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Abstract
Regret bounds in online learning compare the
player’s performance to L∗, the optimal perfor-
mance in hindsight with a fixed strategy. Typi-
cally such bounds scale with the square root of
the time horizon T . The more refined concept of
first-order regret bound replaces this with a scal-
ing
√
L∗, which may be much smaller than

√
T .

It is well known that minor variants of standard
algorithms satisfy first-order regret bounds in the
full information and multi-armed bandit settings.
In a COLT 2017 open problem (Agarwal et al.,
2017), Agarwal, Krishnamurthy, Langford, Luo,
and Schapire raised the issue that existing tech-
niques do not seem sufficient to obtain first-order
regret bounds for the contextual bandit problem.
In the present paper, we resolve this open prob-
lem by presenting a new strategy based on aug-
menting the policy space.1

1 Introduction
The contextual bandit problem is an influential extension
of the classical multi-armed bandit. It can be described as
follows. Let K be the number of actions, E a set of experts
(or “policies”), T the time horizon, and denote ∆K = {x ∈
[0, 1]K :

∑K
i=1 x(i) = 1}. At each time step t = 1, . . . , T ,

• The player receives from each expert e ∈ E an “advice”
ξet ∈ ∆K .

• Using advices and previous feedbacks, the player se-
lects a probability distribution pt ∈ ∆K .
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• The adversary selects a loss function `t : [K]→ [0, 1].

• The player plays an action at ∈ [K] at random from pt
(and independently of the past).

• The player’s suffered loss is `t(at) ∈ [0, 1], which is
also the only feedback the player receives about the loss
function `t.

The player’s performance at the end of the T rounds is mea-
sured through the regret with respect to the best expert:

RT
def
= max

e∈E

{
E
[ T∑
t=1

`t(at)− 〈ξet , `t〉
]}

= max
e∈E

{
E
[ T∑
t=1

〈pt − ξet , `t〉
]}

. (1.1)

A landmark result by Auer et al. (2002) is that a regret
of order O(

√
TK log(|E|)) is achievable in this setting.

The general intuition captured by regret bounds is that the
player’s performance is equal to the best expert’s perfor-
mance up to a term of lower order. However the afore-
mentioned bound might fail to capture this intuition if
T � L∗T

def
= mine∈E E

∑T
t=1〈ξet , `t〉. It is thus natural to

ask whether one could obtain a stronger guarantee where T
is essentially replaced by L∗T . This question was posed as
a COLT 2017 open problem (Agarwal et al., 2017). Such
bounds are called first-order regret bounds, and they are
known to be possible with full information (Auer et al.,
2002), as well as in the multi-armed bandit setting (Allen-
berg et al., 2006) (see also (Foster et al., 2016) for a dif-
ferent proof) and the semi-bandit framework (Neu, 2015;
Lykouris et al., 2017). Our main contribution is a new
algorithm for contextual bandit, which we call MYGA (see
Section 2), and for which we prove the following first-order
regret bound, thus resolving the open problem.
Theorem 1.1. For any loss sequence such that
mine∈E E

∑T
t=1〈ξet , `t〉 ≤ L∗ one has that MYGA

with γ = Θ(η) and η = Θ
(

min
{

1
K ,
√

log(|E|+T )
KL∗

})
satisfies

RT ≤ O
(√

K log(|E|+ T )L∗ +K log(|E|+ T )
)
.

2 Algorithm Description
In this section we describe the MYGA algorithm.

https://arxiv.org/abs/1802.03386
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q =
(

0.2 0.1 0.2 0.1 0.1 0.1 0.05 0.05 0.04 0.03 0.03
)

T 3
0.02q =

(
0.2 0.1 0.2 0.1 0.1 0.1 0.05 0.05 0.04 0.03 0.03

)
T 3
0.03q =

(
0.224 0.112 0.224 0.1 0.1 0.1 0.05 0.05 0.04 0 0

)
T 3
0.04q =

(
0.24 0.12 0.24 0.1 0.1 0.1 0.05 0.05 0 0 0

)
T 3
0.05q =

(
0.28 0.14 0.28 0.1 0.1 0.1 0 0 0 0 0

)
T 3
0.1q =

(
0.4 0.2 0.4 0 0 0 0 0 0 0 0

)
T 3
0.2q =

(
0.4 0.2 0.4 0 0 0 0 0 0 0 0

)
T 3
0.5q =

(
0.4 0.2 0.4 0 0 0 0 0 0 0 0

)
Figure 1: An example of T ks with K = 11 arms and k = 3

2.1 Truncation

We introduce a truncation operator T ks that takes as input
an index k ∈ [K] and a threshold s ∈ [0, 12 ]. Then, treating
the first k arms as “majority arms” and the last K − k arms
as “minority arms,” T ks redistributes “multiplicatively” the
probability mass of all minority arms below threshold s to
the majority arms.

