low rates of censoring and mod-
erate imbalance (group 1), AUTOPROGNOSIS spent more it-
erations navigating ML classifiers, and learned that an al-
gorithm like AdaBoost is a better choice for a dataset like
UNOS-I. Such a (non-intuitive) choice would have not been
possibly identified by a clinical researcher; researchers typ-
ically use the Cox PH model, which on the UNOS-I cohort
provides an inferior performance.

Meta-learning was implemented via leave-one-dataset-out
validation: we run vanilla AUTOPROGNOSIS on all of the
9 cohorts, and then for every cohort, we use the other 9
cohorts as the complementary datasets used to implement
the meta-learning algorithm. Since the pool of comple-
mentary cohorts contained 5 datasets for cardiovascular
comorbidities, meta-learning was most useful for group 2
datasets as they all had very similar meta-features. With
meta-learning, AUTOPROGNOSIS had a strong prior on sur-
vival models for group 2 datasets, and hence it converges
quickly to a decision on using a survival model having ob-
served the dataset’s meta-features. Ensemble construction
was most useful for the MAGGIC and UNOS cohorts, since
those datasets had more complex hypotheses to learn.

Clinical researchers often ask the question: when should
I use machine learning for my prognostic study? The
answer depends on the nature of the dataset involved. As
we have see in Table 2, a simple Cox model may in some
cases be sufficient to issue accurate predictions. The meta-
learning module in AUTOPROGNOSIS can act as a clair-
voyant that tells whether ML models would add value
to a given prognostic study without even training any
model. That is, by looking at the “meta-learned” GP prior
calibrated by a new dataset’s meta-features, we can see
whether the prior assigns high scores to ML models com-
pared to a simple Cox model, and hence decide on whether
ML has gains to offer for such a dataset.
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