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Abstract

It is increasingly common in many types of nat-
ural and physical systems (especially biological
systems) to have different types of measurements
performed on the same underlying system. In
such settings, it is important to align the man-
ifolds arising from each measurement in order
to integrate such data and gain an improved pic-
ture of the system; we tackle this problem using
generative adversarial networks (GANs). Recent
attempts to use GANs to find correspondences
between sets of samples do not explicitly per-
form proper alignment of manifolds. We present
the new Manifold Aligning GAN (MAGAN) that
aligns two manifolds such that related points in
each measurement space are aligned. We demon-
strate applications of MAGAN in single-cell bi-
ology in integrating two different measurement
types together: cells from the same tissue are
measured with both genomic (single-cell RNA-
sequencing) and proteomic (mass cytometry) tech-
nologies. We show that MAGAN successfully
aligns manifolds such that known correlations be-
tween measured markers are improved compared
to other recently proposed models.

1. Introduction
We commonly have samples from a pair of related domains
and want to ask the natural question of how samples from
one relate to samples from the other. Our motivational sys-
tem for this is two types of measurements on cells sampled
from the same population in a biological system. It is im-
portant for the discovery of new biology to integrate these
datasets, which are often generated at great cost and ex-
pense. However, a fundamental challenge is that there are
exponentially many possible relationships that could exist
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Figure 1. There are exponentially many mappings that superim-
pose the two manifolds, fooling a GAN’s discriminator. By align-
ing the manifolds, we maintain pointwise correspondences.

between the two domains of measurement and the system
must learn a logical way to map between them.

One way to approach this task to use dual GANs mapping
between each domain. The first of these approaches required
supervised paired examples from each domain, an impracti-
cal demand for many applications (Isola et al., 2016). Re-
cently, there have been attempts at performing the same task
without the supervision of paired data (Zhu et al., 2017; Yi
et al., 2017; Kim et al., 2017; Li et al., 2017). Like these
previous models, MAGAN learns to map between distinct
domains from unsupervised, unpaired data without pretrain-
ing. However, unlike them, MAGAN aligns rather than
superimposes the manifolds of the two domains.

We draw the connection between unsupervised domain map-
ping with dual GANs and the alignment of the domain
manifolds (Domingos, 2012). Much work has framed the
generation problem of GANs as sampling points from this
manifold (Park et al., 2017; Zhu et al., 2016). In the dual
GAN framework, each domain’s GAN learns a mapping that
fools a discriminator by generating a point on the other do-
main’s manifold when given a point on its manifold. There
are exponentially many mappings that produce the same
distribution of outputs from the same distribution of inputs
but do so by mapping different individual input points to
different individual output points. To the GAN’s discrimina-
tor, these mappings are identical. But when we interpret the
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Figure 2. MAGAN’s architecture with two generators, two discriminators, reconstruction loss, and correspondence loss. Domain 1
comprises upright images of 3’s and 7’s, Domain 2 comprises rotated images of 3’s and 7’s.

generator as finding correspondences between domains, we
instead have preferences amongst them.

We motivate our preference for some mappings between
domain manifolds by differentiating between aligning man-
ifolds and superimposing manifolds. A mapping that su-
perimposes two manifolds would make the two indistin-
guishable by making their supports and densities identical.
However, in our setting, we have produced each domain by
measuring cells from the same underlying tissue twice. The
two manifolds could be superimposed without aligning the
two observations of each latent cell. To consider the two
manifolds aligned rather than just superimposed, we require
that a cell’s representation in one manifold be aligned with
that same cell’s representation on the other manifold.