Definition 2.1. For k ∈ [K] and s ∈ (0, 12 ], the truncation
operator T ks : ∆K → ∆K is defined as follows. Given any
q ∈ ∆K , then we set T ks q(i) =

0, i > k and q(i) ≤ s;
q(i), i > k and q(i) > s;

q(i) ·
(
1 +

∑
j:j>k∧ q(j)≤s q(j)∑

j≤k q(j)

)
, i ≤ k.

Equivalently one can define T ks q(i) for the majority arms
i ≤ k with the following implicit formula:

T ks q(i) =
q(i)∑
j≤k q(j)

∑
j≤k

T ks q(j) . (2.1)

To see this it suffices to note that the amount of mass in the
majority arms is given by∑
j≤k

T ks q(j) = 1−
∑
j>k

T ks q(j) = 1−
∑

j:j>k∧ q(j)>s

q(j)

=
∑
j≤k

q(j) +
∑

j:j>k∧ q(j)≤s

q(j) .

If K = 2, then T 1
s q simply adds q(2) into q(1) if q(2) ≤ s.

For an example with K = 11, see Figure 1.

2.2 Informal description

MYGA is parameterized by two parameters: a classical learn-
ing rate η > 0, and a thresholding parameter γ ∈ 1

2T N =
{ 1
2T ,

2
2T ,

3
2T , . . . }. Also let S = (γ, 1/2] ∩ 1

2T N =
(γ, 1/2] ∩ { 1

2T ,
2
2T ,

3
2T , . . . }

At a high level, a key feature of MYGA is to introduce a set
of auxiliary experts, one for each s ∈ S. More precisely,
in each round t, after receiving expert advices {ξet }e∈E ,

MYGA calculates a distribution ξst ∈ ∆K for each s ∈ S.
Then, MYGA uses the standard exponential weight updates
on E′ = E ∪ S with learning rate η > 0, to calculate a
weight functionwt ∈ RE∪S+ —see (2.3). Then, it computes

• ζt ∈ ∆K , the weighted average of expert advices in E:

ζt =
1∑

e∈E wt(e)

∑
e∈E

wt(e) · ξet .

• qt ∈ ∆K , the weighted average of expert advices in E′:

qt =
1

‖wt‖1

∑
e∈E′

wt(e) · ξet .

Using these information, MYGA calculates the probability
distribution pt ∈ ∆K from which the arm is played at
round t.

Let us now explain how pt and ξst , s ∈ S are defined. First
we remark that in the contextual bandit setting, the arm in-
dex has no real meaning since in each round t we can per-
mute the arms by some πt : [K] → [K] and permute the
expert’s advices and the loss vector by the same πt. For
this reason, throughout this paper, we shall assume

∀t ∈ [T ] : ζt(1) ≥ ζt(2) ≥ · · · ζt(K) .

Let us define the “pivot” index kt = min{i ∈ [K] :∑
j≤i ζt(j) ≥ 1/2}. Then, in order to perform truncation,

MYGA views the first kt arms as “majority arms” and the last
K − kt arms as “minority arms” of the current round t. At
a high level we will have:

• the distribution to play from is pt = T ktγ qt.

• each auxiliary expert s ∈ S is defined by ξst = T kts qt.

We now give a more precise description in Algorithm 1.

3 Preliminaries
Definition 3.1. For analysis purpose, let us define the trun-
cated loss ¯̀

t(i)
def
= `t(i)1{pt(i) > 0}, so that

Eat
[
〈˜̀t, pt〉] = 〈¯̀t, pt〉 = 〈`t, pt〉 .

We next derive two lemmas that will prove useful to isolate
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Algorithm 1 MYGA (Make the minoritY Great Again)

Input: learning rate η > 0, threshold parameter γ ∈ 1
2T N

1: S ← (γ, 1/2] ∩ 1
2T N and w1 ← (1, . . . , 1) ∈ RE∪S

2: for t = 1 to T do
3: receive advices ξet ∈ ∆K from each expert e ∈ E
4: weighted average ζt ←

∑
e∈E wt(e)ξ

e
t∑

e∈E wt(e)
∈ ∆K

5: assume ζt(1) ≥ ζt(2) ≥ · · · ζt(K) wlog. by permuting the arms
6: kt ← min{i ∈ [K] :

∑
j≤i ζt(j) ≥ 1/2} � the first kt arms are majority arms

7: find qt ∈ ∆K such that � qt can be found in time O(K|S|) = O(KT ), see Lemma 6.1

qt = 1∑
e∈E wt(e)+

∑
s∈S wt(s)

(∑
e∈E wt(e)ξ

e
t +

∑
s∈S wt(s)T kts qt

)
. (2.2)

8: ξst ← T kts qt for every s ∈ S and pt ← T ktγ qt
9: draw an arm at ∈ [K] from probability distribution pt and receive feedback `t(at)

10: compute loss estimator ˜̀t ∈ RK+ as ˜̀t(i) = `t(i)
pt(i)

