Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits

Zeyuan Allen-Zhu* ${ }^{* 1}$ Sébastien Bubeck ${ }^{* 1}$ Yuanzhi Li ${ }^{* 2}$

Abstract

Regret bounds in online learning compare the player's performance to L^{*}, the optimal performance in hindsight with a fixed strategy. Typically such bounds scale with the square root of the time horizon T. The more refined concept of first-order regret bound replaces this with a scaling $\sqrt{L^{*}}$, which may be much smaller than \sqrt{T}. It is well known that minor variants of standard algorithms satisfy first-order regret bounds in the full information and multi-armed bandit settings. In a COLT 2017 open problem (Agarwal et al., 2017), Agarwal, Krishnamurthy, Langford, Luo, and Schapire raised the issue that existing techniques do not seem sufficient to obtain first-order regret bounds for the contextual bandit problem. In the present paper, we resolve this open problem by presenting a new strategy based on augmenting the policy space. ${ }^{1}$

1 Introduction

The contextual bandit problem is an influential extension of the classical multi-armed bandit. It can be described as follows. Let K be the number of actions, E a set of experts (or "policies"), T the time horizon, and denote $\Delta_{K}=\{x \in$ $\left.[0,1]^{K}: \sum_{i=1}^{K} x(i)=1\right\}$. At each time step $t=1, \ldots, T$,

- The player receives from each expert $e \in E$ an "advice" $\xi_{t}^{e} \in \Delta_{K}$.
- Using advices and previous feedbacks, the player selects a probability distribution $p_{t} \in \Delta_{K}$.

[^0]- The adversary selects a loss function $\ell_{t}:[K] \rightarrow[0,1]$.
- The player plays an action $a_{t} \in[K]$ at random from p_{t} (and independently of the past).
- The player's suffered loss is $\ell_{t}\left(a_{t}\right) \in[0,1]$, which is also the only feedback the player receives about the loss function ℓ_{t}.
The player's performance at the end of the T rounds is measured through the regret with respect to the best expert:

$$
\begin{align*}
R_{T} & \stackrel{\text { def }}{=} \max _{e \in E}\left\{\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(a_{t}\right)-\left\langle\xi_{t}^{e}, \ell_{t}\right\rangle\right]\right\} \\
& =\max _{e \in E}\left\{\mathbb{E}\left[\sum_{t=1}^{T}\left\langle p_{t}-\xi_{t}^{e}, \ell_{t}\right\rangle\right]\right\} \tag{1.1}
\end{align*}
$$

A landmark result by Auer et al. (2002) is that a regret of order $O(\sqrt{T K \log }(|E|))$ is achievable in this setting. The general intuition captured by regret bounds is that the player's performance is equal to the best expert's performance up to a term of lower order. However the aforementioned bound might fail to capture this intuition if $T \gg L_{T}^{*} \stackrel{\text { def }}{=} \min _{e \in E} \mathbb{E} \sum_{t=1}^{T}\left\langle\xi_{t}^{e}, \ell_{t}\right\rangle$. It is thus natural to ask whether one could obtain a stronger guarantee where T is essentially replaced by L_{T}^{*}. This question was posed as a COLT 2017 open problem (Agarwal et al., 2017). Such bounds are called first-order regret bounds, and they are known to be possible with full information (Auer et al. 2002), as well as in the multi-armed bandit setting (Allenberg et al. 2006) (see also (Foster et al., 2016) for a different proof) and the semi-bandit framework (Neu, 2015; Lykouris et al., 2017). Our main contribution is a new algorithm for contextual bandit, which we call MYGA (see Section 2), and for which we prove the following first-order regret bound, thus resolving the open problem.
Theorem 1.1. For any loss sequence such that $\min _{e \in E} \mathbb{E} \sum_{t=1}^{T}\left\langle\xi_{t}^{e}, \ell_{t}\right\rangle \leq L^{*}$ one has that MYGA with $\gamma=\Theta(\eta)$ and $\eta=\Theta\left(\min \left\{\frac{1}{K}, \sqrt{\frac{\log (|E|+T)}{K L^{*}}}\right\}\right)$ satisfies

$$
R_{T} \leq O\left(\sqrt{K \log (|E|+T) L^{*}}+K \log (|E|+T)\right)
$$

2 Algorithm Description

In this section we describe the MYGA algorithm.

Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits

$q=($	0.2	0.1	0.2	0.1	0.1	0.1	0.05	0.05	0.04	0.03	0.03)
$\mathcal{T}_{0.02}^{3} q=($	0.2	0.1	0.2	0.1	0.1	0.1	0.05	0.05	0.04	0.03	0.03)
$\mathcal{T}_{0.03}^{3} q=($	0.224	0.112	0.224	0.1	0.1	0.1	0.05	0.05	0.04	0	$0)$
$\mathcal{T}_{0.04}^{3} q=($	0.24	0.12	0.24	0.1	0.1	0.1	0.05	0.05	0	0	$0)$
$\mathcal{T}_{0.05}^{3} q=($	0.28	0.14	0.28	0.1	0.1	0.1	0	0	0	0	$0)$
$\mathcal{T}_{0.1}^{3} q=($	0.4	0.2	0.4	0	0	0	0	0	0	0	$0)$
$\mathcal{T}_{0.2}^{3} q=($	0.4	0.2	0.4	0	0	0	0	0	0	0	$0)$
$\mathcal{T}_{0.5}^{3} q=($	0.4	0.2	0.4	0	0	0	0	0	0	0	$0)$

Figure 1: An example of \mathcal{T}_{s}^{k} with $K=11$ arms and $k=3$

2.1 Truncation

We introduce a truncation operator \mathcal{T}_{s}^{k} that takes as input an index $k \in[K]$ and a threshold $s \in\left[0, \frac{1}{2}\right]$. Then, treating the first k arms as "majority arms" and the last $K-k$ arms as "minority arms," \mathcal{T}_{s}^{k} redistributes "multiplicatively" the probability mass of all minority arms below threshold s to the majority arms.
Definition 2.1. For $k \in[K]$ and $s \in\left(0, \frac{1}{2}\right]$, the truncation operator $\mathcal{T}_{s}^{k}: \Delta_{K} \rightarrow \Delta_{K}$ is defined as follows. Given any $q \in \Delta_{K}$, then we set $\mathcal{T}_{s}^{k} q(i)=$
$\begin{cases}0, & i>k \text { and } q(i) \leq s ; \\ q(i), & i>k \text { and } q(i)>s ; \\ q(i) \cdot\left(1+\frac{\sum_{j: j>k \wedge q(j) \leq s} q(j)}{\sum_{j \leq k} q(j)}\right), & i \leq k .\end{cases}$
Equivalently one can define $\mathcal{T}_{s}^{k} q(i)$ for the majority arms $i \leq k$ with the following implicit formula:

$$
\begin{equation*}
\mathcal{T}_{s}^{k} q(i)=\frac{q(i)}{\sum_{j \leq k} q(j)} \sum_{j \leq k} \mathcal{T}_{s}^{k} q(j) \tag{2.1}
\end{equation*}
$$

To see this it suffices to note that the amount of mass in the majority arms is given by

$$
\begin{aligned}
\sum_{j \leq k} \mathcal{T}_{s}^{k} q(j) & =1-\sum_{j>k} \mathcal{T}_{s}^{k} q(j)=1-\sum_{j: j>k \wedge q(j)>s} q(j) \\
& =\sum_{j \leq k} q(j)+\sum_{j: j>k \wedge q(j) \leq s} q(j)
\end{aligned}
$$

If $K=2$, then $\mathcal{T}_{s}^{1} q$ simply adds $q(2)$ into $q(1)$ if $q(2) \leq s$. For an example with $K=11$, see Figure 1

