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Abstract

This document contains all the proofs to the main paper on SMAC: Simultaneous Mapping and
Clustering Using Spectral Decomposition.

1 Organization of the Supplemental Material

We organize our paper’s supplemental material as follows. In Section[2] we present a set of tools for analyzing
the stability of leading eigen-vectors of a perturbed data matrix. These stability bounds are expressed with
respect to the algebraic constants of the original matrix and the perturbation matrix. In Section [3] we study
how these stability bounds shape out under different noise models of the perturbation matrix. We then use
these results to analyze the exact recovery conditions of PermSMAC in Section

2 Stability of Eigen-decomposition in the Deterministic Setting

In this Section, we present our framework for analyzing the stability of eigen-decompositions. The framework
is based on a few key lemmas regarding the stability of eigenvalues and eigenvectors (Section [2.1)). Their
proofs are deferred to Sections

2.1 Key Lemmas

Given a symmetric matrix A € R"*"_ we are interested in controlling the stability of the leading eigenvectors
of a symmetric block matrix A®(I, —L11") € R"™*"™ under a symmetric block noise matrix N € Rmmxnm,

To state the eigen-decomposition stability problem. Let A\;, 1 < ¢ < n and s;,1 <1 < n be the eigenvalues
and corresponding eignevectors of A, respectively. Similarly, let u;,1 < ¢ < nm and u;,1 < i < nm be the
eigenvalues and corresponding eigenvectors of A = A ® (I,,, — %11T) + N, respectively. We are interested
in bounding the difference between \;;1 < ¢ < k and Pi—1ym+j> L < @ < k,1 < 5 < m as well as the

difference between the column space (81, ,8x) @ Hy, and that of U1y = (w1, , Ug(m-1)), Where
H,, € R™*(m=1) ig g basis matrix of I — %llT. For convenience, we use Sy = (s1,- -, Si) to denote the
leading k eigenvectors of A, and use Sy = (Sg41, - ,8,) to collect its remaining eigenvectors. First, we

present the following result regarding eigenvalue stability:

Lemma 2.1. (Eigenvalue Stability.) Denote E1; = (Si ® Hp)TN(Sk @ H,y,). Suppose

INI+ 1Bl < Ak = Ak,



then we have for every 1 <i<k,1<j<m-—-1,p=(—-1)(m—-1)+j,

| V]| + [| B |

—||E < -\ <||E
Bl < op < [ Eull + Vv

(NI = N[ B l)- (1)

Proof: See Section 2.2 O
Remark 1. Note that is tighter than the well-known Weyl’s inequality |A\y — o;| < ||N||, as

[V + (1B |

E
Bl + Vv

UINT = 1Bl < Bl + AN = Bl = [N]-

In particular, as ||E11]| < || V|| in most cases, so our bound is significantly better than the Weyl’s inequality
when [N + | Enl] < Ak = Apga-
Moreover, our result is also tighter than that of [Eldridge et al., 2018], which introduces a similar stability
bound:
V]
Ai = M1 = [N+ | B ||
is tighter as A — A1 — V]| + | Eutl) < A — Apys and V] = [ By < [IN]2,

Remark 2. To gain additional intuitions on , let us consider the special case where k = m = 1, and
let \;(A) be the i-th greatest eigenvalues of symmetric matrix A. For the matrix function A(t) = A+ tN
depending on the parameter ¢ with 0 < ¢ < 1, let A\;(¢t) = N (A(¢)), and wu;(t) corresponds to eigenvalue
Ai(t). First of all, it is easy to show that (e.g., through differentiating A(t)u;(t) = A1 (t)uy1(t) and utilizing
Ju(®)] = 1)

=Bl <op—Xi < ||Bull +

N () = uy ()T A () (t) = ui (1) Nuy(2). (2)

Recall that Eqy1 = SkTNSk = uy(t)T Nuy(t) is a scalar in this special case. Hence the first order expansion
of A1(t) is A1 (t) & A(A) + tE1;. We now proceed to differentiate (2)), which gives

N () = uh ()T Nuy(t) + wy ()T Nl (t) = 2u1 (1) N (2). (3)

Note that the expression of wf (t) is given by

/ - i t N’U,1 t
(1) = X;Muz<t>.

