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Abstract

This document contains all the proofs to the main paper on SMAC: Simultaneous Mapping and
Clustering Using Spectral Decomposition.

1 Organization of the Supplemental Material

We organize our paper’s supplemental material as follows. In Section 2, we present a set of tools for analyzing
the stability of leading eigen-vectors of a perturbed data matrix. These stability bounds are expressed with
respect to the algebraic constants of the original matrix and the perturbation matrix. In Section 3, we study
how these stability bounds shape out under different noise models of the perturbation matrix. We then use
these results to analyze the exact recovery conditions of PermSMAC in Section 4.

2 Stability of Eigen-decomposition in the Deterministic Setting

In this Section, we present our framework for analyzing the stability of eigen-decompositions. The framework
is based on a few key lemmas regarding the stability of eigenvalues and eigenvectors (Section 2.1). Their
proofs are deferred to Sections 2.2- 2.5.

2.1 Key Lemmas

Given a symmetric matrix A ∈ Rn×n, we are interested in controlling the stability of the leading eigenvectors
of a symmetric block matrixA⊗(Im− 1

m11T ) ∈ Rnm×nm under a symmetric block noise matrixN ∈ Rnm×nm.
To state the eigen-decomposition stability problem. Let λi, 1 ≤ i ≤ n and si, 1 ≤ i ≤ n be the eigenvalues

and corresponding eignevectors of A, respectively. Similarly, let µi, 1 ≤ i ≤ nm and ui, 1 ≤ i ≤ nm be the
eigenvalues and corresponding eigenvectors of A = A ⊗ (Im − 1

m11T ) + N , respectively. We are interested
in bounding the difference between λi, 1 ≤ i ≤ k and µ(i−1)m+j , 1 ≤ i ≤ k, 1 ≤ j ≤ m as well as the
difference between the column space (s1, · · · , sk) ⊗ Hm and that of Uk(m−1) = (u1, · · · ,uk(m−1)), where

Hm ∈ Rm×(m−1) is a basis matrix of I − 1
m11T . For convenience, we use Sk = (s1, · · · , sk) to denote the

leading k eigenvectors of A, and use Sk = (sk+1, · · · , sn) to collect its remaining eigenvectors. First, we
present the following result regarding eigenvalue stability:

Lemma 2.1. (Eigenvalue Stability.) Denote E11 = (Sk ⊗Hm)TN(Sk ⊗Hm). Suppose

‖N‖+ ‖E11‖ < λk − λk+1,
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then we have for every 1 ≤ i ≤ k, 1 ≤ j ≤ m− 1, p = (i− 1)(m− 1) + j,

− ‖E11‖ ≤ σp − λi ≤ ‖E11‖+
‖N‖+ ‖E11‖
λi − λk+1

(‖N‖ − ‖E11‖). (1)

Proof: See Section 2.2.

Remark 1. Note that (1) is tighter than the well-known Weyl’s inequality |λ1 − σi| ≤ ‖N‖, as

‖E11‖+
‖N‖+ ‖E11‖
λi − λk+1

(‖N‖ − ‖E11‖) < ‖E11‖+ (‖N‖ − ‖E11‖) = ‖N‖.

In particular, as ‖E11‖ � ‖N‖ in most cases, so our bound is significantly better than the Weyl’s inequality
when ‖N‖+ ‖E11‖ � λk − λk+1.

Moreover, our result is also tighter than that of [Eldridge et al., 2018], which introduces a similar stability
bound:

−‖E11‖ ≤ σp − λi ≤ ‖E11‖+
‖N‖2

λi − λk+1 − ‖N‖+ ‖E11‖
.

(1) is tighter as λi − λk+1 − ‖N‖+ ‖E11‖ ≤ λi − λk+1 and ‖N‖2 − ‖E11‖2 ≤ ‖N‖2.

Remark 2. To gain additional intuitions on (1), let us consider the special case where k = m = 1, and
let λi(A) be the i-th greatest eigenvalues of symmetric matrix A. For the matrix function A(t) = A + tN
depending on the parameter t with 0 ≤ t ≤ 1, let λi(t) = λi(A(t)), and ui(t) corresponds to eigenvalue
λi(t). First of all, it is easy to show that (e.g., through differentiating A(t)u1(t) = λ1(t)u1(t) and utilizing
‖u(t)‖ = 1)

λ′1(t) = u1(t)TA′(t)u1(t) = u1(t)TNu1(t). (2)

Recall that E11 = STk NSk = u1(t)TNu1(t) is a scalar in this special case. Hence the first order expansion
of λ1(t) is λ1(t) ≈ λ(A) + tE11. We now proceed to differentiate (2), which gives

λ′′1(t) = u′1(t)TNu1(t) + u1(t)TNu′1(t) = 2u1(t)TNu′1(t). (3)

Note that the expression of u′1(t) is given by

u′1(t) =

n∑
i=2

ui(t)
TNu1(t)

λ(t)− λi(t)
ui(t).

Substituting it into formula (3) yields the second order approximation of λ(t) would be

λ1(t) ≈ λ1(A) + E11t+

n∑
i=2

|ui(t)TNu1(t)|2

λ1(A)− λi(A)
t2,

or loosely speaking,

λ1(t) ≈ λ1(A) + E11t+

n∑
i=2

|ui(t)TNu1(t)|2

λ1(A)− λ2(A)
t2,

in which

n∑
i=2

|ui(t)TNu1(t)|2 =

n∑
i=1

∣∣ui(t)T (Nu1(t)
)∣∣2 − (u1(t)TNu1(t)

)2
= |Nu1(t)|2 − E2

11

≤ ‖N‖2 − ‖E11‖2.

Thus the second-order Taylor expansion of λ(t) implies

‖E11‖+
‖N‖2 − ‖E11‖2

λ1(A)− λ2(A)
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is a good approximation for |λ1(A+N)− λ1(A)|, which is exactly what we proposed in formula (1).
However, it must be pointed out that this expansion is just an approximation rather than a real bound

but it provides a good insight why (1) comes out. Besides, it would also be hard to generalize this expansion
idea to k > 1 since ‖E11‖ will no longer be a scalar if k > 1.

To characterize the difference between Sk ⊗ Hm and Uk(m−1) := (u1, · · · ,uk(m−1)), we consider the
following decomposition of Uk(m−1):

Uk(m−1) = (Sk ⊗Hm)X + Y,

where
X ∈ Rk(m−1)×k(m−1), STk Y = 0.

In other words, (Sk ⊗Hm)X is the projection of Uk(m−1) onto the column space of Sk ⊗Hm, and Y is the

projection of Uk(m−1) onto the dual space Sk ⊗Hm. Intuitively, we say Uk(m−1) is stable if Y is small and
X is close to a unitary matrix (which defines all orthogonal basis of a linear space). The following Lemma
provides a bound on the difference between X and a unitary matrix:

Lemma 2.2. (Controlling X.) Denote E11 = (Sk⊗Hm)TN(Sk⊗Hm). Suppose λk−λk+1 > ‖N‖+‖E11‖.
Then there exists a unitary matrix R ∈ O(k(m− 1)) so that

‖X −R‖ ≤ 1−

√
1−

(
‖N‖

λk − λk+1 − ‖E11‖

)2

. (4)

In particular,

‖X −R‖ ≤ ‖N‖2

(λk − λk+1 − ‖E11‖)2
. (5)

Proof: See Appendix 2.3.
It is easy to derive an upper bound on ‖Y ‖ using Lemma 2.2. However, our analysis requires bounding

individual blocks Yi, 1 ≤ i ≤ n, making such bounds insufficient for our purpose. To this end, we introduce
the following expression of Y , from which we will derive block-wise bounds.

Lemma 2.3. (Controlling Y .) Denote Σi = diag(σ(i−1)(m−1)+1, · · · , σi(m−1)), 1 ≤ i ≤ k, Λ = diag(λk+1, · · · , λn),

and Sk = (sk+1, · · · , sn). Let

Bi = (Sk ⊗Hm)(λiI − Λ⊗ Im−1)−1(Sk ⊗Hm)T , 1 ≤ i ≤ k. (6)

Suppose ‖N‖+ ‖E11‖ < λk − λk+1, then

Yi := (y(i−1)m+1, · · · ,yim) =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1
N
(
Sk ⊗Hm

)
Xi(λiIm − Σi)

l. (7)

Proof: See Appendix 2.4.