2.2 Informal description

MYGA is parameterized by two parameters: a classical learning rate $\eta>0$, and a thresholding parameter $\gamma \in \frac{1}{2 T} \mathbb{N}=$ $\left\{\frac{1}{2 T}, \frac{2}{2 T}, \frac{3}{2 T}, \ldots\right\}$. Also let $S=(\gamma, 1 / 2] \cap \frac{1}{2 T} \mathbb{N}=$ $(\gamma, 1 / 2] \cap\left\{\frac{1}{2 T}, \frac{2}{2 T}, \frac{3}{2 T}, \ldots\right\}$
At a high level, a key feature of MYGA is to introduce a set of auxiliary experts, one for each $s \in S$. More precisely, in each round t, after receiving expert advices $\left\{\xi_{t}^{e}\right\}_{e \in E}$,

MYGA calculates a distribution $\xi_{t}^{s} \in \Delta_{K}$ for each $s \in S$. Then, MYGA uses the standard exponential weight updates on $E^{\prime}=E \cup S$ with learning rate $\eta>0$, to calculate a weight function $w_{t} \in \mathbb{R}_{+}^{E \cup S}-$ see (2.3). Then, it computes

- $\zeta_{t} \in \Delta_{K}$, the weighted average of expert advices in E :

$$
\zeta_{t}=\frac{1}{\sum_{e \in E} w_{t}(e)} \sum_{e \in E} w_{t}(e) \cdot \xi_{t}^{e}
$$

- $q_{t} \in \Delta_{K}$, the weighted average of expert advices in E^{\prime} :

$$
q_{t}=\frac{1}{\left\|w_{t}\right\|_{1}} \sum_{e \in E^{\prime}} w_{t}(e) \cdot \xi_{t}^{e}
$$

Using these information, MYGA calculates the probability distribution $p_{t} \in \Delta_{K}$ from which the arm is played at round t.
Let us now explain how p_{t} and $\xi_{t}^{s}, s \in S$ are defined. First we remark that in the contextual bandit setting, the arm index has no real meaning since in each round t we can permute the arms by some $\pi_{t}:[K] \rightarrow[K]$ and permute the expert's advices and the loss vector by the same π_{t}. For this reason, throughout this paper, we shall assume

$$
\forall t \in[T]: \zeta_{t}(1) \geq \zeta_{t}(2) \geq \cdots \zeta_{t}(K)
$$

Let us define the "pivot" index $k_{t}=\min \{i \in[K]$: $\left.\sum_{j \leq i} \zeta_{t}(j) \geq 1 / 2\right\}$. Then, in order to perform truncation, MYGA views the first k_{t} arms as "majority arms" and the last $K-k_{t}$ arms as "minority arms" of the current round t. At a high level we will have:

- the distribution to play from is $p_{t}=\mathcal{T}_{\gamma}^{k_{t}} q_{t}$.
- each auxiliary expert $s \in S$ is defined by $\xi_{t}^{s}=\mathcal{T}_{s}^{k_{t}} q_{t}$.

We now give a more precise description in Algorithm 1.

3 Preliminaries

Definition 3.1. For analysis purpose, let us define the truncated loss $\bar{\ell}_{t}(i) \stackrel{\text { def }}{=} \ell_{t}(i) \mathbb{1}\left\{p_{t}(i)>0\right\}$, so that

$$
\mathbb{E}_{a_{t}}\left[\left\langle\tilde{\ell}_{t}, p_{t}\right\rangle\right]=\left\langle\bar{\ell}_{t}, p_{t}\right\rangle=\left\langle\ell_{t}, p_{t}\right\rangle
$$