Substituting it into formula (3]) yields the second order approximation of A(t) would be

A1) = A ( +E11t+z|]\m1(f£t2»

or loosely speaking,

~ . lui () Nul(t)|2 2
/\1(t)~>\1(A)+E11t+iz:; M (A) = o (A) t*,
in which
Sl Nua (1) =Y |ua(®)” (Nuy () [* = (w1 (1) Nua (1))
i=2 i=1

= |Nui(t)* - BY,
<IN = (1B,

Thus the second-order Taylor expansion of A(t) implies

[N = || B |

A = 2 a)



is a good approximation for [A;(A + N) — A1(A)|, which is exactly what we proposed in formula ().

However, it must be pointed out that this expansion is just an approximation rather than a real bound
but it provides a good insight why comes out. Besides, it would also be hard to generalize this expansion
idea to k > 1 since || E11]| will no longer be a scalar if k& > 1.

To characterize the difference between Sy ® Hy, and Uy(y,—1) := (@1, -, Up(n—1)), We consider the
following decomposition of Up,(y,—1):
Uk(m—-1) = (Sk ® Hp) X +Y,
where
X e RFm—Dxk(m=1) = Ty _ ),

In other words, (S ® H,,)X is the projection of Uy m,—1y onto the column space of Sy ® H,y,, and Y is the

projection of Uy (y,—1) onto the dual space S ® Hy,. Intuitively, we say Uk(m—1) is stable if Y is small and
X is close to a unitary matrix (which defines all orthogonal basis of a linear space). The following Lemma
provides a bound on the difference between X and a unitary matrix:

Lemma 2.2. (Controlling X.) Denote Ey; = (Sy @ H;, )T N(S,.®@ H,y). Suppose A, —Agr1 > ||N ||+ || E11]]-
Then there exists a unitary matriz R € O(k(m — 1)) so that

Nl )
X —Rll<1—14/1-— . 4
IX -~ Rl < \/ ( e S T )

| V]2 '
Ak = Aer1 — [[E1a]])?

In particular,

IX = R|| <

()

Proof: See Appendix O

Tt is easy to derive an upper bound on ||Y|| using Lemma However, our analysis requires bounding
individual blocks Y;,1 < ¢ < n, making such bounds insufficient for our purpose. To this end, we introduce
the following expression of Y, from which we will derive block-wise bounds.

Lemma 2.3. (ControllingY.) Denote ¥; = diag(o(i—1)(m-1)+1,""* » Titm—1)), 1 <1 <k, A = diag( Mgy,

and Sy = (8g41, -+ ,8n). Let
Bi = (8, ® Hp) NI =A@ 1, 1) Y (Sp @ Hp)T, 1<i<k. (6)

Suppose ||N|| + | E11|| < Ak — Aks1, then

> _ +1
Yi o= (Yo tymets Yim) = O (I = BiN)™'B;)" N(Sg ® Hyp) Xi(Ailn — 5i)". (7)
=0
Proof: See Appendix O

We now present the last lemma which applies @ to obtain a L*°-type bound on blocks of Y;. Specifically,
let By, = ey ® H,,, € RMm=Dxm=1) The following Lemma provides a way to bound ||E Y|:

Lemma 2.4. (Bounding L>-norm of Y) Giveni € {1,--- ,k}. Let B; be defined by (6)). Suppose there
are small constants €1, €2, €3,0 < 1 such that the following four conditions are satisfied:

o [IBilll[N]l < er.
o [|Bil[l|Ailm — Xi| < eo.

o Jjo >0, mg>0,st,¥0<5<jo, iy >0,1<1<j+1, where 0< Y74 i) < mo,

max | B (BiN)"Bi - (BN BiN(Sk © Hy)|| < e3B! - 6311 47, (8)
<b<n



e co+6<1.

Then 5
€1 €2 : €1
By < 15 ()Y
s VBT < 160 (=2 (2 + (2 0™) + e )
Proof: See Appendix O

Remark 3. As we will see later, the dominant term in is ||EF BNS||, which can be controlled using
standard concentration bound. The technical difficulty is how to extend it to high order moments. Later
we will show how to achieve this goal by controlling power moments. Note that does not incur a strong
1

y/log(n)

bound. For example, in randomized models we consider in this paper, | B]|||N] = O

). However,
the right-hand side of only decays at a geometric rate.

Remark 4. It turns out the major task in terms of controlling eigen-decomposition stability is to provide
bounds on Ey;, N and the left-hand sides in . This is the goal of the next two sections.