We now present the last lemma which applies (7) to obtain a L∞-type bound on blocks of Yi. Specifically,
let Eb = eb ⊗Hm ∈ Rn(m−1)×(m−1). The following Lemma provides a way to bound ‖ETb Y ‖:

Lemma 2.4. (Bounding L∞-norm of Y) Given i ∈ {1, · · · , k}. Let Bi be defined by (6). Suppose there
are small constants ε1, ε2, ε3, δ < 1 such that the following four conditions are satisfied:

• ‖Bi‖‖N‖ ≤ ε1.

• ‖Bi‖‖λiIm − Σi‖ ≤ ε2.

• ∃j0 ≥ 0, m0 ≥ 0, s.t., ∀ 0 ≤ j ≤ j0, il ≥ 0, 1 ≤ l ≤ j + 1, where 0 ≤
∑j+1
l=1 il ≤ m0,

max
1≤b≤n

‖ETb (BiN)i1Bi · · · (BiN)ij+1BiN(Sk ⊗Hm)‖ ≤ ε3‖Bi‖j · δ
∑j+1
l=1 il+1. (8)
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• ε2 + δ < 1.

Then

max
1≤b≤n

‖ETb Yi‖ ≤ ‖Xi‖ ·
(

ε1
1− ε1 − ε2

·
(

(
ε2

1− ε1
)j0+1 + (

ε1
1− ε2

)m0

)
+

δ

1− ε2 − δ
ε3

)
. (9)

Proof: See Appendix 2.5.

Remark 3. As we will see later, the dominant term in (8) is ‖ET1 BNS‖, which can be controlled using
standard concentration bound. The technical difficulty is how to extend it to high order moments. Later
we will show how to achieve this goal by controlling power moments. Note that (8) does not incur a strong

bound. For example, in randomized models we consider in this paper, ‖B‖‖N‖ = O
(

1√
log(n)

)
. However,

the right-hand side of (8) only decays at a geometric rate.

Remark 4. It turns out the major task in terms of controlling eigen-decomposition stability is to provide
bounds on E11, N and the left-hand sides in (8). This is the goal of the next two sections.

2.2 Proof of Lemma 2.1

Denote Λk = (λ1, · · · , λk) and Λk = (λk+1, · · · , λn). It is clear that we can decompose A as

A = SkΛkS
T
k + SkΛk S

T

k .

For convenience we set p = (i−1)(m−1)+j and define Lm = Im− 1
m11T . To control |λi−σ(i−1)(m−1)+j |, 1 ≤

i ≤ k, 1 ≤ j ≤ m− 1, we consider an eigen-decomposition of A⊗ Lm +N with respect to basis spanned by
Sk ⊗Hm and Sk ⊗Hm. Introduce matrices

E11 = (Sk ⊗Hm)TN(Sk ⊗Hm),

E21 = (Sk ⊗Hm)TN(Sk ⊗Hm),

E22 = (Sk ⊗Hm)TN(Sk ⊗Hm).

Using unitary matrix S ⊗Hm to change the basis for matrices A⊗ Lm and N , respectively, we obtain that

(S ⊗Hm)T (A⊗ Lm)(S ⊗Hm) =

[
Λk 0
0 Λk

]
⊗ Im−1

(S ⊗Hm)TN(S ⊗Hm) =

[
E11 ET21

E21 E22

]
Observe that the matrix A⊗ Lm +N − µI is congruent to

B(µ) =

[
Λk ⊗ Im−1 + E11 − µI + ET21(µI − Λk − E22)−1E21 0

0 Λk ⊗ Im−1 + E22 − µI

]
and has the same inertia as well, which can be verified from the identity

(S ⊗Hm)T (A⊗ Lm +N − µI)(S ⊗Hm)

=

[
Λk ⊗ Im−1 + E11 − µI ET21

E21 Λk ⊗ Im−1 + E22 − µI

]
=

[
I P
0 I

]−1 [
Λk ⊗ Im−1 + E11 − µI + ET21(µI − Λk ⊗ Im−1 − E22)−1E21 0

0 Λk ⊗ Im−1 + E22 − µI

] [
I 0
PT I

]−1

,

in which P = ET21(µI − Λk ⊗ Im−1 − E22)−1. Hence by letting µ = σp we have λp(A⊗ Lm +N − σpI) = 0
and then λp(B(σp)) = 0, and further more

σp = λp

([
Λk ⊗ Im−1 0

0 Λk ⊗ Im−1 + E22

]
+

[
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
.

4



However, the Weyl’s inequality told that

σp − λi = σp − λp(Λ⊗ Im−1) ≥ λmin

([
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
≥ min{λmin

(
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21

)
, 0}

≥ −‖E11‖ (10)

in which we used the fact that σp − Λk ⊗ Im−1 − E22 is positive definite, and

σp − λi = σp − λp(Λ⊗ Im−1) ≤ λmax
([
E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21 0

0 0

])
≤ ‖E11 + ET21(σpI − Λk ⊗ Im−1 − E22)−1E21‖

≤ ‖E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21‖ (11)

It remains to bound ET21(σpI − Λk ⊗ Im−1 − E22)−1E21. Towards this end, we consider an arbitrary value
µ > λmax(N). It is clear that

µI −
[
E11 ET21

E21 E22

]
(12)

is a positive definite matrix, and µI − E22 is also positive definite. From the identity

µI −
[
E11 ET21

E21 E22

]
=

[
I Q
0 I

]−1 [
µI − E11 − ET21(µI − E22)−1E21 0

0 µI − E22

] [
I 0
QT I

]−1

in which Q = ET21(E22 − µI)−1, we can see that µI −E11 −ET21(µI −E22)−1E21 is positive definite as well.
Applying it to (12), we obtain that

µI − E11 − ET21(µI − E22)−1E21 � 0,

or equivalently,
E11 + ET21(µI − E22)−1E21 � µI. (13)

Similarly, for µ < λmin(N), we have

E11 + ET21(µI − E22)−1E21 � µI. (14)

Letting µ→ ‖N‖ and µ→ −‖N‖ respectively, we obtain that

ET21(‖N‖I − E22)−1E21 � ‖N‖I − E11,

ET21(‖N‖I + E22)−1E21 � ‖N‖I + E11.

Here the second inequality arise by taking negative of (14).
As thus for any non-negative number α, β, we have

E11 + ET21

(
α(‖N‖I − E22)−1 + β(‖N‖I + E22)−1

)−1
E21 � (α+ β)‖N‖I + (1 + β − α)E11.

If we in addition have

ET21

(
(σp − λk+1)I − E22

)−1
E21 � ET21

(
α(‖N‖I − E22)−1 + β(‖N‖I + E22)−1

)−1
E21, (15)

for some α, β ≥ 0, then we reach an upper bound

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (α+ β)‖N‖+ |1 + β − α|‖E11‖ (16)

To ensure inequality (15), we need to show that the following inequality

1

σp − λk+1 − x
≤ α

‖N‖ − x
+

β

‖N‖+ x
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holds for every eigenvalue x of E22, or in a stronger sense, for all −‖N‖ ≤ x ≤ ‖N‖. Define

θ = β/α, ε = ‖N‖, a = ‖E11‖

and then the above condition changes to

α ≥ ε2 − x2

(σp − λk+1 − x)
(
(1 + θ)ε+ (1− θ)x

)
for all −ε ≤ x ≤ ε. Hence we can take α as

αθ = max
−ε≤x≤ε

ε2 − x2

(σp − λk+1 − x)
(
(1 + θ)ε+ (1− θ)x

)
=

ε

(σp − λk+1)(1 + θ)
max
−1≤x≤1

1− x2

(1− ε
σp−λk+1

x)(1 + 1−θ
1+θx)

and substitute it into inequality (16) we obtain

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ |1 + (θ − 1)αθ|a.

