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Abstract
We examine the impact of learning Lipschitz
continuous models in the context of model-based
reinforcement learning. We provide a novel bound
on multi-step prediction error of Lipschitz models
where we quantify the error using the Wasserstein
metric. We go on to prove an error bound for
the value-function estimate arising from Lipschitz
models and show that the estimated value function
is itself Lipschitz. We conclude with empirical
results that show the benefits of controlling the
Lipschitz constant of neural-network models.

1. Introduction
The model-based approach to reinforcement learning (RL)
focuses on predicting the dynamics of the environment
to plan and make high-quality decisions (Kaelbling et al.,
1996; Sutton & Barto, 1998). Although the behavior of
model-based algorithms in tabular environments is well
understood and can be effective (Sutton & Barto, 1998),
scaling up to the approximate setting can cause instabilities.
Even small model errors can be magnified by the planning
process resulting in poor performance (Talvitie, 2014).

In this paper, we study model-based RL through the lens of
Lipschitz continuity, intuitively related to the smoothness
of a function. We show that the ability of a model to make
accurate multi-step predictions is related to the model’s
one-step accuracy, but also to the magnitude of the Lipschitz
constant (smoothness) of the model. We further show that
the dependence on the Lipschitz constant carries over to the
value-prediction problem, ultimately influencing the quality
of the policy found by planning.

We consider a setting with continuous state spaces and
stochastic transitions where we quantify the distance
between distributions using the Wasserstein metric. We
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introduce a novel characterization of models, referred
to as a Lipschitz model class, that represents stochastic
dynamics using a set of component deterministic functions.
This allows us to study any stochastic dynamic using
the Lipschitz continuity of its component deterministic
functions. To learn a Lipschitz model class in continuous
state spaces, we provide an Expectation-Maximization
algorithm (Dempster et al., 1977).

One promising direction for mitigating the effects of
inaccurate models is the idea of limiting the complexity
of the learned models or reducing the horizon of
planning (Jiang et al., 2015). Doing so can sometimes
make models more useful, much as regularization in
supervised learning can improve generalization performance
(Tibshirani, 1996). In this work, we also examine a type
of regularization that comes from controlling the Lipschitz
constant of models. This regularization technique can be
applied efficiently, as we will show, when we represent the
transition model by neural networks.

2. Background
We consider the Markov decision process (MDP) setting
in which the RL problem is formulated by the tuple
〈S,A, R, T, γ〉. Here, by S we mean a continuous state
space and byA we mean a discrete action set. The functions
R : S×A→ R and T : S × A → Pr(S) denote the reward
and transition dynamics. Finally, γ ∈ [0, 1) is the discount
rate. If |A| = 1, the setting is called a Markov reward
process (MRP).

2.1. Lipschitz Continuity

Our analyses leverage the “smoothness” of various
functions, quantified as follows.

Definition 1. Given two metric spaces (M1, d1) and
(M2, d2) consisting of a space and a distance metric, a
function f : M1 7→M2 is Lipschitz continuous (sometimes
simply Lipschitz) if the Lipschitz constant, defined as

Kd1,d2(f) := sup
s1∈M1,s2∈M1

d2

(
f(s1), f(s2)

)

d1(s1, s2)
, (1)

is finite.
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Figure 1. An illustration of Lipschitz continuity. Pictorially,
Lipschitz continuity ensures that f lies in between the two affine
functions (colored in blue) with slopes K and �K.

Equivalently, for a Lipschitz f ,

∀s1,∀s2 d2

(
f(s1), f(s2)

)
≤ Kd1,d2(f) d1(s1, s2) .

The concept of Lipschitz continuity is visualized in Figure 1.