2.2 Proof of Lemma [2.1]

Denote Ay = (Aq, -+, A\x) and Ap, = (Apy1,--+,A\n). It is clear that we can decompose A as
— — =T
A= SiASE +SpAx Sy,

For convenience we set p = (i—1)(m—1)+j and define L,, = I,,, — £ 117" To control |X\; =0 (;_1)(m—1)+;|, 1 <
i <k, 1 <j<m-—1, we consider an eigen-decomposition of A ® L, + N with respect to basis spanned by
S, ® H,,, and S;, ® H,,. Introduce matrices

By = (Sk® Hy)'N(Sy ® Hyp),

By = (Sk® Hp)"N(Sk ® Hp),

By = (Sk ® Hi)"N (S, ® Hp,).

Using unitary matrix S ® H,, to change the basis for matrices A ® L,, and N, respectively, we obtain that

(S @ Hp) (A L) (S ® Hyy) = ﬁ)k 18;@] ® L1

E ET
S®Hn)'N(S®Hy,)=|." 2
(58 ) NS o ) = gt P
Observe that the matrix A ® L,, + N — ul is congruent to

B(u) = A @ Iy + By — pl + B3y (ul — Ay — Eag) ' Eay 0
0 A @ L1 + Eoo — pd

and has the same inertia as well, which can be verified from the identity

(S® Hp)"(A® Ly + N — pI)(S ® Hp,)

o Ak®Im_1+E11 7#[ . Egl

N Eoy Ay @ L1 + Eop — pd

L P A @ Iy + By — pl + B3 (ul = A @ Iy — Eag) "B 0 A
S0 I 0 A ® Ly—y + By — I | [P 1] 7

in which P = BT, (ul — A, ® I,,,_1 — E22)~!. Hence by letting p = op we have \j(A® L, + N —o0,1) =0
and then A,(B(o,)) = 0, and further more

o =\ A @I 0 n En+El(0p] — Ay ® Lyyo1 — Eao)'Esy 0
p P 0 AL ®I—1+ Egn 0 0 ’



However, the Weyl’s inequality told that

T _x . -1
op =X = 0p = Ap(A® I;n—1) > Amin ({E“ B2 (0p] = & ® It = Bz) ™ Ey OD

0 0
> min{Amin (E11 + Egy (0p] — Ay ® Ln—1 — Eo2) ' Ex),0}
> —[|Ewull (10)

in which we used the fact that o, — Ay ® I,_1 — F99 is positive definite, and

T _ A _ —1
OP - )‘Z = OP - )\P(A ® Im—l) S )\maw <|:E11 + EQl(UPI Ak & Im—l E22) E21 O:|>

0 0
< ||Ey + E2T1(UpI — A @ L1 — En) ' By
-1
<||Bw + B3y ((0p — Akg1)I — Ezz)  Ea| (11)

It remains to bound EZ, (0,] — Ay ® I,,—1 — E22) ' E2;. Towards this end, we consider an arbitrary value
1> Amaz (V). Tt is clear that

I—
K [E21 E

is a positive definite matrix, and pl — FEss is also positive definite. From the identity

;o [Bu BRI _[T @ U [l — By — EL(ul — Eyy)~ By 0 A
a Es1 Eyn| |0 I 0 pl — Ex| |QT 1

in which Q = EZ} (B — pI)~ !, we can see that ul — Eyy — E (ul — Eq2) "1 Ey; is positive definite as well.
Applying it to , we obtain that

pl — Evy — B3y (ul — Egz) ™' By = 0,

or equivalently,
Ell + EQTI([LI - E22)71E21 j [LI. (13)

Similarly, for g < Amin(N), we have
E11 + Egl(/j,l — E22)_1E21 t /J,I. (14)
Letting u — || N|| and u — —||N|| respectively, we obtain that

EL(|N|I = Es) " Eay < |N||I - Eyy,
EL(IIN|I + Eg2) 'Eay < |N|I + Ens.