But it is easy to see that αθ ≤ α0 ≤ 2ε
σp−λk+1+ε ≤

2ε
λk−λk+1

≤ 1, so the absolute value sign can be removed

from the inequality above, and substitute the expression of αθ into it:

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ (θ − 1)αθa+ a (17)

To simplify our computation, we introduce the following trigonometric function notations:

sinφ =
1− θ
1 + θ

, −π
2
≤ φ ≤ π

2
;

sinψ =
ε

σp − λk+1
, 0 ≤ ψ < π

6
;

sinω =
a

ε
, 0 ≤ ω ≤ π

2
(18)

Applying proposition 1 under these notations, we can rewrite αθ as

αθ =
sinψ

1 + θ
· 1

cos2 φ−ψ
2

, (19)

and substitute it into (17) to obtain

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤ (1 + θ)αθε+ (θ − 1)αθa+ a

= a+
ε sinψ

cos2 φ−ψ
2

(1− sinω sinφ) (20)

By optimizing over θ, namely over φ, and applying proposition 2, we have

λmax

(
E11 + ET21

(
(σp − λk+1)I − E22

)−1
E21

)
≤a+ ε sinψ min

−π/2≤φ≤π/2

1− sinω sinφ

cos2 φ−ψ
2

=a+ ε
sinψ cos2 ω

1 + sinω sinψ

=‖E11‖+
‖N‖2 − ‖E11‖2

σp − λk+1 + ‖E11‖

≤‖E11‖+
‖N‖2 − ‖E11‖2

λi − λk+1
, (21)

where in the last step we used the fact σp − λi ≥ −‖E11‖ that has been proved before.
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Proposition 1. Given two real number α, β with −π2 ≤ α, β ≤
π
2 , we have

max
−1≤x≤1

1− x2

(1 + x sinα)(1 + x sinβ)
=

1

cos2 α+β
2

Proof. It is trivial when x = ±1 so we always assume −1 < x < 1 in the following. Taking transformation

x = 1−p2
1+p2 , p ∈ R\{0}, we have

(1 + x sinα)(1 + x sinβ)

1− x2

=
1

4

[
(1− sinα)p+ (1 + sinα)p−1

] [
(1− sinβ)p+ (1 + sinβ)p−1

]
=

1

4

[
(1− sinα)(1− sinβ)p2 + 2(1− sinα sinβ) + (1 + sinα)(1 + sinβ)p−2

]
≥ 1

2
(1− sinα sinβ + cosα cosβ)

=
1

2

(
1 + cos(α+ β)

)
= cos2 α+ β

2
.

The proposition follows immediately.

Proposition 2. Given φ, ψ, ω as define in (18), we claim that

min
−π/2≤φ≤π/2

1− sinω sinφ

cos2 φ−ψ
2

=
cos2 ω

1 + sinω sinψ

Proof. Note that

1− sinω sinφ

= 1− sinω sin(φ− ψ + ψ)

= 1− sinω (sinψ cos(φ− ψ) + cosψ sin(φ− ψ))

= 1− sinω

(
sinψ

(
cos2 φ− ψ

2
− sin2 φ− ψ

2

)
+ 2 cosψ sin

φ− ψ
2

cos
φ− ψ

2

)
.

Define p = tan φ−ψ
2 . p can be taken over interval [tan(−π/4 − ψ/2), tan(π/4 − ψ/2)] as taking φ over

[−π/2, π/2]. Some trigonometric calculation shows that [tan(−π/4 − ψ/2), tan(π/4 − ψ/2)] is equal to
[− cosψ

1−sinψ ,
cosψ

1+sinψ ]. Using the identity we just proved, we have

1− sinω sinφ

cos2 φ−ψ
2

=p2 + 1− sinω
(
(1− p2) sinψ + 2p cosψ

)
=(1 + sinω sinψ)p2 − 2p sinω cosψ + (1− sinω sinψ)

We can see it is a quadratic function about p, so it has a minimum at p0 = sinω cosψ
1+sinω sinψ . It is clear that

− cosψ
1−sinψ ≤ p0 ≤ cosψ

1+sinψ , hence p0 can be certainly taken. Further more, this quadratic function has a

minimum value cos2 ω
1+sinω sinψ on this point, which completes our proof.

2.3 Proof of Lemma 2.2

Also denote I − 1
m11T as Lm. We only prove the first inequality, since the second inequality can be inferred

from
1−

√
1− u2 ≤ u, −1 ≤ u ≤ 1.
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Multiply both sides of(
A⊗ Lm +N

)(
(Sk ⊗Hm)X + Y

)
=
(
(Sk ⊗Hm)X + Y

)
Σ

by (Sk ⊗ Lm)T , yielding

(Sk ⊗Hm)T (A⊗ Lm +N)((Sk ⊗Hm)X + Y ) = (Sk ⊗Hm)TY · Σ

⇔ (Sk ⊗Hm)TN((Sk ⊗Hm)X + Y ) = (Sk ⊗Hm)TY · Σ−
(
(SkΛ)⊗Hm

)T
Y. (22)

Now we prove the following proposition, which will be used later:

Proposition 3. Denote Λ = diag(λ1, · · · , λk) and Σ = diag(σ1, · · · , σn). Suppose λ1 ≥ · · ·λk > σ1 ≥ · · · ≥
σn, then for any Y ∈ Rn×k, we have

‖Y Λ− ΣY ‖ ≥ (λk − σ1)‖Y ‖.

Proof: Without losing generality, we can assume σn ≥ 0, since we can always shift λi, 1 ≤ i ≤ k and
σj , 1 ≤ j ≤ n by the same amount without changing the value of Y Λ − ΣY and λk − σ1. With this
assumption, the proof directly follows from triangle inequality:

‖Y Λ− ΣY ‖ ≥ ‖Y Λ‖ − ‖ΣY ‖ ≥ ‖Y (λkIk)‖ − ‖(σ1In)Y ‖ = (λk − σ1)‖Y ‖.

Now let us come back to the proof of Lemma 2.2. Since the columns of Uk(m−1) = (Sk ⊗Hm)X + Y are
orthogonal, we have

‖N‖ ≥ ‖(Sk ⊗Hm)TN‖ ≥ ‖(Sk ⊗Hm)TN((Sk ⊗Hm)X + Y )‖

= ‖(Sk ⊗Hm)TY · Σ−
(
Λ⊗ Im−1

)
·
(
Sk ⊗Hm

)T
Y ‖

≥ min
1≤i≤km

|σi − λk+1|‖
(
Sk ⊗Hm

)T
Y ‖ (Applying Proposition 3)

= min
1≤i≤km

|σi − λk+1|‖Y ‖

≥ (λk − λk+1 − ‖E11‖)‖Y ‖, (23)

where the last equality is due to Lemma 2.1.
As V TV = XTX + Y TY = Ik(m−1). It follows that√

1−
(

‖N‖
λk − λk+1 − ‖E11‖

)2

≤
√

1− ‖Y ‖2 = σmin(X) ≤ σmax(X) ≤ 1.

Let X = VXΣXW
T
X be the SVD of X. Define R = VXW

T
X . We have

‖X −R‖ = ‖VXΣXW
T
X − VXWT

X‖
≤ ‖ΣX − I‖

≤ 1−

√
1−

(
‖N‖

λk − λk+1 − ‖E11‖

)2

,

which ends the proof.
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2.4 Proof of Lemma 2.3

First, we have

(Sk ⊗Hm)
(
λiI − Λ⊗ Im−1 − E22

)−1
(Sk ⊗Hm)T

= (Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−
1
2

(
I − (λiI − (Λ⊗ Im−1))−

1
2 (Sk ⊗Hm)TN(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−

1
2

)−1

·

(λiI − (Λ⊗ Im−1))−
1
2 (Sk ⊗Hm)T

=

∞∑
k=0

(
(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−1(Sk ⊗Hm)TN

)k
(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−1(Sk ⊗Hm)T

= (I −BiN)−1Bi,

in which
Bi = (Sk ⊗Hm)(λiI − Λ⊗ Im−1)−1(Sk ⊗Hm)T

In the above argument, since

‖(λiI − (Λ⊗ Im−1))−
1
2 (Sk ⊗Hm)TN(Sk ⊗Hm)(λiI − (Λ⊗ Im−1))−

1
2 ‖ ≤ ‖N‖

λk − λk+1
< 1,

we can safely apply Taylor expansion.
Now let us consider each column of Y . Denote p = (i − 1) · (m − 1) + j. By solving linear system for

X,Y , we have

yp =(Sk ⊗Hm)
(
σpI − (Λ⊗ Im−1 + E22)

)−1
(Sk ⊗Hm)TN(Sk ⊗Hm)xp

=(Sk ⊗Hm)
(
λiI − (Λ⊗ Im−1 + E22)− (λi − σp)I

)−1
(Sk ⊗Hm)TN(Sk ⊗Hm)xp

=

∞∑
k=0

(Sk ⊗Hm)
(

(λiI − (Λ⊗ Im−1 + E22))−1
)k+1

(Sk ⊗Hm)TN(Sk ⊗Hm)xp(λi − σp)k

=

∞∑
k=0

(
(Sk ⊗Hm)

(
λiI − ((Λ⊗ Im−1) + E22)

)−1
(S ⊗Hm)T

)k+1

N(Sk ⊗Hm)xp(λi − σp)k (24)

=

∞∑
k=0

(
(I −BiN)−1Bi

)k+1

N(Sk ⊗Hm)xp(λi − σp)k

Like before, from ‖N‖+ ‖E11‖ < λk − λk+1 it is easy to check that

(λi − σp)‖(Sk ⊗Hm)
(
λiI − (Λ⊗ Im−1 + E22)

)−1
(Sk ⊗Hm)T ‖

≤(λi − σp)‖
(
λiI − (Λ⊗ Im−1 + E22)

)−1‖

≤‖E11‖ ×
1

λi − λk+1 − ‖N‖

≤ ‖E11‖
λk − λk+1 − ‖N‖

< 1,

which shows that the power series above would be surely convergent.
Putting this in the matrix form leads to

Y·,i =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1

N(Sk ⊗Hm)X·,i(λiI − Σ
(i)
k )l.