In this paper we propose the novel concept of using adver-
sarial neural networks for alignment of manifolds arising
from different biological experimental data measurement
types. Single-cell biological experiments create many situ-
ations where manifold alignment problems are of interest.
New technologies allow for measurements to be made at
the granularity of each cell, rather than older technologies
which could only acquire aggregate summary statistics for
whole populations of cells. While these instruments allow
us to discover biological phenomena that were not apparent
before, it is a challenge to integrate and analyze this infor-
mation in a unified fashion for biological discovery. Further,
even for the same technology, experiments run on different
days or in different batches can show variations even on the
same populations, possibly due to calibration differences.
In such cases even replicate experiments need alignment

before comparison. Two such technologies that we examine
are single-cell RNA sequencing which measures cells in
thousands of gene (mRNA) dimensions and mass cytom-
etry which measures protein abundances in several dozen
dimensions (Bendall et al., 2012; Klein et al., 2015).

In all of these examples we have two data manifolds with
a latent physical cell being measured analogously in each
manifold. In some applications it might be adequate to
simply superimpose these manifolds in any way. In many
applications though, including the ones demonstrated here,
we would like to be able to align them such that the two
representations of each latent cell are aligned. MAGAN im-
proves upon neural models for manifold alignment by find-
ing the mapping between the manifolds (correspondence)
that models these latent points by penalizing differences in
each point’s representation in the two manifolds.

We summarize the contributions of this paper as follows:

1. The introduction of a novel GAN architecture that
aligns rather than superimposes manifolds to find rela-
tionships between points in two distinct domains

2. The demonstration of novel applications made possible
by the new architecture in the analysis of single-cell
biological data

The rest of this paper is organized as follows. First, there
is a detailed description of the MAGAN architecture. Next,
there is a validation of its performance on artificial data and
the standard MNIST dataset. Then, there are demonstrations
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on three real-world biological applications: mapping be-
tween two replicate cytometry domains, mapping between
two different cytometry domains, and mapping between
one cytometry domain and a single-cell RNA sequencing
domain.

2. Model
2.1. Architecture

MAGAN (Figure 2) is composed of two GANs, each with
a generator network G that takes as input X and outputs a
target dataset X ′. We refer to each generator as a mapping
from the input domain to the output domain. Each generator
attempts to make its output G(X) indistinguishable by D
from X ′. Denote the two datasets X1 and X2. Let the
generator mapping from X1 to X2 be G12 and the generator
mapping from X2 to X1 be G21. The discriminator that
tries to separate true points from mapped ones for the first
domain is D1 and the discriminator doing so for the second
domain is D2.

The loss for G1 on minibatches x1 and x2 is:

x12 = G12(x1)

x121 = G21(x12)

Lr = Lreconstruction = L(x1, x121)

Ld = Ldiscriminator = −Ex1∼PX1
[logD2(x12)]

Lc = Lcorrespondence = L(x1, x12)

LG1 = Lr + Ld + Lc

where L is any loss function, here mean-squared error
(MSE).

Similarly, the loss for G2 is:

x21 = G21(x2)

x212 = G12(x21)

Lr = L(x2, x212)

Ld = −Ex2∼PX2
[logD1(x21)]

Lc = L(x2, x21)

LG2 = Lr + Ld + Lc

The losses for D1 and D2 are:

LD1 = −Ex1∼PX1
[logD1(x1) + logD1(x121)]

−Ex2∼PX2
[log(1−D1(x21))]

LD2 = −Ex2∼PX2
[logD2(x2) + logD2(x212)]

−Ex1∼PX1
[log(1−D2(x12))]

2.2. Correspondence Loss

Previous models included only two restrictions: (1) that the
two generators be able to reconstruct a point after it moves

to the other domain and back, and (2) that the discriminators
not be able to distinguish batches of true and mapped points.
To do this, the generators could learn arbitrarily complex
mappings as long as they superimpose the two manifolds.

To instead enforce the manifolds be fully aligned, MA-
GAN includes a correspondence loss between a point in
its original domain and that point’s representation after be-
ing mapped to the other domain. This correspondence loss
needs to be chosen appropriately for the manifolds in any
particular problem. We propose two such formulations: one
unsupervised and one supervised.