1i=at

11: update the exponential weights for any e ∈ E ∪ S:

wt+1(e) = exp
(
− η

∑t
r=1〈ξer , ˜̀r〉) . (2.3)

12: end for

the properties of the truncation operator T ks that are needed
to obtain a first-order regret bound.
Lemma 3.2. Let γ ∈ [0, 1] and assume that for all i ∈ [K],
(1− cKγ)pt(i) ≤ qt(i) for some universal constant c > 0,
and that pt(i) 6= 0⇒ pt(i) ≥ qt(i). Then one has

(1− cKγ)LT −L∗T ≤
log(|E′|)

η
+
η

2
E

T∑
t=1

‖¯̀t‖22 . (3.1)

Proof. Using 〈pt, `t〉 = 〈pt, ¯̀
t〉, 〈−ξet , `t〉 ≤ 〈−ξet , ¯̀

t〉,
and (1− cKγ)pt(i) ≤ qt(i), we have

(1− cKγ)LT − L∗T ≤ max
e∈E′

E
T∑
t=1

〈(1− cKγ)pt − ξet , ¯̀
t〉

≤ max
e∈E′

E
T∑
t=1

〈qt − ξet , ¯̀
t〉 .

The rest of the proof follows from standard argument to
bound the regret of Exp4, see e.g., (Bubeck & Cesa-
Bianchi, 2012, Theorem 4.2) (with the minor modification
that the assumption on pt implies that ˜̀t(i) ≤ `t(i)

qt(i)
1{i =

at}).

The next lemma is straightforward.
Lemma 3.3. In addition to the assumptions in Lemma 3.2,
assume that there exists some numerical constants c′, c′′ ≥
0 such that

γ E
T∑
t=1

‖¯̀t‖22 ≤ 2 c′ (η + γ) K LT + 2 c′′
log(|E′|)

η
.

(3.2)

Then one has(
1− cKγ −

(
η +

η2

γ

)
c′K)

)
(LT − L∗T )

≤
(

1

η
+
c′′

γ

)
log(|E′|) +

(
cKγ +

(
η +

η2

γ

)
c′K

)
L∗T .

We now see that it suffices to show that MYGA satisfies the
assumptions of Lemma 3.2 and Lemma 3.3 for γ ' η,

and η ' min
{

1
K ,
√

log(|E′|)
KL∗T

}
(assume that L∗T is

known), in which case one obtains a bound of order√
K log(|E′|)L∗T +K log(|E′|).

In fact the assumption of Lemma 3.2 will be easily verified,
and the real difficulty will be to prove (3.2). We observe
that the standard trick of thresholding the arms with prob-
ability below γ would yield (3.2) with the right hand side
replaced by LT , and in turn this leads to a regret of order
(L∗T )2/3. Our goal is to improve over this naive argument.

4 Proof of the 2-Armed Case
The goal of this section is to explain how our MYGA algo-
rithm arises naturally. To focus on the main ideas we re-
strict to the case K = 2. The complete formal proof of
Theorem 1.1 is given in Section 5.

Recall we have assumed without loss of generality that
ζt(1) ≥ ζt(2) for each round t ∈ [T ]. This implies kt = 1
because ζt(1) ≥ 1

2 . In this simple case, for s ∈ [0, 1/2], we
abbreviate our truncation operator T kts as Ts, and it acts as
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follows. Given q ∈ ∆2

if q(2) ≤ s we have Tsq = (1, 0); and
if q(2) > s we have Tsq = q.

In particular, we have qt(1) ≥ qt(2) and pt(1) ≥ pt(2) for
all t ∈ [T ]. We refer to arm 1 as the majority arm and arm
2 as the minority arm. We denote M = E

∑T
t=1

¯̀
t(1) as

the loss of the majority arm and m = E
∑T
t=1

¯̀
t(2) as the

loss of the minority arm.

Since `t ∈ [0, 1]K and K = 2, we have

E
∑T
t=1 ‖¯̀t‖22 ≤ E

∑T
t=1

¯̀
t(1) + ¯̀

t(2) = M +m . (4.1)

Observe also that one always has LT ≥ 1
2M (indeed

pt(1) ≥ qt(1) ≥ 1/2), and thus the whole game to prove
(3.2) is to upper bound the minority’s loss m.

4.1 When the minority suffers small loss
Assume that m ≤ (c′ − 1)M for some constant c′ > 0.
Then, because M ≤ 2LT , one can directly obtain (3.2)
from (4.1) with c′′ = 0. In words, when the minority
arm has a total loss comparable to the majority arm, simply
playing from ζt would satisfy a first-order regret bound.

Our main idea is to somehow enforce this relation m .M
between the minority and majority losses, by “truncating”
probabilities appropriately. Indeed, recall that if after some
truncation we have pt(2) = 0, then it satisfies ¯̀

t(2) = 0 so
the minority loss m can be improved.

4.2 Make the minority great again
Our key new insight is captured by the following lemma
which is proved using an integral averaging argument.