9



2.5 Proof of Lemma 2.4

First of all, since ‖BiN‖ ≤ ‖Bi‖ · ‖N‖ < 1, it is clear that

(I −BiN)−1Bi =
∑
j≥0

(BiN)jBi. (25)

Consider the following three terms:

δ1 :=
∑

j≥j0+1

((I −BiN)−1Bi)
j+1N(Sk ⊗Hm)Xi(λiIm − Σi)

j .

δ2 :=

j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(BiN)ilB
)
N(Sk ⊗Hm)Xi(λiIm − Σi)

j .

δ3 :=

j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(BiN)ilB
)
N(Sk ⊗Hm)Xi(λiIm − Σi)

j . (26)

It is clear that
Yi = δ1 + δ2 + δ3.

Now we bound ETb δk, 1 ≤ k ≤ 3. First of all, we have

‖ETb δ1‖ ≤ ‖δ1‖ ≤
∑

j≥j0+1

‖(I −BiN)−1Bi‖j+1‖N‖‖Sk ⊗Hm‖‖Xi‖‖λiIm − Σi‖j

≤
∑

j≥j0+1

( ‖Bi‖
1− ‖Bi‖‖N‖

)j+1‖N‖‖Sk ⊗Hm‖‖Xi‖‖λiIm − Σi‖j

=
‖Bi‖‖N‖‖X‖
1− ‖Bi‖‖N‖

∑
j≥j0+1

(‖Bi‖‖λiIm − Σi‖
1− ‖Bi‖‖N‖

)j
=

ε1
1− ε1 − ε2

·
( ε2

1− ε1

)j0+1

‖Xi‖. (27)

Similarly,

‖ETb δ2‖ ≤ ‖δ2‖ ≤
j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

( j+1∏
l=1

(‖Bi‖‖N‖)il‖Bi‖
)
‖N‖‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

∑
m≥m0+1

∑
∑j+1
l=1 il=m

(
‖Bi‖m+j+1‖N‖m+1

)
‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

∑
m≥m0+1

Cjm+j

(
‖Bi‖m+j+1‖N‖m+1

)
‖Xi‖‖λiIm − Σi‖j

=

j0∑
j=0

(‖Bi‖‖λiIm − Σi‖)j
∑

m≥m0+1

Cjm+j

(
‖Bi‖‖N‖

)m+1‖Xi‖

≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

j0∑
j=0

εj2C
j
m+j . (28)

Since when −1 < x < 1,

1

(1− x)j+1
=

∞∑
m=0

xmCmm+j .

10



It follows that

‖ETb δ2‖ ≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

j0∑
j=0

εj2C
j
m+j

≤ ‖Xi‖
∑

m≥m0+1

εm+1
1

1

(1− ε2)m+1

= ‖Xi‖
( ε1

1− ε2
)m0 ε1

1− ε1 − ε2
. (29)

We use a similar strategy to bound δ3. In fact,

‖ETb δ3‖ ≤
j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

‖ETb
( j+1∏
l=1

(BiN)ilBi

)
N(Sk ⊗Hm)‖‖Xi‖‖λiIm − Σi‖j

≤
j0∑
j=0

m0∑
m=0

∑
∑j+1
l=1 il=m

‖Bi‖jε3δm+1‖Xi‖‖λiIm − Σi‖j

≤ ‖Xi‖ε3
j0∑
j=0

εj2

m0∑
m=0

Cjm+jδ
m+1

= ‖Xi‖ε3
m0∑
m=0

δm+1

j0∑
j=0

Cjm+jε
j
2

≤ ‖Xi‖ε3
m0∑
m=0

δm+1 1

(1− ε2)m+1

≤ δ

1− ε2 − δ
· ε3 · ‖Xi‖. (30)

Combing (27), (29) and (30), we have

max
1≤b≤n

‖ETb Yi‖ ≤ ‖Xi‖ ·
(

ε1
1− ε1 − ε2

·
(

(
ε2

1− ε1
)j0+1 + (

ε1
1− ε2

)m0

)
+

δ

1− ε2 − δ
ε3

)
,

which ends the proof.

3 Stability of Eigen-decomposition in Randomized Noise Models

3.1 Key Lemmas

The next Lemma provides various bounds regarding the random matrix model discussed above: Given a
constant c ≥ 1. Suppose dmin ≥ 2c log(n) and n ≥ 10. Consider a random matrix N ∈ Rnm×nm whose
blocks are given by

Nij =

{
1√
didj

Xij (i, j) ∈ E
0 otherwise

where Xij , (i, j) ∈ E are independent random matrices that satisfy

E[Xij ] = 0, ‖Xij‖ ≤ Kij ,

where Kij , (i, j) ∈ E are positive constants. Let K = max
(i,j)∈E

Kij , then

Lemma 3.1. With probability at least 1− m
n2c ,

‖N‖ ≤ CK√
dmin

for some absolute constant C.

11



Lemma 3.2.

Given l positive integer t1, . . . , tl, and suppose l ≤ logn
log logn , dmin > log n, define a vector ω as

ωi =
1√
di

∑
j∈N (i)

1√
dj
,

and setting a constant ‖B‖ω associated to B and ω as

‖B‖ω := ‖abs(B) · ω‖∞

in which abs(B) is obtained by taking absolute values elementwisely from B, then we have

‖(eTi ⊗ Im)

l∏
j=1

(
(Btj ⊗ Im)N

)
Sk‖∞ ≤

(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖

≤

(√
log n

dmin
CK

)l
‖B‖t−l/2∞ ‖B‖l/2max

√
dmax

|E|
‖Uk‖ (31)

with probability exceeding 1 − n−1/l. Recall that in our random model we have Sk = s ⊗ Uk. Note that we
put no special assumption on B here. Namely, B could be different from Bi defined in Section (2.1).

Lemma 3.3. Given noise matrix N under the model in (3.1), and

K ≤ 1

C

√
dmin

‖Bi‖ · ‖Bi‖∞ · log n
,

then we have the block-wise bound on Yi

max
1≤b≤n

‖(eTb ⊗ Im)Yi‖ ≤
‖Bi‖ω
‖Bi‖∞

√
dmin

|E|
≤

√
dmax

|E|

with probability exceeding 1 − 1
nc for some absolute constant C depending on c. Recall that Bi and Yi were

given by

Bi :=
(
Sk(λiI − Λ)−1S

T

k

)
⊗ Im,

Yi := (y(i−1)m+1, · · · ,yim) =

∞∑
l=0

(
(I −BiN)−1Bi

)l+1
N(Sk ⊗ Im)Xi(λiIm − Σi)

l,

in Section (2.1) respectively, where 1 ≤ i ≤ k.

3.2 Proof of Lemma 3.1

We provide a bound for ‖N‖ by giving an estimation of E[tr(N b)] for even positive integers b.

Proposition 4. Given two positive integer b, w such that 1 ≤ w ≤ b
2 + 1, let G be a undirected complete

graph of w vertices then the number of cycles of length b in G satisfying the following properties can be
bounded above by Cbbb/2 (or equivalently C ′bb/2+1−ww! for some slightly different absolute constant C ′) for
some absolute constant C:

• No self-loop in the cycle;

• Each vertex of G appears;

• Each edge appearing in the cycle would appear at least two times.

Proof. Define the following variables associated to w vertices:

12



• The degrees (not consider the multiplicity of edge) of w vertices d1, . . . , dw in the cycle, which is actually
the degree of some vertex in the induced undirected graph by the cycle;

• The multi-degrees of w vertices D1, . . . , Dw in the cycle, which is actually the number of times some
vertex appears in the cycle sequence.

We say a leg in the cycle is innovative if the undirected edge of that leg didn’t arose before when traversing
the cycle, and non-innovative if otherwise. It is clear that

d1 + · · ·+ dw = 2j, D1 + · · ·+Dw = b, dt ≤ Dt.

Thus the number of the possibilities of {Dt} could be bounded by 2b, so it suffices to consider only fixed
{Dt}. Define Tp such that Tp/p is the number of vertices with multi-degree p, or equivalently, the number
of vertices in the cycle having multi-degree p. It is clear that

∑∞
p=1 Tp = b.