A Lipschitz function f is called a non-expansion when
Kd1,d2(f) = 1 and a contraction when Kd1,d2(f) < 1.
Lipschitz continuity, in one form or another, has been a
key tool in the theory of reinforcement learning (Bertsekas,
1975; Bertsekas & Tsitsiklis, 1995; Littman & Szepesvári,
1996; Müller, 1996; Ferns et al., 2004; Hinderer, 2005;
Rachelson & Lagoudakis, 2010; Szepesvári, 2010; Pazis
& Parr, 2013; Pirotta et al., 2015; Pires & Szepesvári,
2016; Berkenkamp et al., 2017; Bellemare et al., 2017) and
bandits (Kleinberg et al., 2008; Bubeck et al., 2011). Below,
we also define Lipschitz continuity over a subset of inputs.

Definition 2. A function f : M1 ×A 7→ M2 is uniformly
Lipschitz continuous in A if

KAd1,d2(f) := sup
a∈A

sup
s1,s2

d2

(
f(s1, a), f(s2, a)

)

d1(s1, s2)
, (2)

is finite.

Note that the metric d1 is defined only on M1.

2.2. Wasserstein Metric

We quantify the distance between two distributions using
the following metric:

Definition 3. Given a metric space (M,d) and the set
P(M) of all probability measures on M , the Wasserstein
metric (or the 1st Kantorovic metric) between two
probability distributions µ1 and µ2 in P(M) is defined as

W (µ1, µ2) := inf
j∈Λ

∫ ∫
j(s1, s2)d(s1, s2)ds2 ds1 , (3)

where Λ denotes the collection of all joint distributions j on
M ×M with marginals µ1 and µ2 (Vaserstein, 1969).

Sometimes referred to as “Earth Mover’s distance”,
Wasserstein is the minimum expected distance between
pairs of points where the joint distribution j is constrained
to match the marginals µ1 and µ2. New applications of
this metric are discovered in machine learning, namely in
the context of generative adversarial networks (Arjovsky
et al., 2017) and value distributions in reinforcement
learning (Bellemare et al., 2017).

Wasserstein is linked to Lipschitz continuity using duality:

W (µ1, µ2) = sup
f :Kd;dR (f)≤1

∫ (
f(s)µ1(s)−f(s)µ2(s)

)
ds .

(4)

This equivalence, known as Kantorovich-Rubinstein duality
(Villani, 2008), lets us compute Wasserstein by maximizing
over a Lipschitz set of functions f : S 7→ R, a relatively
easier problem to solve. In our theory, we utilize both
definitions, namely the primal definition (3) and the dual
definition (4).

3. Lipschitz Model Class
We introduce a novel representation of stochastic MDP
transitions in terms of a distribution over a set of
deterministic components.
Definition 4. Given a metric state space (S, dS) and an
action space A, we define Fg as a collection of functions:
Fg = {f : S 7→ S} distributed according to g(f | a) where
a ∈ A. We say that Fg is a Lipschitz model class if

KF := sup
f∈Fg

KdS ,dS (f) ,

is finite.

Our definition captures a subset of stochastic transitions,
namely ones that can be represented as a state-independent
distribution over deterministic transitions. An example is
provided in Figure 2. We further prove in the appendix (see
Claim 1) that any finite MDP transition probabilities can be
decomposed into a state-independent distribution g over a
finite set of deterministic functions f .

Associated with a Lipschitz model class is a transition
function given by:

T̂ (s′ | s, a) =
∑

f

1
(
f(s) = s′

)
g(f | a) .

Given a state distribution µ(s), we also define a generalized
notion of transition function T̂G(· | µ, a) given by:

T̂G(s′ | µ, a) =

∫

s

∑

f

1
(
f(s) = s′

)
g(f | a)

︸ ︷︷ ︸bT (s0|s,a)

µ(s)ds .
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Figure 2. An example of a Lipschitz model class in a gridworld
environment (Russell & Norvig, 1995). The dynamics are such
that any action choice results in an attempted transition in the
corresponding direction with probability 0.8 and in the neighboring
directions with probabilities 0.1 and 0.1. We can define Fg =

ffup, fright, fdown, f leftg where each f outputs a deterministic
next position in the grid (factoring in obstacles). For a = up,
we have: g(fup j a = up) = 0.8, g(fright j a = up) =

g(f left j a = up) = 0.1, and g(fdown j a = up) = 0. Defining
distances between states as their Manhattan distance in the grid,
then 8f sups1,s2