Definition 4.1. For each s ≥ γ, let Lst
def
=

E
∑T
t=1〈Tsqt, `t〉 be the expected loss if the truncated

strategy Tsqt ∈ ∆K is played at each round.
Lemma 4.2. As long as m−M > 0,

∃s ∈ (γ, 1/2] : m−M ≤ LT − LsT
γ

.

In words, ifm is large, then smust be a much better thresh-
old compared to γ, that is LT − LsT is large.

Proof of Lemma 4.2. For any s ≥ γ, define the function

f(s)
def
= E

∑T
t=1 1{qt(2) ≤ s}(¯̀

t(1)− ¯̀
t(2)) .

Let us pick s ∈ [γ, 1/2] to minimize f(s), and breaking
ties by choosing the smaller value of s. We make several
observations:

• f(γ) ≥ 0 because for any t with qt(2) ≤ γ we must
have ¯̀

t(2) = 0.

• f(1/2) = M −m < 0.

• s > γ because f(s) ≤ f(1/2) < 0.

Let us define the points s0
def
= γ and

{s1 < . . . < sm}
def
= (γ, s] ∩ {q1(2), . . . , qT (2)}.

Note that the tie-breaking rule for the choice of s ensures
sm = s (if sm < s then it must satisfy f(sm) = f(s)
giving a contradiction). Using the identity
T∑
t=1

〈Tsqt − qt, ¯̀
t〉 = 1{qt(2) ≤ s}qt(2)(¯̀

t(1)− ¯̀
t(2)) ,

(4.2)
we calculate that

LT − LsT

= E
T∑
t=1

〈Tγqt − Tsqt, `t〉 = E
T∑
t=1

〈Tγqt − Tsqt, ¯̀
t〉

= E
T∑
t=1

(1{qt(2) ≤ γ} − 1{qt(2) ≤ s})

× qt(2)(¯̀
t(1)− ¯̀

t(2))

= E
T∑
t=1

m∑
i=1

−si1{qt(2) = si}(¯̀
t(1)− ¯̀

t(2))

=

m∑
i=1

si(f(si−1)− f(si))

=

m−1∑
i=1

(si+1 − si)f(si) + s1f(s0)− smf(sm) .

Since f(s0) ≥ 0, f(si) ≥ f(s) and s = sm, we conclude
that

LT − LsT ≥ (sm − s1)f(sm)− smf(sm)

= −s1f(sm) ≥ γ(m−M) .

Given Lemma 4.2, a very intuitive strategy start to emerge.
Suppose we can somehow get an upper bound of the form

LT − LsT ≤ O
( log(|E′|)

η + η(m+M) + γLT
)
. (4.3)

Then, putting this into Lemma 4.2 and using M ≤ 2LT ,
we have for any γ ≥ 2η,

γm ≤ O
( log(|E′|)

η + γLT
)
.

In words, the minority arm also suffers from a small loss
(and thus is great again!) Putting this into (4.1), we
immediately get (3.2) as desired and finish the proof of
Theorem 1.1 in the case K = 2.

Thus, we are left with showing (4.3). The main idea is to
add the truncated strategy Tsqt as an additional auxiliary
expert. If we can achieve this, then (4.3) can be obtained
from the regret formula in Lemma 3.2.

4.3 Expanding the set of experts
Assume for a moment that we somehow expand the set of
experts into E′ ⊃ E so that:

∀s ∈ (γ, 1/2],∃e ∈ E′ such that for all t ∈ [T ], ξet = Tsqt .
(4.4)

Then clearly (4.3) would be satisfied using Lemma 3.2,
(4.1) and L∗T ≤ LsT (the loss of an expert should be no
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better than the loss of the best expert L∗T ).

There are two issues with condition (4.4): first, it self-
referential, in the sense that it assumes {ξet }e∈E′ satis-
fies a certain form depending on qt while qt is defined
via {ξet }e∈E′ (recall (2.2)); and second, it potentially re-
quires to have an infinite number of experts (one for each
s ∈ (γ, 1/2]).

Let us first deal with the second issue via discretization.

Lemma 4.3. In the same setting as Lemma 4.2, there exists
s ∈ S def

= (γ, 1/2] ∩ 1
2T N such that

m−M ≤ 1 + LT − LsT
γ

.

Proof. For x ∈ R let x be the smallest element in
[x,+∞) ∩ 1

2T N. For any s ∈ S we can rewrite (4.2) as
(note that x ≤ s⇔ x ≤ s)
〈Tsqt− qt, ¯̀

t〉 = 1{qt(2) ≤ s}qt(2)(¯̀
t(1)− ¯̀

t(2)) + εt,s ,

where |εt,s| ≤ 1/2T . Using the same proof of Lemma 4.2,
and redefining

f(s)
def
= E

∑T
t=1 1{qt(2) ≤ s}(¯̀

t(1)− ¯̀
t(2)) .

we get that there exists s1, . . . , sm ∈ S
def
= (γ, 12 ] ∩ 1

2T N
and ε ∈ [−1, 1] such that

LT − LsT = ε+

m∑
i=1

si(f(si−1)− f(si)) .