We try to show that it is possible to reconstruct the cycle by recording a group of arrays. In detail,
supposing some valid cycle is i1 → i2 → · · · → ib → i1, define an array α of length b such that αt := 1 if
itit+1 (ib+1 = i1 here) is innovative while αt := 0 if otherwise, then the following arrays would be recorded:

• A non-negative integer array c of length w such that q = c1 + · · ·+ cw ≤ b (to be modified);

• A bit array v = v1 . . . vb of length b, in which there are exactly q ones and b− q zeros. vt will be forced
to be 1 if αt = 1.

• Non-negative integer E, which is in fact an encoding of the cycle using some method we would show
in the following.

We define E by
E = L+ LmaxM

in which Lmax :=
(

q
c1,...,cw

)
, and L and M are non-integer numbers which will be defined next.

To define L, an integer array u would be introduced which is of length q with t appearing exactly ct
times for 1 ≤ t ≤ w. L is simply the encoding of u, thus it could be bounded by

0 ≤ L < Lmax :=

(
q

c1, . . . , cw

)
≤ Cb1

qq

cc11 . . . ccww

for some absolute constant C1 from the Stirling’s formula and the condition q ≤ b.
Now we would describe how to calculate the number M from the known cycle and all other information

stored. First decode u from L and c1, . . . , cw. Let m1 = i1 − 1, m1,max = w. Consider 1 ≤ t ≤ b − 1 and
suppose i1 → · · · → it is known. If vt = 1 is the l-th one in v (l ≤ q), ul will be used to indicated the
multi-degree of vertex it+1, thus a integer mt+1 such that 0 ≤ mt+1 < Tul/ul can uniquely determine it+1.
In this case let mt+1,max = Tul/ul. If vt = 0, from the definition of v the leg itit+1 must be a non-innovative
leg. Thus an integer mt+1 such that 0 ≤ mt+1 < dit ≤ Dit can uniquely determine it+1. In this case let
mt+1,max = Dit . In the end, encode M as

M = m1 +m2m1,max + · · ·+mbmb−1,max . . .m1,max.

From the construction of M , clearly we can reconstruct the original cycle from M together with all other
stored information D,v, c, L. On the contrary, given one cycle, for each valid v we can find such a (unique)
M(v) and E(v) depending on v since u can be completely determined by v and the cycle.

Here we would construct a special v and show that E(v) is small enough to carry our proof forward. Let
v be all blanks except on the position vt such that αt = 1 (vt will be forced to set as 1 in such case). As for
all other non-innovative legs itit+1, we set vt := 1 if b/Dit+1 < Dit while vt := 0 if otherwise. Clearly

M < Mmax := m1,max . . .mb,max.

For each degree value p, the term Tp/p will appear cp times in the sequence mt,max from the definition, and
further more we denote by fp the number of times that the degree p appears in the sequence mt,max. By
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such a construction, we have

E(v) < LmaxMmax

≤ Cb1
qq

cc11 . . . ccww
× w

∏
itit+1

innovative

TDit+1

Dit+1

∏
itit+1

non-innovative

min{Dit , b/Dit+1
}

= Cb1
qq

cc11 . . . ccww
× w

(
w∏
p=1

(Tp/p)
cp

)
·

(
w∏
p=1

pfp

)

= Cb2

(
w∏
p=1

(q/p)cp

)
·

(
w∏
p=1

(Tp/cp)
cp

)
·

(
w∏
p=1

pfp

)

≤ Cb3

(
w∏
p=1

(b/p)cp

)
·

(
w∏
p=1

pfp

)
(32)

= Cb3
∏
itit+1

innovative

b

Dit+1

∏
itit+1

non-innovative

min{Dit , b/Dit+1
}

= Cb3

b∏
t=1

√
bDit

Dit+1

∏
itit+1

innovative

√
b

DitDit+1

∏
itit+1

non-innovative

min

{√
b

DitDit+1

,

√
DitDit+1

b

}

≤ Cb3b
b/2

∏
itit+1

innovative

√
b

DitDit+1

∏
itit+1

non-innovative

min

{√
b

DitDit+1

,

√
DitDit+1

b

}
(33)

≤ Cb3b
b/2

for some slightly different absolute constants C2, C3, in which (32) comes from the fact that (Tp/cp)
cp ≤ eTp/e

and T1 + . . . Tw = q ≤ b. To explain the last step in the transformation above, consider each edge {r, s} in
the cycle. It have been given that {r, s} will appear at least 2 times in the cycle, supposing it appears exact
k ≥ 2 times, then it will contribute a factor√

b

DrDs
min

{√
b

DrDs
,

√
DrDs

b

}k−1

≤ 1

to the formula (33).
In this way, we can always encode the cycle into a tuple (D,v, c, E) for some v such that E < Cb3b

b/2

for some absolute constant C3. The total number of such tuples can be clearly bounded by Cbbb/2 for some
slightly different absolute constant C.

In the end, by Stirling’s formula we can write the ratio between bb/2 and bb/2+1−ww! as

bb/2

bb/2+1−ww!
≤ Cb4

(
b

w

)w
for some absolute constant C4. However simple calculus gives that (b/w)w ≤ ew/e ≤ eb/e. Hence the number
of valid cycles can be also bounded by C ′bb/2+1−ww! for some slightly different constant C ′.

Proposition 5. Suppose S(n) is the set consisting of all permutations on {1, . . . , n}. Let (i1, i2), . . . , (ib, i1)
be a cycle of length b in the graph. Let e1, . . . , ej are the j distinct undirected edges appearing in the cycle,
with occurrence times α1, . . . , αj, and f1 . . . , fw are the w distinct vertices appearing in the cycle, with
occurrence times β1, . . . , βw. Suppose all α are at least 2, then we have

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)] ≤
Kb−2j

db−w+1
min (n− 1) . . . (n− w + 1)
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Proof. Define G as a graph such that (s, t) is an edge of G if and only if (fs, ft) appears in the cycle
(i1, . . . , ib, i1). We have

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]

≤ E
σ∈US(n)

[|Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)|]

≤ E
σ∈US(n),X

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

|Xσ(e1)|α1 . . . |Xσ(ej)|
αj

]

≤ Kα1+···+αj−2j E
σ∈US(n)

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

E
X

[X2
σ(e1) . . . X

2
σ(ej)

]

]

≤ Kα1+···+αj−2j E
σ∈US(n)

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]
,

in which δ(σ; p1, . . . , pl) := 1 if correspondingXσ(fps ),σ(fpt )
are non-zero for all (ps, pt) ∈ G, and δ(σ; p1, . . . , pl) :=

0 otherwise. It is easy to see that if δ(σ;P ) = 1 for some σ then all subset P ′ ⊆ P also satisfy δ(σ;P ′) = 1. It

suffices to bound Eσ∈US(n)

[
d−β1

σ(f1) . . . d
−βw
σ(fw)δ(σ; 1, . . . , w)

]
. To use induction to achieve this end, we relax our

assumption such that now we have not a cycle but just a connected graph consisting of w vertices f1, . . . , fw
with degrees β1, . . . , βw. We can find a vertex such that the graph is still connected after removing this
vertex. Without loss of generality, suppose it is fw, and one of its adjacent vertices is fw−1. Fixing σ(fw−1),
there are at most dσ(fw−1) choices for σ(fw) to make δ(σ; 1, . . . , w) not vanish. Thus we have

E
σ

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]

≤ E
σ(f1),...,σ(fw−1)

[
d−β1

σ(f1) . . . d
−βw−1

σ(fw−1)δ(σ; 1, . . . , w − 1) E
σ(fw)

[
d−βrσ(fw)δ(σ;w − 1, w)

]]
≤ d−βwmin E

σ(f1),...,σ(fw−1)

[
dσ(fw−1)

n− w + 1
d−β1

σ(f1) . . . d
−βw−1

σ(fw−1)δ(σ; 1, . . . , w − 1)

]
≤ 1

dβrmin(n− w + 1)
E
σ

[
d−β1

σ(f1) . . . d
−βw−2

σ(fw−2)d
−βw−1+1
σ(fw−1) δ(σ; 1, . . . , w − 1)

]
.

Observe that the last line has the form of recursion in the sense that we now have a connected graph
consisting of f1, . . . , fw−1 with degrees β1, . . . , βw−2, βw−1 + 1, hence we obtain that

E
σ

[
1

dβ1

σ(f1) . . . d
βw
σ(fw)

δ(σ; 1, . . . , w)

]
≤ 1

dmin
β1+···+βw−w+1(n− 1) . . . (n− w + 1)

=
1

db−w+1
min (n− 1) . . . (n− w + 1)

Proposition 6.