(
d(f(s1), f(s2)

)
/d(s1, s2) = 2, and so KF =

2. So, the four functions and g comprise a Lipschitz model class.

We are primarily interested in KAd,d(T̂G), the Lipschitz
constant of T̂G . However, since T̂G takes as input a
probability distribution and also outputs a probability
distribution, we require a notion of distance between two
distributions. This notion is quantified using Wasserstein
and is justified in the next section.

4. On the Choice of Probability Metric
We consider the stochastic model-based setting and show
through an example that the Wasserstein metric is a
reasonable choice compared to other common options.

Consider a uniform distribution over states µ(s) as shown
in black in Figure 3 (top). Take a transition function TG in
the environment that, given an action a, uniformly randomly
adds or subtracts a scalar c1. The distribution of states
after one transition is shown in red in Figure 3 (middle).
Now, consider a transition model T̂G that approximates TG
by uniformly randomly adding or subtracting the scalar
c2. The distribution over states after one transition using
this imperfect model is shown in blue in Figure 3 (bottom).
We desire a metric that captures the similarity between the
output of the two transition functions. We first consider
Kullback-Leibler (KL) divergence and observe that:

KL
(
TG(· | µ, a), T̂G(· | µ, a)

)

:=

∫
TG(s′ | µ, a) log

TG(s′ | µ, a)

T̂G(s′ | µ, a)
ds′ =∞ ,

unless the two constants are exactly the same.

c1

c2

1

1

2

1

4

1

4

µ(s)

TG(.|µ, a)

bTG(.|µ, a)

Figure 3. A state distribution µ(s) (top), a stochastic environment
that randomly adds or subtracts c1 (middle), and an approximate
transition model that randomly adds or subtracts a second scalar
c2 (bottom).

The next possible choice is Total Variation (TV) defined as:

TV
(
TG(· | µ, a), T̂G(· | µ, a)

)

:=
1

2

∫ ∣∣TG(s′ | µ, a)− T̂G(s′ | µ, a)
∣∣ds′ = 1 ,

if the two distributions have disjoint supports regardless of
how far the supports are from each other.

In contrast, Wasserstein is sensitive to how far the constants
are as:

W
(
TG(· | µ, a), T̂G(· | µ, a)

)
= |c1 − c2| .

It is clear that, of the three, Wasserstein corresponds best
to the intuitive sense of how closely TG approximates
T̂G . This is particularly important in high-dimensional
spaces where the true distribution is known to usually lie in
low-dimensional manifolds. (Narayanan & Mitter, 2010)

5. Understanding the Compounding Error
Phenomenon

To extract a prediction with a horizon n > 1, model-based
algorithms typically apply the model for n steps by taking
the state input in step t to be the state output from
the step t − 1. Previous work has shown that model
error can result in poor long-horizon predictions and
ineffective planning (Talvitie, 2014; 2017). Observed even
beyond reinforcement learning (Lorenz, 1972; Venkatraman
et al., 2015), this is referred to as the compounding error
phenomenon. The goal of this section is to provide a bound
on multi-step prediction error of a model. We formalize the
notion of model accuracy below:

Definition 5. Given an MDP with a transition function
T , we identify a Lipschitz model Fg as ∆-accurate if its
induced T̂ satisfies:

∀s ∀a W
(
T̂ (· | s, a), T (· | s, a)

)
≤ ∆ .
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We want to express the multi-step Wasserstein error in
terms of the single-step Wasserstein error and the Lipschitz
constant of the transition function T̂G . We provide a bound
on the Lipschitz constant of T̂G using the following lemma:

Lemma 1. A generalized transition function T̂G induced by
a Lipschitz model class Fg is Lipschitz with a constant:

KAW,W (T̂G) := sup
a

sup
µ1,µ2

W
(
T̂G(·|µ1, a), T̂G(·|µ2, a)

)

W (µ1, µ2)
≤KF

Intuitively, Lemma 1 states that, if the two input
distributions are similar, then for any action the output
distributions given by T̂G are also similar up to a KF factor.
We prove this lemma, as well as the subsequent lemmas, in
the appendix.