We next derive two lemmas that will prove useful to isolate

```
Algorithm 1 MYGA (Make the minoritY Great Again)
Input: learning rate \(\eta>0\), threshold parameter \(\gamma \in \frac{1}{2 T} \mathbb{N}\)
    \(S \leftarrow(\gamma, 1 / 2] \cap \frac{1}{2 T} \mathbb{N}\) and \(w_{1} \leftarrow(1, \ldots, 1) \in \mathbb{R}^{E \cup S}\)
    for \(t=1\) to \(T\) do
        receive advices \(\xi_{t}^{e} \in \Delta_{K}\) from each expert \(e \in E\)
        weighted average \(\zeta_{t} \leftarrow \frac{\sum_{e \in E} w_{t}(e) \xi_{t}^{e}}{\sum_{e \in E} w_{t}(e)} \in \Delta_{K}\)
        assume \(\zeta_{t}(1) \geq \zeta_{t}(2) \geq \cdots \zeta_{t}(K)\) wlog. by permuting the arms
        \(k_{t} \leftarrow \min \left\{i \in[K]: \sum_{j \leq i} \zeta_{t}(j) \geq 1 / 2\right\} \quad \diamond\) the first \(k_{t}\) arms are majority arms
        find \(q_{t} \in \Delta_{K}\) such that \(\quad \diamond q_{t}\) can be found in time \(O(K|S|)=O(K T)\), see Lemma 6.1
\[
\begin{equation*}
q_{t}=\frac{1}{\sum_{e \in E} w_{t}(e)+\sum_{s \in S} w_{t}(s)}\left(\sum_{e \in E} w_{t}(e) \xi_{t}^{e}+\sum_{s \in S} w_{t}(s) \mathcal{T}_{s}^{k_{t}} q_{t}\right) \tag{2.2}
\end{equation*}
\]
\(\xi_{t}^{s} \leftarrow \mathcal{T}_{s}^{k_{t}} q_{t}\) for every \(s \in S \quad\) and \(\quad p_{t} \leftarrow \mathcal{T}_{\gamma}^{k_{t}} q_{t}\) draw an arm \(a_{t} \in[K]\) from probability distribution \(p_{t}\) and receive feedback \(\ell_{t}\left(a_{t}\right)\) compute loss estimator \(\widetilde{\ell}_{t} \in \mathbb{R}_{+}^{K}\) as \(\tilde{\ell}_{t}(i)=\frac{\ell_{t}(i)}{p_{t}(i)} \mathbb{1}_{i=a_{t}}\) update the exponential weights for any \(e \in E \cup S\) :
\[
\begin{equation*}
w_{t+1}(e)=\exp \left(-\eta \sum_{r=1}^{t}\left\langle\xi_{r}^{e}, \tilde{\ell}_{r}\right\rangle\right) \tag{2.3}
\end{equation*}
\]
end for
the properties of the truncation operator \(\mathcal{T}_{s}^{k}\) that are needed to obtain a first-order regret bound.
Lemma 3.2. Let \(\gamma \in[0,1]\) and assume that for all \(i \in[K]\), \((1-c K \gamma) p_{t}(i) \leq q_{t}(i)\) for some universal constant \(c>0\), and that \(p_{t}(i) \neq 0 \Rightarrow p_{t}(i) \geq q_{t}(i)\). Then one has
\[
\begin{equation*}
(1-c K \gamma) L_{T}-L_{T}^{*} \leq \frac{\log \left(\left|E^{\prime}\right|\right)}{\eta}+\frac{\eta}{2} \mathbb{E} \sum_{t=1}^{T}\left\|\bar{\ell}_{t}\right\|_{2}^{2} \tag{3.1}
\end{equation*}
\]

Proof. Using \(\left\langle p_{t}, \ell_{t}\right\rangle=\left\langle p_{t}, \bar{\ell}_{t}\right\rangle,\left\langle-\xi_{t}^{e}, \ell_{t}\right\rangle \leq\left\langle-\xi_{t}^{e}, \bar{\ell}_{t}\right\rangle\), and \((1-c K \gamma) p_{t}(i) \leq q_{t}(i)\), we have
\[
\begin{aligned}
(1-c K \gamma) L_{T}-L_{T}^{*} & \leq \max _{e \in E^{\prime}} \mathbb{E} \sum_{t=1}^{T}\left\langle(1-c K \gamma) p_{t}-\xi_{t}^{e}, \bar{\ell}_{t}\right\rangle \\
& \leq \max _{e \in E^{\prime}} \mathbb{E} \sum_{t=1}^{T}\left\langle q_{t}-\xi_{t}^{e}, \bar{\ell}_{t}\right\rangle
\end{aligned}
\]

The rest of the proof follows from standard argument to bound the regret of \(\operatorname{Exp} 4\), see e.g., (Bubeck \& CesaBianchi, 2012. Theorem 4.2) (with the minor modification that the assumption on \(p_{t}\) implies that \(\widetilde{\ell}_{t}(i) \leq \frac{\ell_{t}(i)}{q_{t}(i)} \mathbb{1}\{i=\) \(\left.a_{t}\right\}\) ).

The next lemma is straightforward.
Lemma 3.3. In addition to the assumptions in Lemma 3.2. assume that there exists some numerical constants \(c^{\prime}, c^{\prime \prime} \geq\) 0 such that
\[
\begin{equation*}
\gamma \mathbb{E} \sum_{t=1}^{T}\left\|\bar{\ell}_{t}\right\|_{2}^{2} \leq 2 c^{\prime}(\eta+\gamma) K L_{T}+2 c^{\prime \prime} \frac{\log \left(\left|E^{\prime}\right|\right)}{\eta} . \tag{3.2}
\end{equation*}
\]

Then one has
\[
\begin{aligned}
& \left.\left(1-c K \gamma-\left(\eta+\frac{\eta^{2}}{\gamma}\right) c^{\prime} K\right)\right)\left(L_{T}-L_{T}^{*}\right) \\
\leq & \left(\frac{1}{\eta}+\frac{c^{\prime \prime}}{\gamma}\right) \log \left(\left|E^{\prime}\right|\right)+\left(c K \gamma+\left(\eta+\frac{\eta^{2}}{\gamma}\right) c^{\prime} K\right) L_{T}^{*}
\end{aligned}
\]

We now see that it suffices to show that MYGA satisfies the assumptions of Lemma 3.2 and Lemma 3.3 for \(\gamma \simeq \eta\), and \(\eta \simeq \min \left\{\frac{1}{K}, \sqrt{\frac{\log \left(\left|E^{\prime}\right|\right)}{K L_{T}^{*}}}\right\}\) (assume that \(L_{T}^{*}\) is known), in which case one obtains a bound of order \(\sqrt{K \log \left(\left|E^{\prime}\right|\right) L_{T}^{*}}+K \log \left(\left|E^{\prime}\right|\right)\).

In fact the assumption of Lemma 3.2 will be easily verified, and the real difficulty will be to prove (3.2). We observe that the standard trick of thresholding the arms with probability below \(\gamma\) would yield (3.2) with the right hand side replaced by \(L_{T}\), and in turn this leads to a regret of order \(\left(L_{T}^{*}\right)^{2 / 3}\). Our goal is to improve over this naive argument.

\section*{4 Proof of the 2-Armed Case}

The goal of this section is to explain how our MYGA algorithm arises naturally. To focus on the main ideas we restrict to the case \(K=2\). The complete formal proof of Theorem 1.1 is given in Section 5 .
Recall we have assumed without loss of generality that \(\zeta_{t}(1) \geq \zeta_{t}(2)\) for each round \(t \in[T]\). This implies \(k_{t}=1\) because \(\zeta_{t}(1) \geq \frac{1}{2}\). In this simple case, for \(s \in[0,1 / 2]\), we abbreviate our truncation operator \(\mathcal{T}_{s}^{k_{t}}\) as \(\mathcal{T}_{s}\), and it acts as
follows. Given \(q \in \Delta_{2}\)
if \(q(2) \leq s\) we have \(\mathcal{T}_{s} q=(1,0) ; \quad\) and if \(q(2)>s\) we have \(\mathcal{T}_{s} q=q\).
In particular, we have \(q_{t}(1) \geq q_{t}(2)\) and \(p_{t}(1) \geq p_{t}(2)\) for all \(t \in[T]\). We refer to arm 1 as the majority arm and arm 2 as the minority arm. We denote \(M=\mathbb{E} \sum_{t=1}^{T} \bar{\ell}_{t}(1)\) as the loss of the majority arm and \(m=\mathbb{E} \sum_{t=1}^{T} \bar{\ell}_{t}(2)\) as the loss of the minority arm.