E[tr(N b)] ≤ Cb n

d
b/2
min

for some absolute constant C.

Proof. We have

E[tr(N b)] =
∑

1≤i1,...,ib≤n

E[Ni1i2 . . . Nibi1 ], (34)
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which is a sum over all cycles i1 → · · · → ib → i1 of length b. According to the independence of Nij , all
terms are zero but those terms in which every {is, is+1} appears at least two times. Consider cycles with w
distinct vertices and j distinct edges appearing. Let V(b, w, j) be the set of all such cycles. Using Proposition
4, |V(b, w, j)| will be bounded by

Cb1b
b/2+1−ww!×

(
n

w

)
= Cb1b

b/2+1−wn(n− 1) . . . (n− w + 1)

where C1 is an absolute constant. While Proposition 5 gives the expected contribution to sum (34) over
cycles of the certain shape, which means∑

(i1,...,ib)∈V(b,w,j)

E[Ni1i2 , . . . Nibi1 ]

= E
σ∈US(n)

 ∑
(i1,...,ib)∈V(b,w,j)

E[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]


=

∑
(i1,...,ib)∈V(b,w,j)

E
σ∈US(n)

[Nσ(i1)σ(i2) . . . Nσ(ib)σ(i1)]

≤ Cb1b
b/2+1−wn(n− 1) . . . (n− w + 1)× Kb−2j

db−w+1
min (n− 1) . . . (n− w + 1)

≤ Cb1nd
−b/2
min ×

(
K2b

dmin

)b/2−w+1

≤ Cb
n

d
b/2
min

for some absolute constant C in which we used the fact that j ≥ w − 1 and b = O(log n),K = O
(√

dmin
logn

)
.

Theorem 3.1. Suppose K = O
(√

dmin
logn

)
, then

‖N‖ ≤ C√
dmin

holds with high probability for some absolute constant C.

Proof. Setting b = 4dlog ne which is an even number, we write the constant in Proposition (6) as C1 here,
then the Proposition 6 together with the Markov’s inequality gives

Pr

[
‖N‖ > 3C1√

dmin

]
= Pr

[
‖N‖b > 3bCb1

d
b/2
min

]

≤ n

3b
<

1

n4
.

Hence ‖N‖ ≤ C√
dmin

with high probability in which C = 3C1 is an absolute constant.

3.3 Proof of Lemma 3.2

Proof. First we have

‖B‖ω = ‖abs(B) · ω‖∞ ≤ ‖ω|‖∞‖B‖∞ ≤
√
dmax

dmin
‖B‖∞

Hence it suffices to prove (31) by showing that

‖(eT1 ⊗ Im)

l∏
j=1

(
(Btj ⊗ Im)N

)
Sk‖∞ ≤

(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖ (35)
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holds with probability exceeding 1 − 1
nc . Denote by a

(j)
pq the element of matrix Btj in p-th row and q-th

column. In this way, we can expand the left side of (35) as∥∥∥∥∑
α,β

a
(1)
1α1

Nα1β1
a

(2)
β1α2

. . . a
(l)
βl−1αl

Nαlβl(sβlUk)

∥∥∥∥ (36)

in which we used the fact that Sk = s⊗ Uk. Here the summation is taken over all possible integer arrays α

and β which are both of length l. Recall that sβl =
√

dβl
|E| and Np,q = 1√

dpdq
Xp,q if (p, q) ∈ E while Np,q = 0

otherwise. We thereby denote by H as the set consisting of all pairs (α,β) such that (αj , βj) ∈ E for all j.
Hence it suffices to prove that

1√
|E|

∥∥∥∥∥∥
∑

(α,β)∈H

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1
dβ1

. . . dαl−1βl−1
dαl
·Xα1β1 . . . XαlβlUk

∥∥∥∥∥∥
≤
(√ log n

dmin
· CK

)l
· ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max ·

√
dmin

|E|
‖Uk‖, (37)

or in a stronger sense, ∥∥∥∥∥∥
∑

(α,β)∈H

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1
dβ1

. . . dαl−1
dβl−1

dαl
·Xα1β1 . . . Xαlβl

∥∥∥∥∥∥
≤Cl(log n)l/2 · ‖B‖ω · ‖B‖t−l/2−1

∞ · ‖B‖l/2max· (38)

since ‖Xpq‖ ≤ K for all p, q. To this end, we employ the power moment method, which needs us to show

E


∥∥∥∥∥∥∥
 ∑

(α,β)∈H

2k∏
r=1

a
(1)
1,α1

a
(2)
β1,α2

. . . a
(l)
βl−1,αl√

dα1dβ1 . . . dαl−1
dβl−1

dαl
·X

α
(r)
1 β

(r)
1
. . . X

α
(r)
l β

(r)
l

2k
∥∥∥∥∥∥∥


≤(log n)kl · ‖B‖2kω · ‖B‖2kt−kl−2k
∞ · ‖B‖klmax· (39)

holds for all integer k such that kl ≤ O(log n). The left side of (39) can be furthermore relaxed and expanded
to

∑
(α̂,β̂)∈H2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

·

∣∣∣∣∣E
[

2k∏
r=1

X
α

(r)
1 β

(r)
1
. . . X

α
(r)
l β

(r)
l

] ∣∣∣∣∣ (40)

where α̂ = (α(1), . . . ,α(2k)), β̂ = (β(1), . . . ,β(2k)). Here H2k is defined such that (α̂, β̂) ∈ H2k if and only if

(α(r),β(r)) ∈ H. An important observation is that E[Xα1β1
. . . Xαlβl ] is non-zero if and only if all unordered

pairs {αj , βj} will appear at least two times among these 2k pairs since all Xpq are independent for distinct

{p, q} and E[Xpq] = 0. Let J2k ⊆ H2k be the set consisting of all (α̂, β̂) such that every (α
(r)
j , β

(r)
j ) would

appear at least two times among these 2kl unordered pairs, which means it suffices to prove that

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤ (log n)kl · ‖B‖ω · ‖B‖2kt−kl−2k
∞ · ‖B‖2klmax. (41)

To estimate the sum in the left side of (41), we introduce the concept of summing graph.

Definition 1. A summing graph Gs = (Vs, E1, E2) is formally defined as following:

1. Vs contains 1 + n nodes, in which one node is special and called the root node while the remaining n
nodes are used to represent n variables that we are summing over. In fact, the root node represents the

fixed index 1 in a
(1)

1,α
(r)
1

in (41).
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2. E1 is a undirected edge set on vertex set Vs. If (u, v) ∈ E1, then the variables represented by u, v are
adjacent in G.

3. E2 is an undirected labeled edge set on vertex set Vs and E2 can contain multiple edges. Each edge in
E2 has the form (p, q, n) where p, q is the end node while n is an integer label.

A summing graph Gs combined with a vector θ can induce a sum Σ(Gs,θ) as defined below:

Σ(Gs,θ) =
∑

v∈U(Gs)

∏
(p,q,n)∈E2

[Bn]vp,vq/F (v,θ)

in which we define

U(Gs) = {v ∈ {1, . . . , n}|Vs| : for every (p, q) ∈ E1, vp, vq are adjacent in G},

F (Gs,v,θ) =
∏
p∈Vs

1

d
θp/2
vi

∏
p/∈Vs

1

d
θp/2
min

.

Return to the original problem. For some (α̂, β̂) ∈ J2k, we can divide all 2kl terms of form {α(r)
j , β

(r)
j }

into a number of groups such that each group includes the same unordered pairs. By the definition of J2k

each group has a size of at least 2. Without loss of generality we could assume all groups are of size 2 or 3.
For example, if some {p, q} occurs 7 times among 2kl unordered pairs, we can divide these 7 terms into 3
groups of size 2, 2, 3 respectively. Let the number of groups with size 2 be kl−3u, then the number of groups
with size 3 would be 2u since there are 2kl terms in total. To obtain identical relations between ordered
pairs (α

(r)
j , β

(r)
j ), we can use a bit string of length 2kl to indicate whether the corresponding (α

(r)
j , β

(r)
j ) has

the same order as its first appearance. Fixing u, the number of possible groupings would be

(2kl)!

2kl−3u62u(kl − 3u)!(2u)!
=

(2kl)!

2kl4.5u(kl − 3u)!(2u)!
.

For some grouping configuration with kl − u groups together with a 2kl bit string like mentioned above, a
summing group G1 could be constructed as below:

• V(G1) has 2(kl−u)+1 nodes. In particular, one of them represents 1, which is the root node, while each
of others represents exactly one element in kl − u groups. More precisely, each node can be regarded

as a set of variables of form α
(r)
i or β

(r)
i so that all variables in the same node are forced to have the

same value.