Given the one-step error (Definition 5), a start state
distribution µ and a fixed sequence of actions a0, ..., an−1,
we desire a bound on n-step error:

δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)
,

where T̂nG (·|µ) := T̂G(·|T̂G(·|...T̂G(·|µ, a0)..., an−2), an−1)︸ ︷︷ ︸
n recursive calls

and TnG (· | µ) is defined similarly. We provide a useful
lemma followed by the theorem.

Lemma 2. (Composition Lemma) Define three metric
spaces (M1, d1), (M2, d2), and (M3, d3). Define Lipschitz
functions f : M2 7→M3 and g : M1 7→M2 with constants
Kd2,d3(f) and Kd1,d2(g). Then, h : f ◦ g : M1 7→ M3 is
Lipschitz with constant Kd1,d3(h) ≤ Kd2,d3(f)Kd1,d2(g).

Similar to composition, we can show that summation
preserves Lipschitz continuity with a constant bounded by
the sum of the Lipschitz constants of the two functions. We
omitted this result due to brevity.

Theorem 1. Define a ∆-accurate T̂G with the Lipschitz
constant KF and an MDP with a Lipschitz transition
function TG with constant KT . Let K̄ = min{KF ,KT }.
Then ∀n ≥ 1:

δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)
≤ ∆

n−1∑

i=0

(K̄)i .

Proof. We construct a proof by induction. Using
Kantarovich-Rubinstein duality (Lipschitz property of f
not shown for brevity) we first prove the base of induction:

δ(1) := W
(
T̂G(· | µ, a0), TG(· | µ, a0)

)

:= sup
f

∫ ∫ (
T̂ (s′ | s, a0)−T (s′ | s, a0)

)
f(s′)µ(s) ds ds′

≤
∫

sup
f

∫ (
T̂ (s′|s, a0)−T (s′|s, a0)

)
f(s′) ds′

︸ ︷︷ ︸
=W
(bT (·|s,a0),T (·|s,a0)

)
due to duality (4)

µ(s) ds

=

∫
W
(
T̂ (· | s, a0), T (· | s, a0)

)
︸ ︷︷ ︸

≤∆ due to Definition 5

µ(s) ds

≤
∫

∆ µ(s) ds = ∆ .

We now prove the inductive step. Assuming δ(n − 1) :=

W
(
T̂n−1
G (· | µ), Tn−1

G (· | µ)
)
≤ ∆

∑n−2
i=0 (KF )i we can

write:

δ(n) := W
(
T̂nG (· | µ), TnG (· | µ)

)

≤W
(
T̂nG (· | µ), T̂G

(
· | Tn−1

G (· | µ), an−1

))

+W
(
T̂G
(
· | Tn−1

G (· | µ), an−1

)
, TnG (· | µ)

)
(Triangle ineq)

=W
(
T̂G(· | T̂n−1

G (· | µ), an−1), T̂G
(
· | Tn−1

G (· | µ), an−1

))

+W
(
T̂G
(
· | Tn−1

G (· | µ), an−1

)
, TG(· | Tn−1

G (· | µ), an−1)
)

We now use Lemma 1 and Definition 5 to upper bound the
first and the second term of the last line respectively.