Here the second inequality arise by taking negative of .
As thus for any non-negative number «, 3, we have

Ev + E3 (a(|[N|I — Ex) ™" + B(IN|T + E22)_1)71E21 2 (a+ BN+ 1+ 8 —a)Er.
If we in addition have
EZ (0 — Mep1)I = Eas) ™ Eay < EF (a(IN|I = Ez2) ™' + B(IN|I + Ea2) ™)~ Ea, (15)

for some «, 8 > 0, then we reach an upper bound
-1
A (Ent + B3 (0 = M) = Baa) "' Bar) < (a+ B)INI| + 11+ 8~ o [ Bus (16)

To ensure inequality , we need to show that the following inequality

1 < @ n B
oy Mii—e S IN[—z N[ +%




holds for every eigenvalue x of Fas, or in a stronger sense, for all —||N|| < 2 < ||N||. Define
0=p/a,e=|N|,a=|Ewu]|
and then the above condition changes to
e? — 22
2
(op = A1 —2) (1 +0)e + (1 - 0)z)

for all —e < x < e. Hence we can take « as

e? — z?
@ = WX, (op = Aeg1 — ) (1 + 0)e + (1 — 0)x)
€ 1 2
o )0 S i

and substitute it into inequality we obtain

Amax (En + Egl ((Up — )\k+1)l — Egg)_lEgl) < (1 + 9)&95 + |1 + (9 — 1)a9|a.

3 : < < 2e < 2e
But it is easy to see that ap < ap < e v v v

from the inequality above, and substitute the expression of ay into it:
Amax (E11 + E3y ((op — A1) ] — Egg)_lEgl) < (1+0)age + (0 —1)aga +a

To simplify our computation, we introduce the following trigonometric function notations:
1-46

™ m
ing = —— < Hp<
sin ¢ 150 2_¢_2a
€ 0

siny = ————, 0<y < —;
O—;D7>‘k+1 6
sinwzg, O<w<§
€ - T2

Applying proposition 1 under these notations, we can rewrite ay as
sin ¢ 1
140 cos? ng ’

Qg =

and substitute it into to obtain

Amax (En + B3 ((op — A1) — Egg)_1E21> < (1+0)ape + (0 — aga +a

esiny

=a+ (1 — sinwsin ¢)

o=
cos? £5%
By optimizing over 8, namely over ¢, and applying proposition 2, we have

Amax (Eu + Eg;((ap — A1) — E22)71E21>

. . 1 —sinwsin ¢
<a 4+ esiny min — e
—m/25¢<7/2  cos? F5F

sin v cos? w
=4 t+te——X—
1+ sinwsiny
[N = [| £ ]
op = Aks1 + [ B
[N = (B
Ai = Akt

=[| Bl +

<||Eu| +

where in the last step we used the fact o, — A\; > —||Eq1]| that has been proved before.

< 1, so the absolute value sign can be removed

(17)

(20)



Proposition 1. Given two real number «, 8 with —5 < o, < 5, we have

1 — 22 1

Rl (1+azsina)(1+xsinfB)  cos? OCTW

Proof. 1t is trivial when z = +1 so we always assume —1 < z < 1 in the following. Taking transformation
2
x = %,p € R\{0}, we have

(1+ zsina)(l + zsin 8)
1— a2

1
=1 [(1—sina)p+ (1+sina)p™'] [(1—sinB)p+ (1 +sinB)p~']
1
=3 [(1 —sina)(1 —sinB)p? + 2(1 —sinasin B) + (1 + sina)(1 + sin B)p~?]
1
> 5(1 — sinasin 8 + cos « cos f§)
1
= 5(1 + cos(a + B))
2+ f
= cos® ——.
2
The proposition follows immediately. O]

Proposition 2. Given ¢,v¢,w as define in (@, we claim that

1 —sinwsing cos? w

min =
—m/2<p<m/2 cos2 % 1+sinw sinw

Proof. Note that

1 —sinwsin ¢
=1—sinwsin(¢ — ¢ + 1)
= 1 — sinw (sin 1) cos(¢ — 1) + cos P sin(¢ — 1))

=1 —sinw (Sim/} (C082 ¢;¢ — sin® ¢;¢) +200$¢Sin¢;w cos(b;w) .

Define p = tan ¢—Tw p can be taken over interval [tan(—m/4 — ¥/2),tan(w/4 — 1 /2)] as taking ¢ over

[-7/2,7/2]. Some trigonometric calculation shows that [tan(—m/4 — 1/2),tan(w/4 — ¢/2)] is equal to

[— liossi;fw, liosslfw] Using the identity we just proved, we have

1 —sinwsing
o=
cos? £5¥
=p*+1— sinw((l — p?)siny + 2pcos¢)
=(1 + sinwsin)p? — 2psinw cosy) + (1 — sinwsin )

We can see it is a quadratic function about p, so it has a minimum at pg = % It is clear that
—13‘):1;# 5 S Dpo < 13_0:11? -+ hence py can be certainly taken. Further more, this quadratic function has a
COS2 w

minimum value - on this point, which completes our proof. O

sin w sin ¢

2.3 Proof of Lemma [2.2]

Also denote I — illT as L,,. We only prove the first inequality, since the second inequality can be inferred

from
1—vV1—-u?<u, -1<u<l.