• The edge joining nodes representing α
(r)
i , β

(r)
i would be in E1(G1) for all possible i, r. Thus each node

except the root node is associated with exact one edge in E1(G).

• Starting from an empty E2(G1), add a labeled edge (β
(r)
i , α

(r)
i+1, i+1) for all possible β

(r)
i , α

(r)
i+1, and add

a labeled edge (root, α
(r)
1 , 1) for all possible α

(r)
1 . Recall that E2(G1) is a unordered edge set containing

multiple edges.

• θ1 is defined as an integer vector of the same length as the number of nodes in G1. Let θ1,0 be 0 for

root node 0, and θ1,p be the number of times that variable represented by node p appears in α
(r)
i and

β
(r)
i except β

(r)
l . It is clear that θ1,p ≥ 2 for node p where p is not the root node and does not contain

variable of form β
(r)
l . Hence there are at most 2k indices p such that θp = 1.

In this way, we can easily verify that

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤
∑
G1

Σ(G1,θ1)

in which G1 is taken over all possible configurations of grouping.
Next, we will provide an estimation on Σ(G1,θ1) by induction where G1 contains 2(kl − u) + 1 nodes.
Claim:

Σ(G1,θ1) ≤ ‖B‖2kω · ‖B‖2kt−kl−2k
∞ · ‖B‖klmax · d

−(l−1)k−u
min .
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Proposition 7. We can remove some edges from E2(G1) to obtain a graph G2 satisfying

• G2 is a tree with edge set E1(G2) ∪ E2(G2).

• E2(G2) does not contain multiple edges any more.

• Except the root node, each node in G2 is associated with exactly one edge in E1.

Define the difference between two graphs G and G′ as

∆(G′,G) :=
∑

(p,q,n)∈E2(G′)\E2(G)

n

for graph G ⊆ G′, then we have

Σ(G1,θ1) ≤ ‖B‖∆(G1,G2)
max Σ(G2,θ2).

Since there are 2kl edges in E2(G1) but only kl − u edges in E2(G2), we have

∆(G1,G2) ≥ kl + u.

In the following, we will construct a sequence of summing graphs G2, . . . ,Gm in a inductive way, where
Gm is a summing graph with only one node, the root node. Specifically, we impose an inductive assumption
which holds for G1 and G2: Gz is a tree over edge set E1(Gz) ∪ E2(Gz) for z = 2, . . . ,m.

Suppose Gz(z ≥ 2) is given and has more than one nodes, then we can choose from tree Gz a leaf node πz
which is not the root node. By inductive assumption there exists some τz with (πz, τz) ∈ E1(Gz) and some
νz with (τz, νz) ∈ E2(Gz), and Gz+1 is still a tree where Gz+1 is obtained by removing {πz, τz} and their
associated edges from Gz. There are two possible bounds:

1. θz,τz ≥ 2. In this case, let θz+1 be the same as θz on all components except θz+1,τz = θz,τz − 2. Then
we have

Σ(Gz,θz) =
∑

v∈U(Gz)

∏
(p,q,n)∈E2(Gz)

∣∣[Bn]vp,vq
∣∣/F (Gz,v,θz)

≤
∑

v∈U(Gz+1)

∑
vτz

∑
vπz∈N (vτz )

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣ ∣∣[Bn(τz,νz)]vτz ,vνz

∣∣/(F (Gz+1,v,θz+1)dvτz

)

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∑
vπz∈N (vτz )

1

dτz

∣∣[Bn(τz,νz)]vπz ,vνz
∣∣

=
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∣∣[Bn(τz,νz)]vπz ,vνz
∣∣

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)
‖B‖∆(Gz,Gz+1)

∞

= Σ(Gz+1,v,θz+1)‖B‖∆(Gz,Gz+1)
∞

2. It is trivial that θz,πz ≥ 1 and θz,τz ≥ 1. So we can always let θz+1 be the same as θz on all components
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except θz+1,πz = θz,πz − 1 and θz+1,τz = θz,τz − 1. Then we have

Σ(Gz,θz) =
∑

v∈U(Gz)

∏
(p,q,n)∈E2(Gz)

∣∣[Bn]vp,vq
∣∣/F (Gz,v,θz)

≤
∑

v∈U(Gz+1)

∑
vτz

∑
vπz∈N (vτz )

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣ ∣∣[Bn(τz,νz)]vτz ,vνz

∣∣/(F (Gz+1,v,θz+1)
√
dτzdπz

)

≤
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

∑
vπz∈N (vτz )

1√
dτzdπz

∣∣[Bn(τz,νz)]vπz ,vτz
∣∣

=
∑

v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)

∑
vτz

ωτz
∣∣[Bn(τz,νz)]vπz ,vνz

∣∣
≤

∑
v∈U(Gz+1)

∏
(p,q,n)∈E2(Gz+1)

∣∣[Bn]vp,vq
∣∣

F (Gz+1,v,θz+1)
‖B‖∆(Gz,Gz+1)−1

∞ ‖B‖ω

= Σ(Gz+1,θz+1)‖B‖∆(Gz,Gz+1)−1
∞ ‖B‖ω

Since at first θ2,p ≥ 1 for all non-root nodes p and θz+1,p < θz,p happens only if node p is removed from
Gz, the second bound always works. Besides, we have bounds

Σ(Gz,θz) ≤ Σ(Gz+1,θz+1)‖B‖∆(Gz,Gz+1)−1
∞ min{‖B‖∞, ‖B‖ω} (42)

if θz,τz ≥ 2.

Σ(Gm,θm) = dmin
−

∑
i θm,i/2.

Now let’s calculate
∑
i θm,i. Initially we have∑

i

θ2,i =
∑
i

θ1,i = 2k(2l − 1).

The inductive steps give
∑
i θz+1,i =

∑
i θz,i − 2 and there are kl − u inductive steps in total. Hence∑

i

θm,i = 2k(2l − 1)− 2(kl − u) = 2kl − 2k + 2u,

which means Σ(Gm,θm) = d−kl+k+u
min .

Note that there are at most 2k nodes p with θ2,p = 1, which means the bound (42) holds for all inducative
steps except 2k steps. In this way, together with the fact ‖B‖max ≤ ‖B‖∞ and ∆(G1,Gm) = t, Σ(G1,θ1)
could be expressed as

Σ(G1,θ1) ≤
(
‖B‖ω
‖B‖∞

)2k

‖B‖∆(G1,G2)
max ‖B‖∆(G2,Gm)

∞ Σ(Gm,θm)

≤
(
‖B‖ω
‖B‖∞

)2k

‖B‖klmax‖B‖∆(G1,Gm)−kl
∞ d−kl+k+u

min

≤ ‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)+u
min

For Gm which contains a single root node, we have

Σ(Gm,θm) = dmin
−

∑
i θm,i/2 = dmin

−k(l−1)−u,

where the last equation comes from the fact
∑
i θ1,i = 2k(2l− 1) and

∑
i θz+1,i =

∑
i θz,i − 2 if and only an

edge in E2(Gz) was removed, but there are exact kl − u edges in E2(G1) so that∑
i

θm,i =
∑
i

θ1,i − 2(kl − u) = 2kl − 2k + 2u.
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Note that the third cases would appear at most 2k times and the second cases appear exactly kl times,
which means

Σ(G1,θ1) ≤ ‖B‖klmax‖B‖2kω ‖B‖∆(G1,Gm)−kl−2k
∞ Σ(Gm,θm)

Return to calculate (41). We have

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤
∑
G1

Σ(G1,θ1)

=
∑
u≥0

∑
|V(G1)|=kl−u+1

Σ(G1,θ1)

≤ ‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)
min

∑
u≥0

(2kl)!

2kl4.5u(kl − 3u)!(2u)!
d−umin

For the last line above, we have

(2kl)!

(kl − 3u)!(2u)!dumin

≤ (2kl)!

(kl − 3u)!(2u)!(kl)u
≤ (Ckl)kl

for some absolute constant C. Thus

∑
(α̂,β̂)∈J2k

2k∏
r=1

∣∣a(1)

1,α
(r)
1

a
(2)

β
(r)
1 ,α

(r)
2

. . . a
(l)

β
(r)
l−1,α

(r)
l

∣∣√
d
α

(r)
1
d
β
(r)
1
. . . d

α
(r)
l−1

d
β
(r)
l−1

d
α

(r)
l

≤ (C log n)kl‖B‖2kω ‖B‖klmax‖B‖t−kl−2k
∞ d

−k(l−1)
min

for some absolute constant C.