δ(n) ≤ KF W
(
T̂n−1
G (· | µ), Tn−1

G (· | µ)
)

+ ∆

= KF δ(n− 1) + ∆ ≤ ∆

n−1∑

i=0

(KF )i . (5)

Note that in the triangle inequality, we may replace
T̂G
(
· | Tn−1

G (· | µ)
)

with TG
(
· | T̂n−1

G (· | µ)
)

and follow
the same basic steps to get:

W
(
T̂nG (· | µ), TnG (· | µ)

)
≤ ∆

n−1∑

i=0

(KT )i . (6)

Combining (5) and (6) allows us to write:

δ(n) = W
(
T̂nG (· | µ), TnG (· | µ)

)

≤ min

{
∆

n−1∑

i=0

(KT )i,∆

n−1∑

i=0

(KF )i

}

= ∆

n−1∑

i=0

(K̄)i ,

which concludes the proof.

There exist similar results in the literature relating
one-step transition error to multi-step transition error and
sub-optimality bounds for planning with an approximate
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model. The Simulation Lemma (Kearns & Singh, 2002;
Strehl et al., 2009) is for discrete state MDPs and relates
error in the one-step model to the value obtained by
using it for planning. A related result for continuous
state-spaces (Kakade et al., 2003) bounds the error in
estimating the probability of a trajectory using total
variation. A second related result (Venkatraman et al.,
2015) provides a slightly looser bound for prediction error
in the deterministic case—our result can be thought of as a
generalization of their result to the probabilistic case.

6. Value Error with Lipschitz Models
We next investigate the error in the state-value function
induced by a Lipschitz model class. To answer this question,
we consider an MRP M1 denoted by 〈S,A, T,R, γ〉 and
a second MRP M2 that only differs from the first in its
transition function 〈S,A, T̂ , R, γ〉. Let A = {a} be the
action set with a single action a. We further assume that
the reward function is only dependent upon state. We first
express the state-value function for a start state s with
respect to the two transition functions. By δs below, we
mean a Dirac delta function denoting a distribution with
probability 1 at state s.

VT (s) :=

∞∑

n=0

γn
∫
TnG (s′|δs)R(s′) ds′ ,

VbT (s) :=

∞∑

n=0

γn
∫
T̂nG (s′|δs)R(s′) ds′ .

Next we derive a bound on
∣∣VT (s)− VbT (s)

∣∣ ∀s.
Theorem 2. Assume a Lipschitz model class Fg with a
∆-accurate T̂ with K̄ = min{KF ,KT }. Further, assume
a Lipschitz reward function with constant KR = KdS ,R(R).
Then ∀s ∈ S and K̄ ∈ [0, 1

γ )

∣∣VT (s)− VbT (s)
∣∣ ≤ γKR∆

(1− γ)(1− γK̄)
.

Proof. We first define the function f(s) = R(s)
KR

. It can be
observed that KdS ,R(f) = 1. We now write:

VT (s)− VbT (s)

=

∞∑

n=0

γn
∫
R(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

= KR

∞∑

n=0

γn
∫
f(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

Let F = {h : KdS ,R(h) ≤ 1}. Then given f ∈ F :

KR

∞∑

n=0

γn
∫
f(s′)

(
TnG (s′|δs)− T̂nG (s′|δs)

)
ds′

≤ KR

∞∑

n=0

γn sup
f∈F

∫
f(s′)

(
TnG (s′ | δs)− T̂nG (s′ | δs)

)
ds′

︸ ︷︷ ︸
:=W

(
TnG (.|δs),bTnG (.|δs)

)
due to duality (4)

= KR

∞∑

n=0

γnW
(
TnG (. | δs), T̂nG (. | δs)

)
︸ ︷︷ ︸
≤Pn�1

i=0 ∆(K̄)i due to Theorem 1

≤ KR

∞∑

n=0

γn
n−1∑

i=0

∆(K̄)i

= KR∆

∞∑

n=0

γn
1− K̄n

1− K̄

=
γKR∆

(1− γ)(1− γK̄)
.

We can derive the same bound for VbT (s) − VT (s) using
the fact that Wasserstein distance is a metric, and therefore
symmetric, thereby completing the proof.