Since \(\ell_{t} \in[0,1]^{K}\) and \(K=2\), we have
\[
\begin{equation*}
\mathbb{E} \sum_{t=1}^{T}\left\|\bar{\ell}_{t}\right\|_{2}^{2} \leq \mathbb{E} \sum_{t=1}^{T} \bar{\ell}_{t}(1)+\bar{\ell}_{t}(2)=M+m \tag{4.1}
\end{equation*}
\]

Observe also that one always has \(L_{T} \geq \frac{1}{2} M\) (indeed \(\left.p_{t}(1) \geq q_{t}(1) \geq 1 / 2\right)\), and thus the whole game to prove (3.2) is to upper bound the minority's loss \(m\).

\subsection*{4.1 When the minority suffers small loss}

Assume that \(m \leq\left(c^{\prime}-1\right) M\) for some constant \(c^{\prime}>0\). Then, because \(M \leq 2 L_{T}\), one can directly obtain (3.2) from (4.1) with \(c^{\prime \prime}=0\). In words, when the minority arm has a total loss comparable to the majority arm, simply playing from \(\zeta_{t}\) would satisfy a first-order regret bound.
Our main idea is to somehow enforce this relation \(m \lesssim M\) between the minority and majority losses, by "truncating" probabilities appropriately. Indeed, recall that if after some truncation we have \(p_{t}(2)=0\), then it satisfies \(\bar{\ell}_{t}(2)=0\) so the minority loss \(m\) can be improved.

\subsection*{4.2 Make the minority great again}

Our key new insight is captured by the following lemma which is proved using an integral averaging argument.
Definition 4.1. For each \(s \geq \gamma\), let \(L_{t}^{s} \stackrel{\text { def }}{=}\) \(\mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{s} q_{t}, \ell_{t}\right\rangle\) be the expected loss if the truncated strategy \(\mathcal{T}_{s} q_{t} \in \Delta_{K}\) is played at each round.
Lemma 4.2. As long as \(m-M>0\),
\[
\exists s \in(\gamma, 1 / 2]: \quad m-M \leq \frac{L_{T}-L_{T}^{s}}{\gamma}
\]

In words, if \(m\) is large, then \(s\) must be a much better threshold compared to \(\gamma\), that is \(L_{T}-L_{T}^{s}\) is large.

Proof of Lemma 4.2 For any \(s \geq \gamma\), define the function
\[
f(s) \stackrel{\text { def }}{=} \mathbb{E} \sum_{t=1}^{T} \mathbb{1}\left\{q_{t}(2) \leq s\right\}\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right)
\]

Let us pick \(s \in[\gamma, 1 / 2]\) to minimize \(f(s)\), and breaking ties by choosing the smaller value of \(s\). We make several observations:
- \(f(\gamma) \geq 0\) because for any \(t\) with \(q_{t}(2) \leq \gamma\) we must have \(\bar{\ell}_{t}(2)=0\).
- \(f(1 / 2)=M-m<0\).
- \(s>\gamma\) because \(f(s) \leq f(1 / 2)<0\).

Let us define the points \(s_{0} \stackrel{\text { def }}{=} \gamma\) and
\[
\left\{s_{1}<\ldots<s_{m}\right\} \stackrel{\text { def }}{=}(\gamma, s] \cap\left\{q_{1}(2), \ldots, q_{T}(2)\right\}
\]

Note that the tie-breaking rule for the choice of \(s\) ensures \(s_{m}=s\) (if \(s_{m}<s\) then it must satisfy \(f\left(s_{m}\right)=f(s)\) giving a contradiction). Using the identity
\[
\begin{equation*}
\sum_{t=1}^{T}\left\langle\mathcal{T}_{s} q_{t}-q_{t}, \bar{\ell}_{t}\right\rangle=\mathbb{1}\left\{q_{t}(2) \leq s\right\} q_{t}(2)\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right) \tag{4.2}
\end{equation*}
\]
we calculate that
\[
\begin{aligned}
& L_{T}-L_{T}^{s} \\
= & \mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{\gamma} q_{t}-\mathcal{T}_{s} q_{t}, \ell_{t}\right\rangle=\mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{\gamma} q_{t}-\mathcal{T}_{s} q_{t}, \bar{\ell}_{t}\right\rangle \\
= & \mathbb{E} \sum_{t=1}^{T}\left(\mathbb{1}\left\{q_{t}(2) \leq \gamma\right\}-\mathbb{1}\left\{q_{t}(2) \leq s\right\}\right) \\
& \times q_{t}(2)\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right) \\
= & \mathbb{E} \sum_{t=1}^{T} \sum_{i=1}^{m}-s_{i} \mathbb{1}\left\{q_{t}(2)=s_{i}\right\}\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right) \\
= & \sum_{i=1}^{m} s_{i}\left(f\left(s_{i-1}\right)-f\left(s_{i}\right)\right) \\
= & \sum_{i=1}^{m-1}\left(s_{i+1}-s_{i}\right) f\left(s_{i}\right)+s_{1} f\left(s_{0}\right)-s_{m} f\left(s_{m}\right)
\end{aligned}
\]

Since \(f\left(s_{0}\right) \geq 0, f\left(s_{i}\right) \geq f(s)\) and \(s=s_{m}\), we conclude that
\[
\begin{aligned}
& L_{T}-L_{T}^{s} \geq\left(s_{m}-s_{1}\right) f\left(s_{m}\right)-s_{m} f\left(s_{m}\right) \\
&=-s_{1} f\left(s_{m}\right) \geq \gamma(m-M)
\end{aligned}
\]

Given Lemma 4.2, a very intuitive strategy start to emerge. Suppose we can somehow get an upper bound of the form
\[
\begin{equation*}
L_{T}-L_{T}^{s} \leq O\left(\frac{\log \left(\left|E^{\prime}\right|\right)}{\eta}+\eta(m+M)+\gamma L_{T}\right) \tag{4.3}
\end{equation*}
\]

Then, putting this into Lemma 4.2 and using \(M \leq 2 L_{T}\), we have for any \(\gamma \geq 2 \eta\),
\[
\gamma m \leq O\left(\frac{\log \left(\left|E^{\prime}\right|\right)}{\eta}+\gamma L_{T}\right)
\]

In words, the minority arm also suffers from a small loss (and thus is great again!) Putting this into (4.1), we immediately get (3.2) as desired and finish the proof of Theorem 1.1 in the case \(K=2\).
Thus, we are left with showing (4.3). The main idea is to add the truncated strategy \(\mathcal{T}_{s} q_{t}\) as an additional auxiliary expert. If we can achieve this, then (4.3) can be obtained from the regret formula in Lemma 3.2

\subsection*{4.3 Expanding the set of experts}

Assume for a moment that we somehow expand the set of experts into \(E^{\prime} \supset E\) so that:
\(\forall s \in(\gamma, 1 / 2], \exists e \in E^{\prime}\) such that for all \(t \in[T], \xi_{t}^{e}=\mathcal{T}_{s} q_{t}\).
Then clearly (4.3) would be satisfied using Lemma 3.2, (4.1) and \(L_{T}^{*} \leq L_{T}^{s}\) (the loss of an expert should be no
better than the loss of the best expert \(L_{T}^{*}\) ).