2.2.1. UNSUPERVISED CORRESPONDENCE

In the biological domains considered here, we measure the
same physical system in two different experiments where
a subset of the dimensions in each experiment are shared.
For example, in Section 3.4, we measure the amount of
35 proteins in a physical tissue in the first experiment and
then the amount of 31 proteins in the same physical tis-
sue in a second experiment. Sixteen of the proteins (CD4
for example) are measured in both experiments. Thus, the
pre-mapping amount of CD4 in the first domain should
equal the post-mapping amount of CD4 in the second do-
main. This leverages the information from the domains
partially overlapping while generating a point in the full
space (i.e. the generator maps a first domain point to the full
31-dimensional second domain by preserving the values of
the 16 shared dimensions and then filling in the values of the
15 unique dimensions to make a plausible second domain
point).

Formally, for each shared dimension pair (i, j), the corre-
spondence loss is:

Lc = MSE(G12(x1)j , (x1)i) +MSE(G21(x2)i, (x2)j)

We note that there are many types of relationships between a
dimension in the first domain and a dimension in the second
domain that could define the unsupervised correspondence
loss in other experimental settings. For example, rather
than knowing that two dimensions of the experiment are
identical, we might know that two markers are negatively
correlated. A cell in one domain high in a T cell identifier
like CD8 should not be mapped to a cell in the other domain
high in a B cell identifier like CD19. The unsupervised
correspondence loss can be formulated to enforce this by
penalizing deviations from this known relationship.

2.2.2. SEMI-SUPERVISED CORRESPONDENCE

In the case where no known relationship between the do-
mains is known, the correspondence loss could alternatively
be formulated as a semi-supervised learning setting. Of
course, if each point in X1 already had a known correspon-
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Figure 3. Both models superimpose the manifolds, meaning the first domain (X1) is mapped to the second domain (X2) such that the
dataset of the first domain after mapping (G12(X1)) matches the second domain. Without the correspondence loss, though, this mapping
is arbitrary and thus the relationships found vary. With the correspondence loss, the relationships found are coherent. This is confirmed
with (a) a GAN without correspondence loss on artificial data (b) MAGAN on artificial data (c) a GAN without correspondence loss on
MNIST and (d) MAGAN on MNIST.

dence with a point in X2, no framework of dual GANs
would be necessary to discover relationships. In some do-
mains, though, it is easy to acquire a very small number
of labeled pairs. We would like a model that learns from
unsupervised data but can improve with any small number
of labels that can be acquired. In those situations, we want
to leverage both (1) the information that the unsupervised
model has learned on all of the data and (2) incorporate the
information the labels provide where they exist.

Here we choose the loss function to be nonzero only at the
paired points in each domain. Its value is then the sum of the
losses on each labeled pair, where the loss for a particular
labeled pair (x1i, x2j), x1i ∈ X1, x2j ∈ X2 is:

Lc = MSE(G12(x1i), x2j) +MSE(G21(x2j), x1i)

2.3. Manifold Data Augmentation

MAGAN also utilizes a novel technique for data augmenta-
tion, leveraging the imperfect reconstructions each generator
produces within its domain. It has been well established that
autoencoders model and reconstruct from the data manifold
(Hinton et al., 1997; Vincent et al., 2008). We note that the
dual GANs within each domain function as an autoencoder,
meaning their reconstruction x′i of a sample xi is another
point near the underlying manifold, but importantly x′i 6= xi.
By letting each discriminator see the reconstructions as true
samples from the real domain, we both (1) augment the
original data with new samples from the manifold and (2)
prevent the discriminators from learning to separate real

from generated examples by modeling the noise around
the manifold, which differs between X1 and G21(X2) and
between X2 and G12(X1). This is especially important in
biological settings, where the number of measurements per
cell dwarfs the number of cells measured and dropout in the
measuring process produces sparsity.