Regarding the tightness of our bounds, we can show that
when the transition model is deterministic and linear then
Theorem 1 provides a tight bound. Moreover, if the reward
function is linear, the bound provided by Theorem 2 is tight.
(See Claim 2 in the appendix.) Notice also that our proof
does not require a bounded reward function.

7. Lipschitz Generalized Value Iteration
We next show that, given a Lipschitz transition model,
solving for the fixed point of a class of Bellman equations
yields a Lipschitz state-action value function. Our proof is in
the context of Generalized Value Iteration (GVI) (Littman &
Szepesvári, 1996), which defines Value Iteration (Bellman,
1957) for planning with arbitrary backup operators.

Algorithm 1 GVI algorithm

Input: initial Q̂(s, a), δ, and choose an operator f
repeat

for each s, a ∈ S ×A do
Q̂(s, a)←R(s, a)+γ

∫
T̂ (s′ | s, a)f

(
Q̂(s′, ·)

)
ds′

end for
until convergence

To prove the result, we make use of the following lemmas.
Lemma 3. Given a Lipschitz function f : S 7→ R with
constant KdS ,dR(f):

KAdS ,dR

(∫
T̂ (s′|s, a)f(s′)ds′

)
≤ KdS ,dR(f)KAdS ,W

(
T̂
)
.
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Lemma 4. The following operators (Asadi & Littman,
2017) are Lipschitz with constants:

1. K‖‖1,dR(max(x)) = K‖‖1,dR
(
mean(x)

)
=

K‖‖1,dR(ε-greedy(x)) = 1

2. K‖‖1,dR(mmβ(x) :=
log

P
i e
�xi

n

β ) = 1

3. K‖‖1,dR(boltzβ(x) :=
Pn
i=1 xie

�xiPn
i=1e

�xi
) ≤

√
|A| +

βVmax|A|

Theorem 3. For any non-expansion backup operator f
outlined in Lemma 4, GVI computes a value function

with a Lipschitz constant bounded by
KAdS ;dR

(R)

1−γKdS ;W (T ) if

γKAdS ,W (T ) < 1.

Proof. From Algorithm 1, in the nth round of GVI updates:

Q̂n+1(s, a)← R(s, a) + γ

∫
T (s′ | s, a)f

(
Q̂n(s′, ·)

)
ds′.

Now observe that:

KAdS ,dR(Q̂n+1)

≤KAdS ,dR(R)+γKAdS ,dR

(∫
T (s′ | s, a)f

(
Q̂n(s′, ·)

)
ds′
)

≤ KAdS ,dR(R) + γKAdS ,W (T ) KdS;R

(
f
(
Q̂n(s, ·)

))

≤ KAdS ,dR(R) + γKAdS ,W (T )K‖·‖1,dR
(f)KAdS ,dR

(Q̂n)

= KAdS ,dR(R) + γKAdS ,W (T )KAdS ,dR
(Q̂n)

Where we used Lemmas 3, 2, and 4 for the second, third,
and fourth inequality respectively. Equivalently:

KAdS ,dR(Q̂n+1) ≤ KAdS ,dR
(R)

n∑

i=0

(
γKAdS ,W (T )

)i

+
(
γKAdS ,W (T )

)n
KAdS ,dR

(Q̂0) .

By computing the limit of both sides, we get:

lim
n→∞

KAdS ,dR
(Q̂n+1) ≤ lim

n→∞
KAdS ,dR

(R)

n∑

i=0

(
γKAdS ,W (T )

)i

+ lim
n→∞

(
γKAdS ,W (T )

)n
KAdS ,dR

(Q̂0)

=
KAdS ,dR(R)

1− γKdS ,W (T )
+ 0 ,

This concludes the proof.

Two implications of this result: First, PAC exploration in
continuous state spaces is shown assuming a Lipschitz value
function (Pazis & Parr, 2013). However, the theorem shows

that it is sufficient to have a Lipschitz model, an assumption
perhaps easier to confirm. The second implication relates to
value-aware model learning (VAML) objective (Farahmand
et al., 2017). Using the above theorem, we can show that
minimizing Wasserstein is equivalent to minimizing the
VAML objective (Asadi et al., 2018).