Multiply both sides of
(AQ Ly +N)((Sk @ Hn)X +Y) = ((Sk ® Hp)X +Y)X
by (Sx ® L), yielding
(Sk® Hy)"(A® Ly, + N)(Sk @ Hn)X +Y) = (S, ® Hy)'Y - 2
& (Sp® Hp) "N((Sk @ Hp)X +Y) = (S5 @ Hy)"Y - X — (S48 © Hy,)' Y. (22)

Now we prove the following proposition, which will be used later:

Proposition 3. Denote A = diag(A1,--- ,A\x) and ¥ = diag(oq,--- ,0,). Suppose \y > -+ A > 01 > -+ >
On, then for any Y € R™™* we have

YA =Y = (A — o) [[Y].-

Proof: Without losing generality, we can assume o, > 0, since we can always shift \;;1 < i < k and
0j,1 < j < n by the same amount without changing the value of YA — XY and Ay — o1. With this
assumption, the proof directly follows from triangle inequality:

YA =2Y[| > [[YA] = 1Y = Y Owdi)ll = (o1 1n)Y ]| = (A — o) Y.

O
Now let us come back to the proof of Lemma Since the columns of Uy(y,—1) = (Sk ® Hp) X + Y are
orthogonal, we have

IN{| > [|(Sk © Hpn) "N > [|(Sk @ Hpn) " N((Sk @ Hin)X +Y)
1Sk ® Hp)TY - = (A® Ly1) - (S @ Hy) Y|
loi = e[| (Ske ® Hm)TYH (Applying Proposition

IV
LE
=)

= mi = M| Y
min oy = MY

Ak = Ak = [[E DY (23)

v

where the last equality is due to Lemma [2.1
As VIV = XTX + YTY = Ij(p—1y. It follows that

N 2
1— < ” H > <+/1- ||}/||2 = Umin(X) < Umax(X) <L
A — A1 — [ B

Let X = VxXxWZ¥ be the SVD of X. Define R = VxW¥. We have

|X — R|| = [|[VxSx W5 — VxWE|
<Ex -1

2
<1- 1< [NV ) ’
Me — M1 — [|[Ena |

which ends the proof. O




2.4 Proof of Lemma 2.3
First, we have
(Sk @ Hp) (AT = A® Iy — E22)71(§k ® Hy)"
— — 1 — 1 — —_ 1 -1
AT — (K@ Ip 1)) (S @ Hp)T
o0 o o o k‘ o o .
= > (Bk @ )T = (K& Ln1)) "8k ® Hn)'N) Sk @ Hp )il = (K& Ln-1)) ™ (S © Hyn)”
k=0
= (I - B;N)™'B,,
in which B - B
=S @ Hp) NI =A@ 1 1) (Sh® Hp)T
In the above argument, since

[V

[T = (A In_1)) "2 (Sk & Hy) "N(Sk @ Hp)MI — (A ® Iy_1)) 3| < — 11—
Ak — Ab1

<1,

we can safely apply Taylor expansion.
Now let us consider each column of Y. Denote p = (i — 1) - (m — 1) + j. By solving linear system for
X,Y, we have

(A® Iny + E22))71 (S ® Hyp)'N(Sy @ Hy)xp
(A® L1 + E) — (N — o)) (S @ Hyp)'N(S), ® Hy)a,

Y, = m) (7

m) (A

I —
T—

k1 T k
( —(A@ L1 + Ea))™ ) (St @ Ho)TN(Sk ® Hy)a,(\i — o)

NE uMg

_ _ 1 k+1
((Sk ® Hp) (NI — (A® Ln_y) + E22)) (S @ Hm)T> N(Si ® Hup)xpy(\i — 0p)F (24)

~
Il
o

k+1
((1 - BiN)_lBi) N(Sp ® Hp)xp(Ai — 0p)F

M

x>~
Il
=]