There are two issues with condition (4.4) first, it selfreferential, in the sense that it assumes \(\left\{\xi_{t}^{e}\right\}_{e \in E^{\prime}}\) satisfies a certain form depending on \(q_{t}\) while \(q_{t}\) is defined via \(\left\{\xi_{t}^{e}\right\}_{e \in E^{\prime}}\) (recall (2.2)); and second, it potentially requires to have an infinite number of experts (one for each \(s \in(\gamma, 1 / 2])\).
Let us first deal with the second issue via discretization.
Lemma 4.3. In the same setting as Lemma 4.2 there exists \(s \in S \stackrel{\text { def }}{=}(\gamma, 1 / 2] \cap \frac{1}{2 T} \mathbb{N}\) such that
\[
m-M \leq \frac{1+L_{T}-L_{T}^{s}}{\gamma}
\]

Proof. For \(x \in \mathbb{R}\) let \(\underline{x}\) be the smallest element in \([x,+\infty) \cap \frac{1}{2 T} \mathbb{N}\). For any \(s \in S\) we can rewrite (4.2) as (note that \(x \leq s \Leftrightarrow \underline{x} \leq s\) )
\(\left\langle\mathcal{T}_{s} q_{t}-q_{t}, \bar{\ell}_{t}\right\rangle=\mathbb{1}\left\{\underline{q_{t}(2)} \leq s\right\} \underline{q_{t}(2)}\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right)+\varepsilon_{t, s}\), where \(\left|\varepsilon_{t, s}\right| \leq 1 / 2 T\). Using the same proof of Lemma 4.2, and redefining
\[
f(s) \stackrel{\text { def }}{=} \mathbb{E} \sum_{t=1}^{T} \mathbb{1}\left\{\underline{q_{t}(2)} \leq s\right\}\left(\bar{\ell}_{t}(1)-\bar{\ell}_{t}(2)\right)
\]
we get that there exists \(s_{1}, \ldots, s_{m} \in S \stackrel{\text { def }}{=}\left(\gamma, \frac{1}{2}\right] \cap \frac{1}{2 T} \mathbb{N}\) and \(\varepsilon \in[-1,1]\) such that
\[
L_{T}-L_{T}^{s}=\varepsilon+\sum_{i=1}^{m} s_{i}\left(f\left(s_{i-1}\right)-f\left(s_{i}\right)\right)
\]

The rest of the proof now follows from the same proof of Lemma 4.2, except that we minimize \(f(s)\) over \(s \in S\) instead of \(s \in\left[\gamma, \frac{1}{2}\right]\).

Thus, instead of (4.4) we only need to require
\[
\begin{equation*}
\forall s \in S, \exists e \in E^{\prime} \text { such that for all } t \in[T], \xi_{t}^{e}=\mathcal{T}_{s} q_{t} \tag{4.5}
\end{equation*}
\]

We now resolve the self-referentiality of (4.5) by defining simultaneously \(q_{t}\) and \(\xi_{t}^{e}, e \in S\) as follows. Consider the map \(F_{t}:[0,1 / 2] \rightarrow[0,1 / 2]\) defined by:
\[
\begin{aligned}
F_{t}(x) & =\frac{1}{\sum_{e \in E} w_{t}(e)+\sum_{s \in S} w_{t}(s)} \\
& \times\left(\sum_{e \in E} w_{t}(e) \xi_{t}^{e}(2)+\sum_{s \in S} w_{t}(s) x \mathbb{1}\{x>s\}\right)
\end{aligned}
\]

It suffices to find a fixed point \(x=F_{t}(x)\) : indeed, setting \(q_{t} \stackrel{\text { def }}{=}(1-x, x)\) and
\[
\xi_{t}^{s}(2) \stackrel{\text { def }}{=} x \mathbb{1}\{x>s\}=\mathcal{T}_{s} q_{t} \text { for } s \in S
\]
we have both (4.5) holds and \(q_{t}=\frac{1}{\left\|w_{t}\right\|_{1}} \sum_{e \in E^{\prime}} w_{t}(e) \cdot \xi_{t}^{e}\) is the correct weighted average of expert advices in \(E^{\prime}=\) \(E \cup S\)
Finally, \(F_{t}\) has a fixed point since it is a nondecreasing function from a closed interval to itself. It is also not hard to find such a point algorithmically.

This concludes the (slightly informal) proof for \(K=2\). We give the complete proof for arbitrary \(K\) in the next section.

\section*{5 Proof of Theorem 1.1}

In this section, we assume \(q_{t} \in \Delta_{K}\) satisfies (2.2) and we defer the constructive proof of finding \(q_{t}\) to Section 6 Recall the arm index has no real meaning so without loss of generality we have permuted the arms so that
\[
\zeta_{t}(1) \geq \zeta_{t}(2) \leq \ldots \geq \zeta_{t}(K) \quad \text { for each } t=1,2, \ldots, T
\]

We refer to \(\left\{1,2, \ldots, k_{t}\right\}\) the set of majority arms and \(\left\{k_{t}+1, \ldots, K\right\}\) the set of minority arms at round \(t{ }^{2}\) We let \(M \stackrel{\text { def }}{=} \sum_{t=1}^{T} \mathbb{E} \sum_{i \leq k_{t}} \bar{\ell}_{t}(i)\) and \(m \stackrel{\text { def }}{=} \sum_{t=1}^{T} \mathbb{E} \sum_{i>k_{t}} \bar{\ell}_{t}(i)\) respectively be the total loss of the majority and minority arms. We again have
\[
\begin{equation*}
\mathbb{E} \sum_{t=1}^{T}\left\|\bar{\ell}_{t}\right\|_{2}^{2} \leq \mathbb{E} \sum_{t=1}^{T} \sum_{i \in[K]} \bar{\ell}_{t}(i)=M+m \tag{5.1}
\end{equation*}
\]

Thus, the whole game to prove (3.2) is to upper bound \(M\) and \(m\).

\subsection*{5.1 Useful properties}

We state a few properties about \(q_{t}\) and its truncations.
Lemma 5.1. In each round \(t=1,2, \ldots, T\), if \(q_{t}\) satisfies (2.2), then for every \(s \in S\) and \(i \leq k_{t}\) :
\[
\xi_{t}^{s}(i)=\frac{\zeta_{t}(i)}{\sum_{j \leq k} \zeta_{t}(j)} \cdot\left(1-\sum_{j>k} \xi_{t}^{s}(j)\right)
\]

Proof. Let \(i \leq k_{t}\) and \(s \in S\). By (2.1) and since \(\xi_{t}^{s}=\) \(\mathcal{T}_{s}^{k_{t}} q_{t}\) one has
\[
\xi_{t}^{s}(i)=\frac{q_{t}(i)}{\sum_{j \leq k} q_{t}(j)} \sum_{j \leq k} \xi_{t}^{s}(j)
\]

Moreover \(q_{t}\) is a mixture of \(\zeta_{t}\) and truncated versions of \(\zeta_{t}\) so similarly using (2.1) one has
\[
q_{t}(i)=\frac{\zeta_{t}(i)}{\sum_{j \leq k} \zeta_{t}(j)} \sum_{j \leq k} q_{t}(j)
\]

Putting the two above displays together concludes the proof.

Lemma 5.2. In each round \(t=1,2, \ldots, T\), if \(q_{t}\) satisfies (2.2) then
- for every \(i>k_{t}\) it satisfies \(q_{t}(i) \leq \zeta_{t}(i)\), and
- for every \(i \leq k_{t}\) it satisfies \(q_{t}(i) \geq \zeta_{t}(i) \geq \frac{1}{2 K}\).

Proof. For sake of notation we drop the index \(t\) in this proof. Recall \(q=\sum_{e \in E \cup S} \frac{w(e)}{\|w\|_{1}} \cdot \xi^{e}\).
- For every minority arm \(i>k\), every \(s \in S\), we have \(\xi^{s}(i)=\left(\mathcal{T}_{s}^{k} q\right)(i) \leq q(i)\) according to Definition 2.1

\footnotetext{
\({ }^{2}\) We stress that in the \(K\)-arm setting, although \(k_{t}\) is the minimum index such that \(\zeta_{t}(1)+\cdots+\zeta_{t}\left(k_{t}\right) \geq \frac{1}{2}\), it may not be the minimum index so that \(q_{t}(1)+\cdots+q_{t}\left(k_{t}\right) \geq \frac{1}{2}\).
}

Therefore, we must have \(q(i)=\sum_{e \in E \cup S} \frac{w(e)}{\|w\|_{1}}\). \(\xi^{e}(i) \leq \frac{\sum_{e \in E} w(e) \xi^{e}(i)}{\sum_{e \in E} w(e)}=\zeta(i)\).