The rest of the proof now follows from the same proof of
Lemma 4.2, except that we minimize f(s) over s ∈ S in-
stead of s ∈ [γ, 12 ].

Thus, instead of (4.4), we only need to require

∀s ∈ S, ∃e ∈ E′ such that for all t ∈ [T ], ξet = Tsqt .
(4.5)

We now resolve the self-referentiality of (4.5) by defining
simultaneously qt and ξet , e ∈ S as follows. Consider the
map Ft : [0, 1/2]→ [0, 1/2] defined by:

Ft(x) =
1∑

e∈E wt(e) +
∑
s∈S wt(s)

×

(∑
e∈E

wt(e)ξ
e
t (2) +

∑
s∈S

wt(s)x1{x > s}

)
.

It suffices to find a fixed point x = Ft(x): indeed, setting
qt

def
= (1− x, x) and

ξst (2)
def
= x1{x > s} = Tsqt for s ∈ S,

we have both (4.5) holds and qt = 1
‖wt‖1

∑
e∈E′ wt(e) · ξet

is the correct weighted average of expert advices in E′ =
E ∪ S
Finally, Ft has a fixed point since it is a nondecreasing
function from a closed interval to itself. It is also not hard
to find such a point algorithmically.

This concludes the (slightly informal) proof forK = 2. We
give the complete proof for arbitrary K in the next section.

5 Proof of Theorem 1.1
In this section, we assume qt ∈ ∆K satisfies (2.2) and we
defer the constructive proof of finding qt to Section 6. Re-
call the arm index has no real meaning so without loss of
generality we have permuted the arms so that

ζt(1) ≥ ζt(2) ≤ . . . ≥ ζt(K) for each t = 1, 2, . . . , T .

We refer to {1, 2, . . . , kt} the set of majority arms and
{kt+1, . . . ,K} the set of minority arms at round t.2 We let
M

def
=
∑T
t=1 E

∑
i≤kt

¯̀
t(i) and m def

=
∑T
t=1 E

∑
i>kt

¯̀
t(i)

respectively be the total loss of the majority and minority
arms. We again have

E
∑T
t=1 ‖¯̀t‖22 ≤ E

∑T
t=1

∑
i∈[K]

¯̀
t(i) = M +m . (5.1)

Thus, the whole game to prove (3.2) is to upper bound M
and m.

5.1 Useful properties

We state a few properties about qt and its truncations.

Lemma 5.1. In each round t = 1, 2, . . . , T , if qt satisfies
(2.2), then for every s ∈ S and i ≤ kt:

ξst (i) =
ζt(i)∑
j≤k ζt(j)

·
(
1−

∑
j>k

ξst (j)
)

Proof. Let i ≤ kt and s ∈ S. By (2.1) and since ξst =
T kts qt one has

ξst (i) =
qt(i)∑
j≤k qt(j)

∑
j≤k

ξst (j) .

Moreover qt is a mixture of ζt and truncated versions of ζt
so similarly using (2.1) one has

qt(i) =
ζt(i)∑
j≤k ζt(j)

∑
j≤k

qt(j) .

Putting the two above displays together concludes the
proof.

Lemma 5.2. In each round t = 1, 2, . . . , T , if qt satisfies
(2.2), then

• for every i > kt it satisfies qt(i) ≤ ζt(i), and

• for every i ≤ kt it satisfies qt(i) ≥ ζt(i) ≥ 1
2K .

Proof. For sake of notation we drop the index t in this
proof. Recall q =

∑
e∈E∪S

w(e)
‖w‖1 · ξ

e.

• For every minority arm i > k, every s ∈ S, we have
ξs(i) =

(
T ks q

)
(i) ≤ q(i) according to Definition 2.1.

2We stress that in the K-arm setting, although kt is the mini-
mum index such that ζt(1) + · · ·+ ζt(kt) ≥ 1

2
, it may not be the

minimum index so that qt(1) + · · ·+ qt(kt) ≥ 1
2

.
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Therefore, we must have q(i) =
∑
e∈E∪S

w(e)
‖w‖1 ·

ξe(i) ≤
∑
e∈E w(e)ξe(i)∑
e∈E w(e) = ζ(i).

• For every majority arm i ≤ k, we have (using
Lemma 5.1)

ξe(i) =
ζ(i)∑
j≤k ζ(j)

· (1−
∑
j>k

ξs(j))

≥ ζ(i)∑
j≤k ζ(j)

· (1−
∑
j>k

ζ(j)) = ζ(i)

From the definition of k = min{i ∈
[K] :

∑
j≤i ζ(j) ≥ 1

2}, we can also con-
clude ζ(i) ≥ ζ(k) ≥ 1

2K . This is because
1
2 ≤

∑
j>k ζ(j) ≤ Kζ(k).