8. Experiments
Our first goal in this section1 is to compare TV, KL, and
Wasserstein in terms of the ability to best quantify error of
an imperfect model. To this end, we built finite MRPs with
random transitions, |S| = 10 states, and γ = 0.95. In the
first case the reward signal is randomly sampled from [0, 10],
and in the second case the reward of an state is the index of
that state, so small Euclidean norm between two states is
an indication of similar values. For 105 trials, we generated
an MRP and a random model, and then computed model
error and planning error (Figure 4). We understand a good
metric as the one that computes a model error with a high
correlation with value error. We show these correlations for
different values of γ in Figure 5.

Figure 4. Value error (x axis) and model error (y axis). When
the reward is the index of the state (right), correlation between
Wasserstein error and value-prediction error is high. This
highlights the fact that when closeness in the state-space is an
indication of similar values, Wasserstein can be a powerful metric
for model-based RL. Note that Wasserstein provides no advantage
given random rewards (left).

Figure 5. Correlation between value-prediction error and model
error for the three metrics using random rewards (left) and index
rewards (right). Given a useful notion of state similarities, low
Wasserstein error is a better indication of planning error.

1We release the code here: github.com/kavosh8/Lip
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Function f Definition Lipschitz constant K‖‖p,‖‖p(f)

p = 1 p = 2 p =∞
ReLu : Rn → Rn ReLu(x)i := max{0, xi} 1 1 1

+b : Rn → Rn,∀b ∈ Rn +b(x) := x+ b 1 1 1

×W : Rn → Rm, ∀W ∈ Rm×n ×W (x) := Wx
∑
j ‖Wj‖∞

√∑
j ‖Wj‖22 supj ‖Wj‖1

Table 1. Lipschitz constant for various functions used in a neural network. Here, Wj denotes the jth row of a weight matrix W .

It is known that controlling the Lipschitz constant of neural
nets can help in terms of improving generalization error due
to a lower bound on Rademacher complexity (Neyshabur
et al., 2015; Bartlett & Mendelson, 2002). It then follows
from Theorems 1 and 2 that controlling the Lipschitz
constant of a learned transition model can achieve better
error bounds for multi-step and value predictions. To
enforce this constraint during learning, we bound the
Lipschitz constant of various operations used in building
neural network. The bound on the constant of the entire
neural network then follows from Lemma 2. In Table 1, we
provide Lipschitz constant for operations (see Appendix for
proof) used in our experiments. We quantify these results
for different p-norms ‖·‖p.

Given these simple methods for enforcing Lipschitz
continuity, we performed empirical evaluations to
understand the impact of Lipschitz continuity of transition
models, specifically when the transition model is
used to perform multi-step state-predictions and policy
improvements. We chose two standard domains: Cart Pole
and Pendulum. In Cart Pole, we trained a network on a
dataset of 15 ∗ 103 tuples 〈s, a, s′〉. During training, we
ensured that the weights of the network are smaller than k.
For each k, we performed 20 independent model estimation,
and chose the model with median cross-validation error.

Using the learned model, along with the actual reward
signal of the environment, we then performed stochastic
actor-critic RL. (Barto et al., 1983; Sutton et al., 2000)
This required an interaction between the policy and the
learned model for relatively long trajectories. To measure
the usefulness of the model, we then tested the learned
policy on the actual domain. We repeated this experiment
on Pendulum. To train the neural transition model for
this domain we used 104 samples. Notably, we used
deterministic policy gradient (Silver et al., 2014) for training
the policy network with the hyper parameters suggested by
Lillicrap et al. (2015). We report these results in Figure 6.

Observe that an intermediate Lipschitz constant yields the
best result. Consistent with the theory, controlling the
Lipschitz constant in practice can combat the compounding
errors and can help in the value estimation problem. This
ultimately results in learning a better policy.