- For every majority arm \(i \leq k\), we have (using Lemma 5.1)
\[
\begin{aligned}
\xi^{e}(i)= & \frac{\zeta(i)}{\sum_{j \leq k} \zeta(j)} \cdot\left(1-\sum_{j>k} \xi^{s}(j)\right) \\
& \geq \frac{\zeta(i)}{\sum_{j \leq k} \zeta(j)} \cdot\left(1-\sum_{j>k} \zeta(j)\right)=\zeta(i)
\end{aligned}
\]

From the definition of \(k=\min \{i \in\) \(\left.[K]: \sum_{j \leq i} \zeta(j) \geq \frac{1}{2}\right\}\), we can also conclude \(\zeta(i) \geq \zeta(k) \geq \frac{1}{2 K}\). This is because \(\frac{1}{2} \leq \sum_{j>k} \zeta(\bar{j}) \leq K \zeta(k)\).

The next lemma shows that setting \(p_{t}=\mathcal{T}_{\gamma}^{k_{t}} q_{t}\) satisfies the assumption of Lemma 3.2.
Lemma 5.3. If \(q_{t}\) satisfies (2.2) \(\gamma \in\left(0, \frac{1}{2}\right]\) and \(p_{t}=\) \(\mathcal{T}_{\gamma}^{k_{t}} q_{t}\), then for every arm \(i \in[K]\) :
\((1-2 K \gamma) p_{t}(i) \leq q_{t}(i) \quad\) and \(\quad p_{t}(i) \neq 0 \Rightarrow p_{t}(i) \geq q_{t}(i)\).
Proof. For sake of notation we drop the index \(t\) in this proof.
By Definition 2.1 and Lemma 5.2, we have for every \(i \in\) [K]:
\[
\begin{aligned}
p(i) & \leq q(i)\left(1+\frac{\sum_{j: j>k \wedge q(j) \leq \gamma} q(j)}{\sum_{j \leq k} q(j)}\right) \\
& \leq q(i)\left(1+\frac{\sum_{j: q(j) \leq \gamma} q(j)}{\sum_{j \leq k} \zeta(j)}\right) \leq q(i)(1+2 K \gamma) .
\end{aligned}
\]

The other statement follows because whenever \(p(i) \neq 0\), Definition 2.1 says it must satisfy \(p(i) \geq q(i)\).

\subsection*{5.2 Bounding \(m\) and \(M\)}

We first upper bound \(M\) and then upper bound \(m\).
Lemma 5.4. If \(q_{t}\) satisfies (2.2) then \(M \leq 2 K L_{T}\).
Proof. Using Lemma 5.2 we have \(q_{t}(i) \geq \frac{1}{2 K}\) for any \(i \leq\) \(k_{t}\). Also, \(p_{t}(i) \geq q_{t}(i)\) for every \(i\) satisfying \(\bar{\ell}_{t}(i)>0\) (owing to Definition 3.1 and Lemma 5.3). Therefore,
\[
\begin{aligned}
M & =\sum_{t=1}^{T} \mathbb{E} \sum_{i \leq k_{t}} \bar{\ell}_{t}(i) \leq 2 K \sum_{t=1}^{T} \mathbb{E} \sum_{i \leq k_{t}} q_{t}(i) \cdot \bar{\ell}_{t}(i) \\
& \leq 2 K \sum_{t=1}^{T} \mathbb{E} \sum_{i \leq k_{t}} p_{t}(i) \cdot \bar{\ell}_{t}(i) \leq 2 K \sum_{t=1}^{T} \mathbb{E}\left\langle p_{t}, \bar{\ell}_{t}\right\rangle \\
& =2 K \sum_{t=1}^{T} \mathbb{E}\left\langle p_{t}, \ell_{t}\right\rangle=2 K L_{T} .
\end{aligned}
\]

Lemma 5.5. Suppose \(q_{t}\) satisfies (2.2) and denote by \(L_{t}^{s} \stackrel{\text { def }}{=} \mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{s}^{k_{t}} q_{t}, \ell_{t}\right\rangle=\mathbb{E} \sum_{t=1}^{T}\left\langle\xi_{t}^{s}, \ell_{t}\right\rangle\) the total
expected loss of \(q_{t}\) truncated to \(s\). Then, as long as \(m-2 K L_{T}>0\),
\(\exists s \in(\gamma, 1 / 2] \cap \frac{1}{2 T} \mathbb{N}: \quad m-2 K L_{T} \leq \frac{1+L_{T}-L_{T}^{s}}{\gamma}\).
Proof. The proof is a careful generalization of the proof of Lemma 4.3 (which in turn is just a discretization of the proof of Lemma 4.2). Recall the notation \(\underline{x}\) for the smallest element in \([x,+\infty) \cap \frac{1}{2 T} \mathbb{N}\), and observe that for \(s \in \frac{1}{2 T} \mathbb{N}\), \(x \leq s \Leftrightarrow \underline{x} \leq s\).
Denote by
\[
\ell_{t}^{\text {maj }} \stackrel{\text { def }}{=} \sum_{i \leq k_{t}} \frac{q_{t}(i)}{\sum_{j \leq k_{t}} q_{t}(j)} \bar{\ell}_{t}(i)
\]
the weighted loss of the majority arms at round \(t\). We have \(\sum_{t=1}^{T} \ell_{t}^{\text {maj }} \leq 2 L_{T}\) because \(\sum_{j \leq k_{t}} q_{t}(j) \geq \sum_{j \leq k_{t}} \zeta_{t}(j) \geq\) \(\frac{1}{2}\) and \(q_{t}(i) \leq p_{t}(i)\) whenever \(\bar{\ell}_{t}(i)>0\) (owing to Definition 3.1 and Lemma 5.3).
Now, for any \(s \geq \gamma\), define the function
\[
f(s) \stackrel{\text { def }}{=} \mathbb{E} \sum_{t=1}^{T} \sum_{i>k_{t}} \mathbb{1}\left\{\underline{q_{t}(i)} \leq s\right\}\left(\ell_{t}^{\text {maj }}-\bar{\ell}_{t}(i)\right)
\]

Let us pick \(s \in[\gamma, 1 / 2] \cap \frac{1}{2 T} \mathbb{N}\) to minimize \(f(s)\), and breaking ties by choosing the smaller value of \(s\). We make several observations:
- \(f(\gamma) \geq 0\) because for any \(t\) and \(i>k_{t}\) with \(q_{t}(i) \leq \gamma\) we must have \(p_{t}(i)=\left(\mathcal{T}_{\gamma}^{k_{t}} q_{t}\right)(i)=0\) and thus \(\bar{\ell}_{t}(i)=\) 0 by the definition of \(\bar{\ell}_{t}\) in Definition 3.1 .
- \(f(1 / 2)=\sum_{t=1}^{T}\left(K-k_{t}\right) \ell_{t}^{\text {maj }}-m \leq 2 K L_{T}-m<0\).
- \(s>\gamma\) because \(f(s) \leq f(1 / 2)<0\).

Let us define the points \(s_{0} \stackrel{\text { def }}{=} \gamma\) and
\[
\left\{s_{1}<\ldots<s_{m}\right\} \stackrel{\text { def }}{=}(\gamma, s] \cap \bigcup_{i \in[K]}\left\{\underline{q_{1}(i)}, \ldots, \underline{q_{T}(i)}\right\}
\]

Note that the tie-breaking rule for the choice of \(s\) ensures \(s_{m}=s\) (if \(s_{m}<s\) then it must satisfy \(f\left(s_{m}\right)=f(s)\) giving a contradiction).
Observe that by definition of the truncation operator, one has
\[
\left\langle\mathcal{T}_{s}^{k_{t}} q_{t}-q_{t}, \bar{\ell}_{t}\right\rangle=\sum_{i>k_{t}} \mathbb{1}\left\{q_{t}(i) \leq s\right\} q_{t}(i)\left(\ell_{t}^{\mathrm{maj}}-\bar{\ell}_{t}(i)\right)
\]

In fact, after rounding, one can rewrite the above for some \(\varepsilon_{s, t} \in\left[-\frac{1}{2 T}, \frac{1}{2 T}\right]\) as
\[
\left\langle\mathcal{T}_{s}^{k_{t}} q_{t}-q_{t}, \bar{\ell}_{t}\right\rangle=\varepsilon_{s, t}+\sum_{i>k_{t}} \mathbb{1}\left\{\underline{q_{t}(i)} \leq s\right\} \underline{q_{t}(i)}\left(\ell_{t}^{\mathrm{maj}}-\bar{\ell}_{t}(i)\right)
\]

Then, for some \(\varepsilon \in[-1,1]\), one has
\[
\begin{aligned}
& L_{T}-L_{T}^{s}=\mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{\gamma}^{k_{t}} q_{t}-\mathcal{T}_{s}^{k_{t}} q_{t}, \ell_{t}\right\rangle \\
= & \mathbb{E} \sum_{t=1}^{T}\left\langle\mathcal{T}_{\gamma}^{k_{t}} q_{t}-\mathcal{T}_{s}^{k_{t}} q_{t}, \bar{\ell}_{t}\right\rangle