Like before, from | N|| 4 ||E11]] < Ak — Ak+1 it is easy to check that

(i = oIS @ Hyn) (Al — (K@ L1 + En)) ™ (Sx @ Hi)|
<=0 | (AT = (K@ Ly + E)) |

1
<||E
=l T
[ £ | <1
T Ak — Ay — ||V

which shows that the power series above would be surely convergent.
Putting this in the matrix form leads to

i ( (I — B;N)~ Bi)HlN(Sk ® Hyp)X. (M I — S
=0



2.5 Proof of Lemma [2.4]
First of all, since || B;N|| < ||B;i| - ||N|| < 1, it is clear that
(I-BiN)™'B; = > (B:N) B..
j=0
Consider the following three terms:

61:= > ((I=BiN)"'B;)’ "' N(Sk @ Hp) Xi(Ailn — 5i)’.
jZjot+1
Jo j+1

=3 3 (H BN“B) (S ® H)Xi (NI — 55)7.
20 mEmo L S gy 121

j+1

=33 Y (TIBN BN ® Ha) X il — 5.

7=0m=0 Z{;rll ii=m =1

It is clear that
Y; =61 + 62 + 63.

Now we bound E?dk, 1 < k < 3. First of all, we have

LEES <10l < 3 10— BN B NSk © Hon[1X0 e — ]
j>jo+1
< Y (B N, B XA — S
2 GBI
_UBINIXY §~ (1Bl = Sl
AT e AT
€1 €2 jo+1
- : xi.
1—¢€1 — €9 (1—61> 11

Similarly,

Jo j+1
IBS 6ol < 0ol <D D > (H IBilllIN )" (1 B; ||)||N||HX AL — Zill?

J=0mEmotl Sty =

Jo
=> > > (BN X A L — S

J=0m>mp+1 Zﬂill i1=m

—Z S BN Y XA L — Sl

7j=0m>mop+1

Jo
m—+1
=Y UBillINTm = Zill) >~ Co s IBINID ™ 1]
7=0 m>mo+1
Jo
<Xl > ez"“ZeJCfnﬂ
m2>mo+1 Jj=

Since when —1 < x < 1,

m m
1_$j+1 Zm Crnje

10

(25)

(28)



It follows that

IEZ o/l < 11Xl D e “ZHC?W

m>mo+1
1
<X et~
= || Z” mz;{)+1 1 (1 _ 62)7n-{-1
€1 mo €1
= || X; . 29
X2 )™ =2 (29)
We use a similar strategy to bound 3. In fact,
Jo mo J+1 ‘
1Ll <305 > 1B ([IBN) B ) N (St ® Hu [l Xill | AsTm = il
7j=0m=0 Z{;rll i1=m =1

Jo mo
<SS Bl ess™ X Ai L — Sl

7=0m=0 Zj:rl ii=m

< ||X ||€3Z€2 Z m+35m+1
m=
mo

= IXiles 32 0" z i

1
< Xi 5m+17
> || ||631nz::0 (1 _ 62)7714»1
)
< 1_62_5'63'||Xi||' (30)

Combing , and , we have

€1 €9 : €1 1)
ETY| < ||X; ( do+1 mo)
max 1B, Yill < [ Xall - < p— (1_61) + ( )™ ) + e,

which ends the proof. O

3 Stability of Eigen-decomposition in Randomized Noise Models

3.1 Key Lemmas

The next Lemma provides various bounds regarding the random matrix model discussed above: Given a
constant ¢ > 1. Suppose dpmin > 2clog(n) and n > 10. Consider a random matrix N € R™*"™ whose
blocks are given by

X, (i) eé€
N’Lj = V did; J ( j)
0 otherwise
where X;;, (4,7) € € are independent random matrices that satisfy
E[X;;] =0, || Xy < Ky,

where K;j, (4,j) € £ are positive constants. Let K = (m?x K;;, then
1,5)€E

Lemma 3.1. With probability at least 1 — 15,

CK

N < —
e

for some absolute constant C'.

11



Lemma 3.2.
logn

loglogmn’
1 1

\/CTijeN(i) \/dif

and setting a constant ||B||o, associated to B and w as

Given | positive integer t1,...,t;, and suppose | < dmin > logn, define a vector w as

w; =

[Bllw = llabs(B) - @]l

in which abs(B) is obtained by taking absolute values elementwisely from B, then we have

l
IOg n l _ _ mln
(ef @ In) [T (B @ )N Siloe < (y/ g2 - OK) - 1Bl - IBISY* - 1B |2 U]
]=1 min
I l d
ogn _ max
s( : ,CK> 1B 1Bl | T 10l (31)

with probability exceeding 1 — n='/'. Recall that in our random model we have Sy = s @ Uy,. Note that we
put no special assumption on B here. Namely, B could be different from B; defined in Section ,