We next examined if the benefits carry over to stochastic
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Figure 6. Impact of Lipschitz constant of learned models in Cart
Pole (left) and Pendulum (right). An intermediate value of k
(Lipschitz constant) yields the best performance.

settings. To capture stochasticity we need an algorithm to
learn a Lipschitz model class (Definition 4). We used an EM
algorithm to joinly learn a set of functions f , parameterized
by θ = {θf : f ∈ Fg}, and a distribution over functions
g. Note that in practice our dataset only consists of a set
of samples 〈s, a, s′〉 and does not include the function the
sample is drawn from. Hence, we consider this as our
latent variable z. As is standard with EM, we start with the
log-likelihood objective (for simplicity of presentation we
assume a single action in the derivation):

L(θ) =

N∑

i=1

log p(si, si
′; θ)

=

N∑

i=1

log
∑

f

p(zi = f, si, si
′; θ)

=

N∑

i=1

log
∑

f

q(zi=f |si, si′)
p(zi = f, si, si

′; θ)
q(zi = f |si, si′)

≥
N∑

i=1

∑

f

q(zi=f |si, si′)log
p(zi = f, si, si

′; θ)
q(zi = f |si, si′)

,

where we used Jensen’s inequality and concavity of log in
the last line. This derivation leads to the following EM
algorithm.
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Figure 7. A stochastic problem solved by training a Lipschitz
model class using EM. The top left figure shows the functions
before any training (iteration 0), and the bottom right figure shows
the final results (iteration 50).

In the M step, find θt by solving for:

argmax
θ

N∑

i=1

∑

f

qt−1(zi = f |si, si′)log
p(zi = f, si, si

′; θ)
qt−1(zi = f |si, si′)

In the E step, compute posteriors:

qt(zi=f |si, si′)=
p(si, si

′|zi = f ; θt
f )g(zi = f ; θt)∑

f p(si, si
′|zi = f ; θt

f )g(zi = f ; θt)
.

Note that we assume each point is drawn from a neural
network f with probability:

p
(
si, si

′|zi = f ; θt
f
)

= N
(∣∣si′ − f(si, θt

f )
∣∣, σ2

)
,

and with a fixed variance σ2 tuned as a hyper-parameter.

We used a supervised-learning domain to evaluate the EM
algorithm. We generated 30 points from 5 functions (written
at the end of Appendix) and trained 5 neural networks to fit
these points. Iterations of a single run is shown in Figure 7
and the summary of results is presented in Figure 8. Observe
that the EM algorithm is effective, and that controlling the
Lipschitz constant is again useful.

We next applied EM to train a transition model for an RL
setting, namely the gridworld domain from Moerland et al.
(2017). Here a useful model needs to capture the stochastic
behavior of the two ghosts. We modify the reward to be
-1 whenever the agent is in the same cell as either one of
the ghosts and 0 otherwise. We performed environmental
interactions for 1000 time-steps and measured the return.
We compared against standard tabular methods(Sutton
& Barto, 1998), and a deterministic model that predicts
expected next state (Sutton et al., 2008; Parr et al., 2008). In
all cases we used value iteration for planning.

Figure 8. Impact of controlling the Lipschitz constant in the
supervised-learning domain. Notice the U-shape of final
Wasserstein loss with respect to Lipschitz constant k.

Figure 9. Performance of a Lipschitz model class on the gridworld
domain. We show model test accuracy (left) and quality of the
policy found using the model (right). Notice the poor performance
of tabular and expected models.

Results in Figure 9 show that tabular models fail due to no
generalization, and expected models fail since the ghosts
do not move on expectation, a prediction not useful for
planner. Performing value iteration with a Lipschitz model
class outperforms the baselines.

9. Conclusion
We took an important step towards understanding
model-based RL with function approximation. We showed
that Lipschitz continuity of an estimated model plays
a central role in multi-step prediction error, and in
value-estimation error. We also showed the benefits of
employing Wasserstein for model-based RL. An important
future work is to apply these ideas to larger problems.
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