\end{aligned}
\]
\[
\begin{aligned}
& =\varepsilon+\mathbb{E} \sum_{t=1}^{T} \sum_{i>k_{t}}\left(\mathbb{1}\left\{\underline{q_{t}(i)} \leq \gamma\right\}-\mathbb{1}\left\{\underline{q_{t}(i)} \leq s\right\}\right) \underline{q_{t}(i)}\left(\ell_{t}^{\text {maj }}-\right. \\
& =\varepsilon+\mathbb{E} \sum_{j=1}^{m} \sum_{t=1}^{T} \sum_{i>k_{t}}-s_{j} \mathbb{1}\left\{\underline{q_{t}(i)}=s_{j}\right\}\left(\ell_{t}^{\mathrm{maj}}-\bar{\ell}_{t}(i)\right) \\
& =\varepsilon+\sum_{j=1}^{m} s_{j}\left(f\left(s_{j-1}\right)-f\left(s_{j}\right)\right) \\
& =\varepsilon+\sum_{j=1}^{m-1}\left(s_{j+1}-s_{j}\right) f\left(s_{j}\right)+s_{1} f\left(s_{0}\right)-s_{m} f\left(s_{m}\right) .
\end{aligned}
\]

Since \(f\left(s_{0}\right)=f(\gamma) \geq 0, f\left(s_{i}\right) \geq f(s)\) and \(s=s_{m}\), we conclude that
\[
\begin{aligned}
L_{T}-L_{T}^{s} \geq & \varepsilon+\left(s_{m}-s_{1}\right) f\left(s_{m}\right)-s_{m} f\left(s_{m}\right) \\
& =\varepsilon-s_{1} f\left(s_{m}\right) \geq \gamma\left(m-2 K L_{T}\right)
\end{aligned}
\]

\subsection*{5.3 Putting all together}

Finally, using Lemma 3.2 (which applies thanks to Lemma 5.3), (5.1) and \(L_{T}^{*} \leq L_{T}^{s}\) (the loss of an expert is no better than the loss of the best expert \(L_{T}^{*}\) ), we have
\[
\begin{equation*}
L_{T}-L_{T}^{s} \leq O\left(\frac{\log \left(\left|E^{\prime}\right|\right)}{\eta}+\eta(m+M)+\gamma K L_{T}\right) \tag{5.2}
\end{equation*}
\]

Putting this into Lemma 5.5 and then using \(M \leq 2 K L_{T}\) from Lemma 5.4, we have for any \(\gamma \geq 2 \eta\),
\[
\gamma(m+M) \leq O\left(\frac{\log \left(\left|E^{\prime}\right|\right)}{\eta}+\gamma K L_{T}\right)
\]

Putting this into (5.1) we immediately get (3.2) as desired. This finishes the proof of Theorem 1.1 It only remains to ensure that \(q_{t}\) verifying (2.2) indeed exists. We provide an algorithm for this in Section 6

\section*{6 Algorithmic Process to Find \(q_{t}\)}

In this section, we answer the question of how to algorithmically find \(q_{t}\) satisfying the implicitly definition (2.2) We recall (2.2):
\[
\begin{align*}
q_{t}= & \frac{1}{\sum_{e \in E} w_{t}(e)+\sum_{s \in S} w_{t}(s)} \\
& \times\left(\sum_{e \in E} w_{t}(e) \xi_{t}^{e}+\sum_{s \in S} w_{t}(s) \mathcal{T}_{s}^{k_{t}} q_{t}\right) . \tag{2.2}
\end{align*}
\]

We show the following general lemma:
Lemma 6.1. Given \(k \in[K]\), a finite subset \(S \subset\left[0, \frac{1}{2}\right]\), \(\zeta \in \Delta_{K}\) with \(\zeta(1) \geq \cdots \geq \zeta(K)\), and \(W \in \Delta_{1+|S|}\), Algorithm 2 finds some \(q \in \Delta_{K}\) such that
\[
q=W(1) \zeta+\sum_{s \in S} W(s) \mathcal{T}_{s}^{k} q
\]

Furthermore, Algorithm 2 runs in time \(O(K \cdot|S|)\).
We observe that by setting \(k=k_{t}\),
\[
\zeta=\zeta_{t}=\frac{\sum_{e \in E} w_{t}(e) \cdot \xi_{t}^{e}}{\sum_{e \in E} w_{t}(e)}, \quad W(1)=\frac{\sum_{e \in E} w_{t}(e)}{\left\|w_{t}\right\|_{1}}
\]
and \(\forall s \in S: W(s)=\frac{w_{t}(s)}{\left\|w_{t}\right\|_{1}}\) in Lemma 6.1, we immediately obtain a vector \(q \in \Delta_{K}\) that we can use as \(q_{t}\).

Intuition for Lemma 6.1 We only search for \(q\) that is htion plies \(\mathcal{T}_{s}^{k} q\) is also non-increasing for minority arms. In symbols: \(q(k+1) \geq \cdots \geq q(K)\) and
\[
\left(\mathcal{T}_{s}^{k} q\right)(k+1) \geq \cdots \geq\left(\mathcal{T}_{s}^{k} q\right)(K)
\]

Due to such monotonicity, when computing \(\mathcal{T}_{s}^{k} q\) for each \(s \in S\), there must exist some index \(\pi_{s} \in\{k+1, k+\) \(2, \ldots, K+1\}\) such that the entry \(q(i)\) gets zeroed out for all \(i \geq \pi_{s}\)
or in symbols, \(\left(\mathcal{T}_{s}^{k} q\right)(i)=0\) for all \(i \geq \pi_{s}\).
Now, the main idea of Algorithm 2 is to search for such non-increasing function \(\pi: S \rightarrow[K+1]\). It initializes itself with \(\pi_{s}=k+1\) for all \(s \in S\), and then tries to increase \(\pi\) coordinate by coordinate.
For each choice of \(\pi\), Algorithm 2 computes a candidate distribution \(q_{\pi} \in \Delta_{K}\) which satisfies
\[
\begin{equation*}
q_{\pi}=W(1) \zeta+\sum_{s \in S} W(s) u_{s} \tag{6.1}
\end{equation*}
\]
where each \(u_{s}\) is \(q_{\pi}\) but truncated so that its probabilities after \(\pi_{s}\) are redistributed to the first \(k\) arms, or in symbols,
\[
u_{s}(i)= \begin{cases}0, & i \geq \pi_{s} \\ q_{\pi}(i), & \pi_{s}>i>k \\ q_{\pi}(i) \cdot\left(1+\frac{\sum_{j: j \geq \pi_{s}} q_{\pi}(j)}{\sum_{j \leq k} q_{\pi}(j)}\right), & i \leq k\end{cases}
\]

One can verify that the distribution \(q_{\pi} \in \Delta_{K}\) defined in Line 3 of Algorithm 2 is an explicit solution to (6.1) Unfortunately, each \(u_{s}\) may not satisfy \(\mathcal{T}_{s}^{k} q_{\pi}=u_{s}\). In particular, there may exist
some \(s \in S\) and \(i>k\) such that \(q_{\pi}(i)>s\) but \(u_{s}(i)=0\).
This means, we may have truncated too much for expert \(s\) in defining \(u_{s}\), and we must increase \(\pi_{s}\).
Perhaps not very surprisingly, if each iteration we only increase one \(\pi_{s}\) by exactly 1 , then we never overshoot and there exists a moment when \(q=q_{\pi}\) exactly satisfies
\[
q=W(1) \zeta+\sum_{s \in S} W(s) \mathcal{T}_{s}^{k} q
\]

We now give a formal proof of Lemma 6.1.

\subsection*{6.1 Proof details}

Claim 6.2. We claim some properties about Algorithm 2
(a) The process finishes after at most \(K \cdot|S|\) iterations.
(b) We always have \(q_{\pi}(k+1) \geq \cdots \geq q_{\pi}(K)\).
(c) As \(\pi\) changes, for each minority arm \(i>k, q_{\pi}(i)\) never decreases.
(d) When the while loop ends, for each \(i>k\) and \(s \in S\), we have \(q_{\pi}(i)>s \Longleftrightarrow \pi_{s}>i\).
The proof of Claim 6.2 can be found in the full version.
Proof of Lemma 6.1 Suppose in the end of Algorithm 2 we obtain \(q=q_{\pi}\) for some \(\pi: S \rightarrow[K+1]\). Let \(\xi^{s}=\mathcal{T}_{s}^{k} q\)
```