3. Experiments
All experiments were performed with the MAGAN frame-
work with discriminators of five layers each and generators
of three layers each. Layer sizes depended on the dataset,
while Leaky ReLU activations were used on all layers ex-
cept the output layers of the discriminators (which were
sigmoid) and the generators (which were linear). Dropout
of 0.9 was applied during training and for images convo-
lutional layers were used. Optimization was performed on
100,000 iterations of batches of size 256 by the ADAM
optimizer with learning rate 0.001.

As with other GANs, the generators and discriminators are
trained alternatively, so they each must get progressively
better as their adversaries make their tasks harder and harder.
One known difficulty in the adversarial training process
is preventing a collapse of the generator into mapping all
inputs to one point, chasing the minimum probability region
of the discriminator as it moves. To combat this, MAGAN
includes the approach outlined in (Salimans et al., 2016).
This involves giving the discriminator access to minibatch
information by having a subset of the network process a
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rotation of the original data matrix.

3.1. Artificial Data

We first test MAGAN on a generated example of points
sampled from Gaussian distributions with varying means.
Figure 3a shows the three subpopulations in the first do-
main X1 in blue and the three in the second domain X2

in red with an example mapping where, without the cor-
respondence loss, each subpopulation in X1 is mapped to
a subpopulation in X2, but not to the closest one. Even
though the distribution of G12(X1) matches the distribution
of X2, for an individual point x1i ∈ X1, G12(x1i) is not the
member of X2 that is most closely analogous to it. MAGAN
finds a mapping that fools the discriminator, too: the one
that least alters the original input (Figure 3b).

Without the correspondence loss, not only is a less-preferred
manifold superimposition chosen, but the one chosen varies
from run to run of the model. We compare the variability
of the learned mappings across multiple runs of each model
with 100 independent trials. In each trial we evaluate the
relationships by calculating G12(x1i) for each x1i ∈ X1

and calculating its nearest neighbor x2j in the real X2. Then,
this is repeated for the other domain. Figure 4a confirms that
for the GAN without the correspondence loss, the learned
manifold superimposition (and thus the correspondences)
varies with repeated training the model. Figure 4b confirms
MAGAN instead aligns the manifolds and finds the same
correspondence every time.

3.2. MNIST

Next we test a subset of the MNIST handwritten digit data
by taking only 3’s and 7’s as the first domain X1, and a
120 degree rotation of each image as the second domain X2.
Without the correspondence loss (Figure 3c), each subpopu-
lation in X1 maps to one of the subpopulations in X2, but
the original 3’s go to the rotated 7’s and vice versa. There is
no term in the objective function to create a preference for
the mapping that sends original 3’s to rotated 3’s. It would
be difficult to define a distance measure that captures the
notion of alignment with these manifolds, but it is a natural
place where a small number of labeled pairs could be easily
acquired. The semi-supervised correspondence loss with
just a single labeled pair of points finds the desired manifold
alignment and gets the correct correspondences for all of
the other points that are unlabeled (Figure 3d).

Using the same simulation design as in the previous section,
we can test the robustness of the models in finding these
particular mappings. The GAN without the correspondence
loss discovers either relationship with roughly even proba-
bility (Figure 4c). Remarkably, MAGAN is able to use the
single labeled example to learn that (except for a few slop-
pily written 3’s that in fact look more like 7’s) the original

Figure 4. In simulations of 100 complete training runs of each
model, without correspondence loss the resulting relationships
learned varied randomly in both the (a) toy and (c) MNIST datasets.
With correspondence loss, the most coherent relationship was
found repeatedly for both (b) toy and (d) MNIST datasets.

Figure 5. Selected markers illustrating large batch effects that sep-
arate the two data manifolds.

3’s correspond to the rotated 3’s and that the original 7’s
correspond to the rotated 7’s every time (Figure 4d).