The next lemma shows that setting pt = T ktγ qt satisfies the
assumption of Lemma 3.2.

Lemma 5.3. If qt satisfies (2.2), γ ∈ (0, 12 ] and pt =
T ktγ qt, then for every arm i ∈ [K]:

(1−2Kγ)pt(i) ≤ qt(i) and pt(i) 6= 0⇒ pt(i) ≥ qt(i) .

Proof. For sake of notation we drop the index t in this
proof.

By Definition 2.1 and Lemma 5.2, we have for every i ∈
[K]:

p(i) ≤ q(i)
(

1 +

∑
j:j>k∧ q(j)≤γ q(j)∑

j≤k q(j)

)
≤ q(i)

(
1 +

∑
j:q(j)≤γ q(j)∑
j≤k ζ(j)

)
≤ q(i)(1 + 2Kγ) .

The other statement follows because whenever p(i) 6= 0,
Definition 2.1 says it must satisfy p(i) ≥ q(i).

5.2 Bounding m and M

We first upper bound M and then upper bound m.

Lemma 5.4. If qt satisfies (2.2), then M ≤ 2KLT .

Proof. Using Lemma 5.2 we have qt(i) ≥ 1
2K for any i ≤

kt. Also, pt(i) ≥ qt(i) for every i satisfying ¯̀
t(i) > 0

(owing to Definition 3.1 and Lemma 5.3). Therefore,

M =

T∑
t=1

E
∑
i≤kt

¯̀
t(i) ≤ 2K

T∑
t=1

E
∑
i≤kt

qt(i) · ¯̀t(i)

≤ 2K

T∑
t=1

E
∑
i≤kt

pt(i) · ¯̀t(i) ≤ 2K

T∑
t=1

E〈pt, ¯̀
t〉

= 2K

T∑
t=1

E〈pt, `t〉 = 2KLT .

Lemma 5.5. Suppose qt satisfies (2.2), and denote by
Lst

def
= E

∑T
t=1〈T kts qt, `t〉 = E

∑T
t=1〈ξst , `t〉 the total

expected loss of qt truncated to s. Then, as long as
m− 2KLT > 0,

∃s ∈ (γ, 1/2] ∩ 1

2T
N : m− 2KLT ≤

1 + LT − LsT
γ

.

Proof. The proof is a careful generalization of the proof
of Lemma 4.3 (which in turn is just a discretization of the
proof of Lemma 4.2). Recall the notation x for the smallest
element in [x,+∞) ∩ 1

2T N, and observe that for s ∈ 1
2T N,

x ≤ s⇔ x ≤ s.
Denote by

`maj
t

def
=
∑
i≤kt

qt(i)∑
j≤kt qt(j)

¯̀
t(i) .

the weighted loss of the majority arms at round t. We have∑T
t=1 `

maj
t ≤ 2LT because

∑
j≤kt qt(j) ≥

∑
j≤kt ζt(j) ≥

1
2 and qt(i) ≤ pt(i) whenever ¯̀

t(i) > 0 (owing to
Definition 3.1 and Lemma 5.3).

Now, for any s ≥ γ, define the function

f(s)
def
= E

∑T
t=1

∑
i>kt

1{qt(i) ≤ s}(`maj
t − ¯̀

t(i)) .

Let us pick s ∈ [γ, 1/2] ∩ 1
2T N to minimize f(s), and

breaking ties by choosing the smaller value of s. We make
several observations:

• f(γ) ≥ 0 because for any t and i > kt with qt(i) ≤ γ
we must have pt(i) = (T ktγ qt)(i) = 0 and thus ¯̀

t(i) =

0 by the definition of ¯̀
t in Definition 3.1.

• f(1/2) =
∑T
t=1(K − kt)`maj

t −m ≤ 2KLT −m < 0.

• s > γ because f(s) ≤ f(1/2) < 0.

Let us define the points s0
def
= γ and

{s1 < . . . < sm}
def
= (γ, s] ∩

⋃
i∈[K]

{q1(i), . . . , qT (i)}.

Note that the tie-breaking rule for the choice of s ensures
sm = s (if sm < s then it must satisfy f(sm) = f(s)
giving a contradiction).

Observe that by definition of the truncation operator, one
has

〈T kts qt − qt, ¯̀
t〉 =

∑
i>kt

1{qt(i) ≤ s}qt(i)(`maj
t − ¯̀

t(i))

In fact, after rounding, one can rewrite the above for some
εs,t ∈ [− 1

2T ,
1
2T ] as

〈T kts qt−qt, ¯̀
t〉 = εs,t+

∑
i>kt

1{qt(i) ≤ s}qt(i)(`maj
t −¯̀

t(i))

Then, for some ε ∈ [−1, 1], one has

LT − LsT = E
T∑
t=1

〈T ktγ qt − T kts qt, `t〉

= E
T∑
t=1

〈T ktγ qt − T kts qt, ¯̀
t〉
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= ε+ E
T∑
t=1

∑
i>kt

(1{qt(i) ≤ γ} − 1{qt(i) ≤ s})qt(i)(`maj
t − ¯̀

t(i))

= ε+ E
m∑
j=1

T∑
t=1

∑
i>kt

−sj1{qt(i) = sj}(`maj
t − ¯̀

t(i))

= ε+

m∑
j=1

sj(f(sj−1)− f(sj))

= ε+

m−1∑
j=1

(sj+1 − sj)f(sj) + s1f(s0)− smf(sm) .