3.3.1 A Lower Bound on ‖B‖∞
In the simple case, it is clear that B = L†, BL = I − ssT , Bs = 0. In the following I will explore the
relationship between ‖B‖∞ and dmax/dmin. Without loss of generality, suppose d1 = dmax and d2 = dmin,
then consider the vector which is a linear combination of the first column of L denoted as col1(L) and s:

v = col1(L)− 1− 1/
√
d1d2√

d1 +
√
d2

s.

In this way, it can be easily verified that

‖v‖∞ =

√
d2 + 1/

√
d2√

d1 +
√
d2

and
Bv = Bcol1(L) = col1(I − ssT ),

so

‖Bv‖∞ ≥ 1− d1

|E|
≥ 1

2

since |E| ≥ 2d1. Hence we have

‖B‖∞ ≥
√
d1 +

√
d2

2(
√
d2 + 1/

√
d2)
≥ 1

4

√
d1

d2
≥ 1

4

√
dmax

dmin
.
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3.4 Proof of Lemma 3.3

Suppose

K ≤ C1

√
dmin

‖Bi‖ · ‖Bi‖∞ · log n
,

the inequality (31) turns into

‖(eTb ⊗ Im)

l∏
j=1

((B
tj
i ⊗ Im)N)Sk‖∞ ≤ Cl‖Bi‖t−l∞

√
dmin

|E|
‖Uk‖.

Thus we have

‖(eTb ⊗ Im)(BiN)i1Bi . . . (BiN)ij+1BiN(Sk ⊗ Im)‖ ≤

√
dmin

|E|
‖Uk‖ · ‖Bi‖j∞(C1C)

∑j+1
l=1 il+1.

On the other hand, by choosing small enough absolute constant C1, we have

‖Bi‖‖N‖ ≤ ‖Bi‖
C2K√
dmin

≤ 1

10
,

‖Bi‖‖λiIm − Σi‖ ≤ ‖Bi‖‖N‖ ≤
1

10
.

Thus applying Lemma 2.4 provides the desired conclusion.

4 Proof of Exact Recovery Conditions Under the Full Setting

4.1 Proof of Theorem 3.1

We prove Theorem 3.1 by establishing the concentration under the un-normalized data, i.e., which is identical
to set di = nt. To begin with, let us rewrite the data matrix under the proposed model of mapping and
observation graph. Since we assume the observation graph and the input pair-wise maps are generated
through independent procedures, it follows that

Xij =
1

nt
·

 Im − 1
m11T with probability ηijt

UPm − 1
m11T with probability (1− ηij)t

0 with probability (1− t)
(43)

Here ηij , 1 ≤ i, j ≤ n form a matrix (p− q)(Ik ⊗ (11T )) + q11T .
(43) gives rise to

E[Xij ] =
ηij
n

(Im −
1

m
11T ), (44)

and

Nij := Xij − E[Xij ] =
1

nt
·


(1− ηijt)(Im − 1

m11T ) with probability ηijt
UPm − 1

m11T − ηijt(Im − 1
m11T ) with probability (1− ηij)t

−ηijt(Im − 1
m11T ) with probability (1− t)

(45)

It is obvious that Nij1 = 0 and NT
ij1 = 0. Moreover,

‖Nij‖ ≤
1 + ηijt

nt
≤ 2

nt
.

Decompose X = E[X] +N , it follows that

E[X] =
1

n

(
(p− q)(Ik ⊗ (11T )) + q(11T )

)
⊗ (Im −

1

m
11T ). (46)
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Following the convention of notation, let

A =
1

n

(
(p− q)(Ik ⊗ (11T )) + q(11T )

)
.

It is easy to check that the rank of A is k, and its top k eigenvalues are given by

λ1(A) = q +
p− q
k

, λi(A) =
p− q
k

, 2 ≤ i ≤ k. (47)

Let ( 1√
k
1, Hk) be an orthonormal basis for Rk, then it is easy to see that the corresponding top k eigenvectors

of A are given by

Sk =

√
k

n
1⊗

( 1√
k

1, Hk

)
.

Moreover,

SkS
T

k = (In0
− 1

n0
11T )⊗ Ik.

To apply Lemma 3.3, it is easy to see that

B1 =
1

q + p−q
k

(In0 −
1

n0
11T )⊗ Ik,

and

Bi =
k

p− q
(In0 −

1

n0
11T )⊗ Ik, 2 ≤ i ≤ k.

Denote

T = (In0
− 1

n0
11T )⊗ Ik.

It is easy to check that
‖T‖ω = 2, ‖T‖∞ = 2, ‖T‖max = 1.

Applying Lemma 3.3, we obtain the following stability bound on the top k(m− 1) eigen-vectors of X:

Lemma 4.1. Let U = (U
T

1 , · · · , U
T

n )T be the top k(m− 1) eigen-vectors of X. Then there exists a rotation
matrix R ∈ O(k(m− 1)) and a universal constant c, so that when

p− q ≥ ck
√

log(n)

nt
,

we have w.h.p,

max
1≤i≤n

‖Ui − (eTi Sk ⊗Hm) ·R‖ ≤ 1

6
· 1√

n
. (48)

Complete the proof of Theorem 3.1. Since the spectral norm bounds the difference between the
corresponding rows, it follows from Lemma 4.1 that (1) the distance between the corresponding elements
between each pair of objects in the embedding space is upper bounded by 1/3, (2) dintra < 1/3, and (3)
dinter > 2/3. This means both the intra-cluster maps and the underlying clusters can be recovered, which
ends the proof.

4.2 Proof of Theorem 3.2

We prove a stronger recovery condition for inter-cluster maps. Note that inter-cluster map recovery solves
the following linear assignment:

Xst = argmax
X∈Pm

〈X,Cst〉, Cst =
∑

(i,j)∈E,i∈cs,j∈ct

XjitX
in
ij Xisi. (49)

We prove a stronger exact recovery condition as follows. To begin with, we define the minimum number
of inter-cluster edges between one pair of clusters as.

Ninter = min
1≤s<t≤k

Nst, Nst := |{(i, j)|(i, j) ∈ E , i ∈ cs, j ∈ ct}|. (50)
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Lemma 4.2. Given an absolute constant cinter > 0. Suppose the intra-cluster rate q and Ninter satisfy the
following constraint:

q ≥

√
cinter log(n)

Ninter
.

Then we have with probability at least 1− m2k2

n
cinter

8
,

min
1≤a≤m

Cst(a, a) > max
1≤a6=b≤m

Cst(a, b), 1 ≤ s 6= t ≤ k. (51)

Proof: First of all, it is easy to check that

E[Cst(a, b)] =

{
1
m (1− q) + q a = b

1
m (1− q) a 6= b

We apply union bounds by showing that with probability at least 1− m2k2

n
cinter

8
, we have

min
1≤s6=t≤k,1≤a≤m

Cst(a, a) >
1

m
(1− q) +

q

2
, (52)

max
1≤s6=t≤k,1≤a6=b≤m

Cst(a, b) <
1

m
(1− q) +

q

2
. (53)

Note that each diagonal elementXjitX
in
ij Xisi(a, a) is a random Bernoulli random variable with probability

1−q
m + q, we can apply lower Chernoff bound to obtain a lower tail bound on Cst(a, a), which is

Pr[Cst(a, a) ≤ Nst(
1− q
m

+ q − q

2
)] ≤ exp(− Nstq

2

8(q + 1−q
m )

) ≤ exp(− Ninterq
2

8(q + 1−q
m )

). (54)

Similarly, each off-diagonal element XjitX
in
ij Xisi(a, b) is a random Bernoulli random variable with probability

1−q
m , we can apply upper Chernoff bound to obtain a upper tail bound on Cst(a, b), which is

Pr[Cst(a, b) ≤ Nst(
1− q
m

+
q

2
)] ≤ exp(− Nstq

2

8( q6 + 1−q
m )

) ≤ exp(− Ninterq
2

8( q6 + 1−q
m )

). (55)

Since q =
√
cinter

log(n)
Ninter

. It follows that combing (54) and (55) lead to

Pr[Cst(a, a) ≤ Nst(
1− q
m

+ q − q

2
)] ≤ exp(−cinter log(n)

8
) ≤ 1

n
cinter

8

(56)

Pr[Cst(a, b) ≥ Nst(
1− q
m

+
q

2
)] ≤ 1

n
cinter

8

(57)

Applying union bounds (56) and (57), we have that the inter-cluster maps can be recovered with probability

at least 1− m2k2

n
cinter

8
.

Since the observation graph is generated from the Erdős-Rényi model G(n, t). It is easy to check that

the number of inter-cluster edges between a pair of clusters concentrates at [n
2t

2k2 ,
2n2t
k2 ] with overwhelming

probability (for example using Chernoff bound), which ends the proof.
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