3.3. Correspondence: CyTOF Replicates

We now test MAGAN on real biological data from single-
cell time-of-flight mass cytometry (CyTOF) measurements
of protein abundance. Each protein, also referred to as a
marker, is measured individually for each cell, allowing for
more granular analysis than processes that only measure
population totals for the cells in a given sample. Here the
same sample was run twice in different batches (replicates),
but due to machine calibration and other experimental de-
tails that are impossible to reproduce precisely each time,
there are distortions between the batches. Thus, even though
the same physical blood sample is being measured, the data
manifold of each batch is different. The type of noise in-
troduced by these distortions is not known a priori, need
not fit any parametric assumption, and is likely to be highly
nonlinear.

To analyze these two batches together, we need to know
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Figure 6. Two distinct populations of T-cells
(CD45RA+CD45RO- and CD45RA-CD45RO+) with
severe dropout in the CD45RA marker that causes a
difference between that between the (a) first batch and (b)
second batch.

Figure 7. (a) Without correspondence loss, the GAN cor-
rects the batch effect but subpopulations are reversed. (b)
MAGAN still corrects the batch effect and subpopulations
are preserved.

which cells in the first batch correspond to which cells in
the second batch. To do this, we learn a mapping with MA-
GAN between the batches, each of which contains 75,000
cells with 34 individual markers measured. Figure 5 shows
that the two batches indeed contain distinct differences in
both the values of each marker and their distribution. For
example, the mean value of HLA-DR in the second batch is
higher than the maximum value in the first batch.

We demonstrate that MAGAN with its correspondence loss
preserves crucial information that is lost with the mapping
from the GAN without the correspondence loss. Often,
analysis starts by identifying subpopulations of interest.
For example, naive T-cells and central memory T-cells
serve distinct functions and can be identified by looking at
two isoforms of the CD45 marker, CD45RA and CD45RO

(Capra et al., 1999). In naive T-cells, CD45RA is present
while CD45RO is not (CD45RA+CD45RO-), and in central
memory T-cells CD45RA is not present while CD45RO is
(CD45RA-CD45RO+). Figure 6a shows that very few cells
had any CD45RA readings in the first batch, a typical case
of instrument-induced dropout. Figure 6b shows proper
readings for CD45RA in the second batch, where the two
distinct subpopulations are clearly seen.

Both models learn a mapping for the first batch of cells x1

such that G12(x1) fools their discriminators by looking like
the second batch of cells x2. However, in the GAN without
the correspondence loss (Figure 7a), naive T-cells in the first
batch are mapped to central memory T-cells in the second
batch and vice versa. If we went through the manual process
of gating (selecting cells by manually looking at relative
marker expression) central memory T-cells in the first batch
and wanted to know whether their expression was similar
in the second batch, we would be led to believe incorrectly
that either there are none of these cells in the second batch
or their expression profile is radically different.

MAGAN learns a different mapping (Figure 6b), the one in
which subpopulation correspondences are preserved. No-
tably, the resulting mapped dataset G12(x1) is not nega-
tively affected by the correspondence loss. Instead, out of
the two mappings that have similar results at the aggregate
level, the one that maintains pointwise correspondences is
learned. With the cell correspondences from other manifold
superimpositions, the wrong biological conclusions could
be made. This application necessitates MAGAN’s manifold
alignment.

3.4. Correspondence: Different CyTOF Panels

Next we demonstrate MAGAN’s ability to align two mani-
folds in domains whose dimensionality only partly overlap.
Despite the other advantages of CyTOF instruments, one
disadvantage is that CyTOF experiments can only measure
the expression of 30-40 markers per cell. Each experiment
chooses which 30-40 markers to measure and refers to this
set as the panel. Even though each panel has a limited
capacity, different panels can be run on different samples
from the same physical blood or tissue. MAGAN provides
the opportunity to combine the results from these multiple
panels and effectively increase the number of expression
measurements acquired for each cell.

To test this, we use the datasets from two experiments pub-
lished in (Setty et al., 2016) where each experiment had
a different panel that was run on samples from the same
population of cells. The first panel measured 35 markers,
the second panel measured 31 markers, and 16 of those were
measured in both. Without any advanced methods, all we
would be able to do across experiments is compare popula-
tion summary statistics — and lose all of the information
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at a single-cell resolution that motivated these experiments
being done in the first place.