Since f(s0) = f(γ) ≥ 0, f(si) ≥ f(s) and s = sm, we
conclude that

LT − LsT ≥ ε+ (sm − s1)f(sm)− smf(sm)

= ε− s1f(sm) ≥ γ(m− 2KLT ) .

5.3 Putting all together

Finally, using Lemma 3.2 (which applies thanks to
Lemma 5.3), (5.1) and L∗T ≤ LsT (the loss of an expert
is no better than the loss of the best expert L∗T ), we have

LT − LsT ≤ O
( log(|E′|)

η + η(m+M) + γKLT
)
. (5.2)

Putting this into Lemma 5.5 and then using M ≤ 2KLT
from Lemma 5.4, we have for any γ ≥ 2η,

γ(m+M) ≤ O
( log(|E′|)

η + γKLT
)
.

Putting this into (5.1), we immediately get (3.2) as desired.
This finishes the proof of Theorem 1.1. It only remains to
ensure that qt verifying (2.2) indeed exists. We provide an
algorithm for this in Section 6.

6 Algorithmic Process to Find qt

In this section, we answer the question of how to algorith-
mically find qt satisfying the implicitly definition (2.2). We
recall (2.2):

qt =
1∑

e∈E wt(e) +
∑
s∈S wt(s)

×
(∑

e∈E wt(e)ξ
e
t +

∑
s∈S wt(s)T kts qt

)
. (2.2)

We show the following general lemma:

Lemma 6.1. Given k ∈ [K], a finite subset S ⊂
[
0, 12
]
,

ζ ∈ ∆K with ζ(1) ≥ · · · ≥ ζ(K), and W ∈ ∆1+|S|,
Algorithm 2 finds some q ∈ ∆K such that

q = W (1)ζ +
∑
s∈SW (s)T ks q .

Furthermore, Algorithm 2 runs in time O(K · |S|).

We observe that by setting k = kt,

ζ = ζt =
∑
e∈E wt(e)·ξ

e
t∑

e∈E wt(e)
, W (1) =

∑
e∈E wt(e)

‖wt‖1

and ∀s ∈ S : W (s) = wt(s)
‖wt‖1 in Lemma 6.1, we immedi-

ately obtain a vector q ∈ ∆K that we can use as qt.

Intuition for Lemma 6.1. We only search for q that is
monotonically non-increasing for minority arms. This im-
plies T ks q is also non-increasing for minority arms. In sym-
bols: q(k + 1) ≥ · · · ≥ q(K) and

(T ks q)(k + 1) ≥ · · · ≥ (T ks q)(K) .

Due to such monotonicity, when computing T ks q for each
s ∈ S, there must exist some index πs ∈ {k + 1, k +
2, . . . ,K + 1} such that the entry q(i) gets zeroed out for
all i ≥ πs

or in symbols, (T ks q)(i) = 0 for all i ≥ πs.
Now, the main idea of Algorithm 2 is to search for such
non-increasing function π : S → [K+1]. It initializes itself
with πs = k + 1 for all s ∈ S, and then tries to increase π
coordinate by coordinate.

For each choice of π, Algorithm 2 computes a candidate
distribution qπ ∈ ∆K which satisfies

qπ = W (1)ζ +
∑
s∈S

W (s)us (6.1)

where each us is qπ but truncated so that its probabilities
after πs are redistributed to the first k arms, or in symbols,

us(i) =


0, i ≥ πs;
qπ(i), πs > i > k;

qπ(i) ·
(
1 +

∑
j:j≥πs qπ(j)∑
j≤k qπ(j)

)
, i ≤ k.

One can verify that the distribution qπ ∈ ∆K defined in
Line 3 of Algorithm 2 is an explicit solution to (6.1). Un-
fortunately, each us may not satisfy T ks qπ = us. In partic-
ular, there may exist

some s ∈ S and i > k such that qπ(i) > s but us(i) = 0.

This means, we may have truncated too much for expert s
in defining us, and we must increase πs.

Perhaps not very surprisingly, if each iteration we only in-
crease one πs by exactly 1, then we never overshoot and
there exists a moment when q = qπ exactly satisfies

q = W (1)ζ +
∑
s∈SW (s)T ks q .

We now give a formal proof of Lemma 6.1.

6.1 Proof details
Claim 6.2. We claim some properties about Algorithm 2

(a) The process finishes after at most K · |S| iterations.