Algorithm 2
Input: $k \in[K]$, a finite set $S \subseteq\left[0, \frac{1}{2}\right], \zeta \in \Delta_{K}$ with $\zeta(1) \geq \cdots \geq \zeta(K)$, and $W \in \Delta_{1+|S|}$
Output: $q \in \Delta_{K}$ such that $q=W(1) \zeta+\sum_{s \in S} W(s) \mathcal{T}_{s}^{k} q$.
initialize $\pi: S \rightarrow[K+1]$ as $\pi_{s}=k+1 ; \quad \diamond$ will ensure $\pi_{s} \in\{k+1, k+2, \ldots, K+1\}$
while true do
$q_{\pi}(i) \leftarrow\left\{\begin{array}{ll}\frac{W(1)}{1-\sum_{s \in S \wedge \pi_{s}>i} W(s)} \cdot \zeta(i), & \text { if } i>k ; \\ \sum_{j \leq k} \zeta(j) \\ \hline\left(1-\sum_{j>k} q_{\pi}(j)\right), & \text { if } i \leq k .\end{array} \quad \diamond q_{\pi} \in \Delta_{K}\right.$
Pick any $s \in S$ with $\pi_{s} \leq K$ such that $q_{\pi}\left(\pi_{s}\right)>s$.
if s is not found then break
else $\pi_{s} \leftarrow \pi_{s}+1$.
end while
return q_{π}.

```
for each \(s \in S\) and \(q^{\prime}=W(1) \zeta+\sum_{s \in S} W(s) \mathcal{T}_{s}^{k} q\). We need to show \(q=q^{\prime}\). For every minority arm \(i>k\) :
\[
\begin{aligned}
q^{\prime}(i) & \stackrel{(1)}{=} W(1) \cdot \zeta(i)+\sum_{s \in S} W(s) \cdot \xi^{s}(i) \\
& \stackrel{(2)}{=} W(1) \cdot \zeta(i)+\left(\sum_{s \in S \wedge q(i)>s} W(s)\right) \cdot q(i) \\
& \stackrel{(3)}{=} W(1) \cdot \zeta(i)+\left(\sum_{s \in S \wedge \pi_{s}>i} W(s)\right) \cdot q(i) \stackrel{\oplus(4)}{=} q(i) .
\end{aligned}
\]

Above, equality (1) is by the definition of \(q^{\prime}\), equality (2) is by the definition of \(\xi^{s}=\mathcal{T}_{s}^{k} q\), equality (3) follows from Claim 6.2.d, and equality (4) is by definition of \(q(i)=\) \(q_{\pi}(i)=\frac{W(1)}{1-\sum_{s \in S \wedge \pi_{s}>i} W(s)} \cdot \zeta(i)\).
For every majority arm \(i \leq k\),
\[
\begin{align*}
\frac{q^{\prime}(i)}{\zeta(i)} & \stackrel{(1)}{=} W(1) \cdot \frac{\zeta(i)}{\zeta(i)}+\sum_{s \in S} W(s) \cdot \frac{\xi^{s}(i)}{\zeta(i)} \\
& \stackrel{(2)}{=} W(1)+\sum_{s \in S} W(s) \cdot \frac{\sum_{j \leq k} \xi^{s}(j)}{\sum_{j \leq k} \zeta(j)} \tag{6.2}
\end{align*}
\]
where equality (1) is by the definition of \(q^{\prime}\) and equality (2) is because for every \(i \leq k\) it satisfies \(\frac{\xi^{s}(i)}{q(i)}=\frac{\sum_{j \leq k} \xi^{s}(j)}{\sum_{j \leq k} q(j)}\) (using definition of \(\xi^{s}=\mathcal{T}_{s}^{k} q\) ) and for every \(i \leq k\) it satisfies \(\frac{\zeta(i)}{q(i)}=\frac{\sum_{j \leq k} \zeta(j)}{\sum_{j \leq k} q(j)}\) (using definition of \(q=q_{\pi}\) Line 3 of Algorithm 2).
Now, the right hand side of (6.2) is independent of \(i\). Therefore, we can write \(q^{\prime}(i)=C_{1} \cdot \zeta(i)\) for each \(i \leq k\) with some constant \(C_{1}>0\). Our definition of \(q=q_{\pi}\) (see Line 3 of Algorithm 2) ensures that we can also write \(q(i)=C_{2} \cdot \zeta(i)\) for each \(i \leq k\) with some constant \(C_{2}>0\). Therefore, since for every \(i>k\) we have already shown \(q^{\prime}(i)=q(i)\), it must satisfy \(C_{1}=C_{2}\) and therefore \(q^{\prime}(i)=q(i)\) for all \(i \in[K]\).
After proving \(q^{\prime}=q\), we only need to argue about the running time.
If Algorithm 2 is implemented naively, then the total running time is \(O\left((K \cdot|S|)^{2}\right)\) because there are at most \(K \cdot|S|\)
iterations (see Claim 6.2.a) and in each iteration we can compute \(q_{\pi}\) in time \(O(K \cdot|S|)\). In fact it is rather easy to find implicit update rules to make each iteration of Algorithm 2 run in \(O(1)\) time. We give some hints below.
Indeed, if in an iteration some \(\pi_{s}\) is changed from \(i\) to \(i+1\) (recalling \(i>k\) ), then we can update \(q_{\pi}(i)\) in \(O(1)\) time. For each \(j>k\) where \(j \neq i\), we have \(q_{\pi}(j)\) is unchanged. The values of \(q_{\pi}(j)\) for \(j \leq k\) all need to be changed, but they are only changed altogether by the same multiplicative factor (which can again be calculated in \(O(1)\) time).
Finally, to search for \(s \in S\) with \(\pi_{s} \leq K\) and \(q_{\pi}\left(\pi_{s}\right)>s\), we do not need to go through all \(s \in S\). Instead, for each \(i>k\), we maintain "the smallest \(s_{i} \in S\) so that \(q_{\pi}(i)>\) \(s_{i}\)." Then, whenever \(\pi_{s_{i}} \leq i\), that means we can pick \(s=\) \(s_{i}\) because \(q_{\pi}\left(\pi_{s}\right)=q_{\pi}\left(\pi_{s_{i}}\right) \geq q_{\pi}(i)>s_{i}=s\). For such reason, one can maintain a first-in-first-out list to store all values of \(i\) where \(q_{\pi}(i)>s_{i}\). In each iteration of Algorithm 2 we simply pick the first element in list and perform the update. This changes exactly one \(q_{\pi}(j)\) for \(j>k\), and thus may additionally insert one element to list. Therefore, in each iteration we only need \(O(1)\) time to find some \(\pi_{s}\) to increase.

\section*{References}

Agarwal, A., Krishnamurthy, A., Langford, J., Luo, H., and Schapire, R. E. Open problem: First-order regret bounds for contextual bandits. In Kale, S. and Shamir, O. (eds.), Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research, pp. 4-7, Amsterdam, Netherlands, 07-10 Jul 2017. PMLR. URL http://proceedings.mlr. press/v65/agarwal17a.html.

Allenberg, C., Auer, P., Györfi, L., and Ottucsák, G. Hannan consistency in on-line learning in case of unbounded losses under partial monitoring. In Proceedings of the 17th International Conference on Algorithmic Learning Theory (ALT), 2006.

\section*{Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits}

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. The non-stochastic multi-armed bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5 (1):1-122, 2012.

Foster, D. J., Li, Z., Lykouris, T., Sridharan, K., and Tardos, E. Learning in games: Robustness of fast convergence. In Advances in Neural Information Processing Systems (NIPS), pp. 4734-4742, 2016.

Lykouris, T., Sridharan, K., and Tardos, E. Small-loss bounds for online learning with partial information. arXiv preprint arXiv:1711.03639, 2017.

Neu, G. First-order regret bounds for combinatorial semibandits. In Proceedings of the 2015 Conference on Learning Theory (COLT), pp. 1360-1375, 2015.```


[^0]:    *Equal contribution ${ }^{1}$ Microsoft Research AI ${ }^{2}$ Princeton University. Correspondence to: Zeyuan Allen-Zhu [zeyuan@csail.mit.edu](mailto:zeyuan@csail.mit.edu), Sébastien Bubeck [sebubeck@microsoft.com](mailto:sebubeck@microsoft.com), Yuanzhi Li [yuanzhil@cs.princeton.edu](mailto:yuanzhil@cs.princeton.edu).

    Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).
    ${ }^{1}$ The full version of this paper can be found at https:// arxiv.org/abs/1802.03386. The work was done when Yuanzhi Li was a summer intern at Microsoft Research in 2017.