If we can identify points in each panel that measure the
same cell, we can combine the measurements and have an
augmented 50-dimensional dataset. To accomplish this, we
take the first experiment’s panel as one domain and the
second experiment’s panel as the other domain and use
MAGAN to learn a mapping between the two. We then
combine the original 35 dimensions of a cell in the first
experiment x1i with the 15 dimensions unique to the second
experiment from that cell after mapping G12(x1i).

For combining the measurements from each experiment to
be meaningful, the mapped point G12(x1i) must correspond
accurately to the true point x2i. This notion can be captured
by taking the correspondence loss function to be the MSE
across the 16 dimensions that are shared between the ex-
periments. In other words, MAGAN should use the shared
measurements to match cells between experiments, and
then learn the required mapping for all of the measurements
that are not shared. Without incorporating this correspon-
dence measure into the model, x1i need not be analogous
to G12(x1i) in any way, and their information could not be
combined.

We evaluate the accuracy of each model’s learned correspon-
dence by removing one of the markers measured in both
experiments, CD3, from the first experiment. Then, we map
points from the first experiment to the second experiment
and evaluate how well the discovered CD3 values corre-
spond with the true, held-out CD3 values for each cell from
the first experiment.

Figure 8a shows that the GAN without the correspondence
loss finds a manifold superimposition that does not preserve
the values of CD3 for each cell accurately. Quantitatively,
we can evaluate this with the correlation coefficient between
the real, held-out CD3 values and the CD3 values predicted
after mapping each point to the other domain. For the GAN
without the correspondence loss (Figure 8a), the correlation
is -.275, while for MAGAN (Figure 8b) it is .801. The
negative correlation means that without the correspondence
loss, the GAN will systematically map cells in one panel to
different cells in the other panel.

We perform cross-validation by repeating this test with each
of the 16 shared markers in turn for the GAN without cor-
respondence loss (Figure 8c) and MAGAN (Figure 8d).
While some of the markers have more shared information
than others and are recovered more accurately, in all cases
the correlation is better with the MAGAN.

If we had not measured one of these in the first experiment,
we would have been able to use the learned value from the
mapping in its place with remarkable accuracy. MAGAN
can powerfully increase the impact of CyTOF experiments

Figure 8. Using MAGAN’s correspondence loss, measurements
from each experiment can be combined. Their true values are
known because they are measured in both experiments. Performing
cross-validation by holding each out from the first experiment, we
can measure the correlation between the predicted value and the
real, correct value.

by expanding their limited capacity of markers that can be
measured at any one time.

3.5. Correspondence: Cytometry and scRNA-seq

To demonstrate MAGAN aligning manifolds of domains
with radically different dimensionality and underlying struc-
ture, we use it to find correspondences between flow cytom-
etry (FACS-sorted) and scRNA-seq measurements made on
the same set of cells. These two types of measurements have
advantages and disadvantages, including the throughput,
quality, and amount of information acquired from each. Be-
ing able to combine their information offers the possibility
of getting the best from each and finding insights that might
not otherwise be obtainable. In order to do this, though, it
is crucial for pointwise correspondences to be accurate, or
else features of a data point in the scRNA-seq domain will
be ascribed to the incorrect point in the cytometry domain
and the relationships will be meaningless.

To test MAGAN in this setting, we use a dataset consisting
of 2830 measurements, where the dimensionality of each
domain is 12 and 12496 for cytometry and scRNA-seq,
respectively (Velten et al., 2017). The scRNA-seq data was
normalized with the inverse hyperbolic sine transform and
preprocessed with MAGIC (van Dijk et al., 2017). Here
we know the true correspondences of which points in the



MAGAN: Aligning Biological Manifolds

Table 1. With MAGAN’s correspondence loss, the accuracy of the
learned mapping is dramatically improved, as measured by the
MSE between the known real point x and the predicted point G(x)
after mapping.