(b) We always have qπ(k + 1) ≥ · · · ≥ qπ(K).

(c) As π changes, for each minority arm i > k, qπ(i) never
decreases.

(d) When the while loop ends, for each i > k and s ∈ S,
we have qπ(i) > s⇐⇒ πs > i.

The proof of Claim 6.2 can be found in the full version.

Proof of Lemma 6.1. Suppose in the end of Algorithm 2
we obtain q = qπ for some π : S → [K+1]. Let ξs = T ks q



Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits

Algorithm 2

Input: k ∈ [K], a finite set S ⊆
[
0, 12
]
, ζ ∈ ∆K with ζ(1) ≥ · · · ≥ ζ(K), and W ∈ ∆1+|S|

Output: q ∈ ∆K such that q = W (1)ζ +
∑
s∈SW (s)T ks q.

1: initialize π : S → [K + 1] as πs = k + 1; � will ensure πs ∈ {k + 1, k + 2, . . . ,K + 1}
2: while true do

3: qπ(i)←


W (1)

1−
∑
s∈S∧πs>iW (s) · ζ(i), if i > k;

ζ(i)∑
j≤k ζ(j)

· (1−
∑
j>k qπ(j)), if i ≤ k.

� qπ ∈ ∆K

4: Pick any s ∈ S with πs ≤ K such that qπ(πs) > s.
5: if s is not found then break
6: else πs ← πs + 1.
7: end while
8: return qπ .

for each s ∈ S and q′ = W (1)ζ +
∑
s∈SW (s)T ks q. We

need to show q = q′. For every minority arm i > k:

q′(i)
¬
= W (1) · ζ(i) +

∑
s∈S

W (s) · ξs(i)


= W (1) · ζ(i) +

( ∑
s∈S∧q(i)>s

W (s)
)
· q(i)

®
= W (1) · ζ(i) +

( ∑
s∈S∧πs>i

W (s)
)
· q(i) ¯

= q(i) .

Above, equality ¬ is by the definition of q′, equality  is
by the definition of ξs = T ks q, equality ® follows from
Claim 6.2.d, and equality ¯ is by definition of q(i) =

qπ(i) = W (1)
1−

∑
s∈S∧πs>iW (s) · ζ(i).

For every majority arm i ≤ k,
q′(i)

ζ(i)

¬
= W (1) · ζ(i)ζ(i) +

∑
s∈SW (s) · ξ

s(i)
ζ(i)


= W (1) +

∑
s∈SW (s) ·

∑
j≤k ξ

s(j)∑
j≤k ζ(j)

(6.2)

where equality ¬ is by the definition of q′ and equality 

is because for every i ≤ k it satisfies ξs(i)
q(i) =

∑
j≤k ξ

s(j)∑
j≤k q(j)

(using definition of ξs = T ks q) and for every i ≤ k it satis-

fies ζ(i)
q(i) =

∑
j≤k ζ(j)∑
j≤k q(j)

(using definition of q = qπ Line 3 of
Algorithm 2).

Now, the right hand side of (6.2) is independent of i. There-
fore, we can write q′(i) = C1 · ζ(i) for each i ≤ k
with some constant C1 > 0. Our definition of q = qπ
(see Line 3 of Algorithm 2) ensures that we can also write
q(i) = C2 · ζ(i) for each i ≤ k with some constant
C2 > 0. Therefore, since for every i > k we have already
shown q′(i) = q(i), it must satisfy C1 = C2 and therefore
q′(i) = q(i) for all i ∈ [K].

After proving q′ = q, we only need to argue about the
running time.

If Algorithm 2 is implemented naively, then the total run-
ning time is O((K · |S|)2) because there are at most K · |S|

iterations (see Claim 6.2.a) and in each iteration we can
compute qπ in time O(K · |S|). In fact it is rather easy
to find implicit update rules to make each iteration of
Algorithm 2 run in O(1) time. We give some hints below.

Indeed, if in an iteration some πs is changed from i to i+ 1
(recalling i > k), then we can update qπ(i) in O(1) time.
For each j > k where j 6= i, we have qπ(j) is unchanged.
The values of qπ(j) for j ≤ k all need to be changed, but
they are only changed altogether by the same multiplicative
factor (which can again be calculated in O(1) time).

Finally, to search for s ∈ S with πs ≤ K and qπ(πs) > s,
we do not need to go through all s ∈ S. Instead, for each
i > k, we maintain “the smallest si ∈ S so that qπ(i) >
si.” Then, whenever πsi ≤ i, that means we can pick s =
si because qπ(πs) = qπ(πsi) ≥ qπ(i) > si = s. For
such reason, one can maintain a first-in-first-out list to
store all values of i where qπ(i) > si. In each iteration
of Algorithm 2 we simply pick the first element in list
and perform the update. This changes exactly one qπ(j)
for j > k, and thus may additionally insert one element to
list. Therefore, in each iteration we only needO(1) time
to find some πs to increase.
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