Lemma 3.3. Given noise matriz N under the model in , and

‘CVWIHBml%n

then we have the block-wise bound on Y;

. 1Billo [duin _ [dues
LYl < <
popx ll(es @ In)Yill < i [ e =4 g

with probability exceeding 1 — % for some absolute constant C' depending on c. Recall that B; and Y; were
given by

B, = (?k(m - K)—lﬁf) ®I
- 1\
Y= (y(i71)m+1a L Yim) = ((I — B;N) 1Bi) i N(Sk ® L) Xi(Aidym — Zi)lv
1=0

in Section respectively, where 1 <1 < k.

3.2 Proof of Lemma [3.1]
We provide a bound for || N|| by giving an estimation of E[tr(N?®)] for even positive integers b.

Proposition 4. Given two positive integer b, w such that 1 < w < g + 1, let G be a undirected complete
graph of w wvertices then the number of cycles of length b in G satisfying the following properties can be
bounded above by C*b*/% (or equivalently C'b*/>*t1="w! for some slightly different absolute constant C') for
some absolute constant C':

e No self-loop in the cycle;
e Fach vertex of G appears;
e Fach edge appearing in the cycle would appear at least two times.

Proof. Define the following variables associated to w vertices:

12



e The degrees (not consider the multiplicity of edge) of w vertices dy, . .., dy, in the cycle, which is actually
the degree of some vertex in the induced undirected graph by the cycle;

e The multi-degrees of w vertices D1, ..., D, in the cycle, which is actually the number of times some
vertex appears in the cycle sequence.

We say a leg in the cycle is innovative if the undirected edge of that leg didn’t arose before when traversing
the cycle, and non-innovative if otherwise. It is clear that

dy+--+dy=2j, Di+---+D,=b, dy <D

Thus the number of the possibilities of {D;} could be bounded by 2, so it suffices to consider only fixed
{D,}. Define T, such that T},/p is the number of vertices with multi-degree p, or equivalently, the number
of vertices in the cycle having multi-degree p. It is clear that Z;o:l T, =0.

We try to show that it is possible to reconstruct the cycle by recording a group of arrays. In detail,
supposing some valid cycle is i; — 49 — --+ — i — i1, define an array « of length b such that oy := 1 if
i4i¢11 (ipe1 = 71 here) is innovative while oy := 0 if otherwise, then the following arrays would be recorded:

e A non-negative integer array c of length w such that ¢ =c¢; 4+ -+ + ¢, < b (to be modified);

e A bit array v = vy ... v of length b, in which there are exactly ¢ ones and b — ¢ zeros. v; will be forced
to be 1 if ap = 1.

e Non-negative integer F, which is in fact an encoding of the cycle using some method we would show
in the following.

We define F by
E=L+ Lyg.M

in which L0z := (cl..? . ), and L and M are non-integer numbers which will be defined next.
To define L, an integer array u would be introduced which is of length ¢ with ¢ appearing exactly c;
times for 1 < ¢ < w. L is simply the encoding of u, thus it could be bounded by

q q!
0< L < Lpas = ( > < Cfﬁ
Cly...yCyp Cy ... Cw

for some absolute constant Cy from the Stirling’s formula and the condition g < b.

Now we would describe how to calculate the number M from the known cycle and all other information
stored. First decode uw from L and ci,...,c,. Let m; =141 — 1, mq yee = w. Consider 1 <¢ <b—1 and
suppose i1 — --- — 4 is known. If v; = 1 is the I-th one in v (I < ¢), w; will be used to indicated the
multi-degree of vertex i;11, thus a integer m41 such that 0 < myyq < Ty, /u; can uniquely determine iz .
In this case let myt1,maz = T, /wi- If v, = 0, from the definition of v the leg 4;4;,41 must be a non-innovative
leg. Thus an integer m4+; such that 0 < myy; < d;; < D;, can uniquely determine 7;14. In this case let
Miy1,maz = Di,. In the end, encode M as

M =mq + M2M1 maz T+ + MpMb—1,maz - - - M1, maz-

From the construction of M, clearly we can reconstruct the original cycle from M together with all other
stored information D, v, ¢, L. On the contrary, given one cycle, for each valid v we can find such a (unique)
M (v) and E(v) depending on v since u can be completely determined by v and the cycle.