Paired Cytometry
& scRNA-seq GAN MAGAN Modified

LLE

MSE(x1, G21(x2)) 99.3 22.0 10.5

MSE(x2, G12(x1)) 33.7 7.1 2.4

two domains are the same cell. In this setting we use the
semi-supervised correspondence loss and show the impact
of providing the pairing of just 10 cells, which can easily be
acquired via inspection.

We evaluate the quality of the correspondences learned by
calculating the correspondence error, or MSE between the
true known value x1i ∈ X1 and the predicted correspon-
dence G21(x2i). In this semi-supervised setting where we
have some known labels, we compare MAGAN to both the
GAN without correspondence loss and the method of (Ham
et al., 2003) which uses a modification of locally linear em-
beddings for manifold alignment. We first find equal-sized
manifolds for each domain separately. Then, for two ob-
servations we know to be corresponding, we constrain the
point on each manifold to be identical. This aligns the two
manifolds as anchored by the ground truth corresponding
points. Then, in order to obtain correspondences in the
original space rather than the manifold space, we interpo-
late between points in the original space based on a point’s
nearest neighbors in the latent manifold space.

We note that not only is this method only defined in the
semi-supervised setting, it also requires finding the eigen-
vectors of a square matrix of size n = 2830, so cannot
scale to the dataset sizes that neural network approaches
like MAGAN can. Table 1 shows the correspondence error
for the correspondences mapping to and from each domain.
The LLE approach achieves the best error, showing that for
small datasets with some ground truth labels, this method is
preferable. We see that the correspondence loss is necessary
for the GAN framework to perform manifold alignment,
as MAGAN comes much closer to the performance of the
baseline while the GAN is off by an order of magnitude.

4. Discussion
The use of GANs for manifold alignment is well moti-
vated. By virtue of being parallelizable deep learning mod-
els trained with minibatch gradient descent, GANs can work
with massive datasets. In contrast, other methods are graph-
based and involve eigen decomposition of matrices that
scale with the number of data points. Additionally, manifold

alignment methods themselves are not inherently genera-
tive. They align points in the latent space and need to be
augmented with original space interpolation (meaningful
interpolation may not be achievable in all domains), while
GANs explicitly generate points in the original space.

Furthermore, GANs learn a general non-linear mapping be-
tween manifolds that is not limited to any specific assump-
tions such as a linear latent dimension of correspondence
(Butler et al., 2018) or that correlation distance is preserved
across manifolds (Haghverdi et al., 2018).

Outside of GANs, much previous work has been devoted
to the field of manifold alignment. In (Ham et al., 2003;
2005), semi-supervised approaches are used, but the learned
alignments are only defined on the training points, unlike
MAGAN which learns a universal mapping guided by its
semi-supervised loss. In (Wang & Mahadevan, 2008), Pro-
crustes alignment is used to provide extension beyond the
training points. This is still a two-step alignment process,
though, which first finds a manifold for each domain and
then separately aligns them. As such, information from the
original space lost in the reduction to the estimated manifold
is lost and not used in alignment. MAGAN jointly learns
the manifolds and aligns them, allowing each to inform
the other. In (Wang & Mahadevan, 2009), they learn the
manifolds and perform alignment jointly and do so without
semi-supervised correspondences. They do this by matching
the local geometry (thus requiring a meaningful distance
metric in the original space), as opposed to MAGAN’s un-
supervised correspondence loss which can be an arbitrary
function defined over the original spaces.

5. Conclusion
MAGAN discovers relationships between domains by align-
ing their manifolds rather than just superimposing them.
Crucially, this can be used when one system is measured in
two different ways and thus forms two different manifolds.
In this case, the point in each manifold for one object in the
underlying system are linked. This preserves information at
a pointwise (rather than just population aggregate) level.

MAGAN facilitates integration of datasets from multiple bi-
ological modalities. As each type of experiment captures dif-
ferent information with different strengths and weaknesses,
combining them makes possible discoveries that could not
be found otherwise.
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