Clustering Semi-Random Mixtures of Gaussians

[edit]

Pranjal Awasthi, Aravindan Vijayaraghavan ;
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:294-303, 2018.

Abstract

Gaussian mixture models (GMM) are the most widely used statistical model for the k-means clustering problem and form a popular framework for clustering in machine learning and data analysis. In this paper, we propose a natural robust model for k-means clustering that generalizes the Gaussian mixture model, and that we believe will be useful in identifying robust algorithms. Our first contribution is a polynomial time algorithm that provably recovers the ground-truth up to small classification error w.h.p., assuming certain separation between the components. Perhaps surprisingly, the algorithm we analyze is the popular Lloyd’s algorithm for k-means clustering that is the method-of-choice in practice. Our second result complements the upper bound by giving a nearly matching lower bound on the number of misclassified points incurred by any k-means clustering algorithm on the semi-random model.

Related Material