Here we would construct a special v and show that E(v) is small enough to carry our proof forward. Let
v be all blanks except on the position v; such that a; = 1 (v; will be forced to set as 1 in such case). As for
all other non-innovative legs i;i;11, we set vy := 1 if b/D;, ., < D;, while v; := 0 if otherwise. Clearly

M < Mpae = M1 maz - - - M, maz-

For each degree value p, the term T, /p will appear ¢, times in the sequence my mq, from the definition, and
further more we denote by f, the number of times that the degree p appears in the sequence My masz. By

13



such a construction, we have

E('U) < Lmameax

qq TDit+1 .
<t p— X w H o H min{D;,,b/D;, ., }
Lo Tele1 1 Telet1
innovative non-innovative
q w
v 14 S
_Cl c1 Cw X w H(T/p pr
it Cw )

p=1
w w
b c
<c [Twm) - | T1r"™ (32)
p=1 p=1
b
P b 3 . .
=Cy . H min{D;,,b/D;, .}
ivi Tt 7
tlt41 Ttle41
innovative non-innovative
b bD;, . b D;,D;,.,
= C3 H min DD 2
Zr+1 Zﬂt+1 % 1t+1 mt+1 i 41
innovative non-innovative
bpb/2 b ’ Zf-%—l
=™ 11 o (33)
drivg I 'Lt'Lt+1 Zt Zt+1
innovative non-innovative
< clp?

for some slightly different absolute constants C, Cs3, in which (32)) comes from the fact that (7),/c,)% < eT#/¢
and 71 +...T,, = ¢ < b. To explain the last step in the transformation above, consider each edge {r, s} in
the cycle. It have been given that {r, s} will appear at least 2 times in the cycle, supposing it appears exact
k > 2 times, then it will contribute a factor

k—1
\/T i \/T D,D,
DT‘DS DrDs’ b -
to the formula .

In this way, we can always encode the cycle into a tuple (D, v, ¢, E) for some v such that E < C3b%/?
for some absolute constant Ci3. The total number of such tuples can be clearly bounded by C?b*/? for some
slightly different absolute constant C'.

In the end, by Stirling’s formula we can write the ratio between b*/2 and */2+1=%y! as

bb/2 b\"
pb/24+1—wyy C4( >

for some absolute constant Cy. However simple calculus gives that (b/w)®” < /¢ < e?/¢. Hence the number
of valid cycles can be also bounded by C’b*/2+1=%y! for some slightly different constant C".

b/e

O

Proposition 5. Suppose S(n) is the set consisting of all permutations on {1,...,n}. Let (i1,iz2),..., (ip,01)
be a cycle of length b in the graph. Let eq,...,e; are the j distinct undirected edges appearing in the cycle,
with occurrence times aq,...,a5, and fi ..., fu are the w distinct vertices appearing in the cycle, with
occurrence times 1, ..., Bw. Suppose all o are at least 2, then we have

Kb72j
(n—1)...n—w+1)

UG}EW[Naul)a(ia No(iy)oiin] < e

14



Proof. Define G as a graph such that (s,t) is an edge of G if and only if (fs, f;) appears in the cycle
(i1,...,1p,%1). We have

E No‘i o( Naz ot
set Notino(a) (i) (i)}

< 0€£(n)[‘Na(il)a(i2) .. Na(ib)a(il)ﬂ

1

< E [ | X, [%1 | X e, |°‘J’1
o B B o(er) o(ej)
€Us(n): X dotfl)"' o (f)

. 1
< oty —2 l E[X2, ... X2 ]1
< . 22 B oler)rRoles)
EUs(n) dO’(fl) do’(fw) X
. 1
< Koty =2) [IJE [H§(a;1,...,w)] ;
o0€Us(n) dO'(fl) "'da(fw)

in which 0(o;p1, ..., pi1) := 1if corresponding X5, ).5(s,,) are non-zero for all (ps, p¢) € G, and (o5 p1, ..., pr) ==
0 otherwise. It is easy to see that if §(o; P) = 1 for some o then all subset P’ C P also satisfy §(o; P') = 1. It
suffices to bound E,euy,,, d;{j}l) e d;{} )5(0; 1,... ,w)] . To use induction to achieve this end, we relax our
assumption such that now we have not a cycle but just a connected graph consisting of w vertices f1,..., fu
with degrees f1,...,0,. We can find a vertex such that the graph is still connected after removing this
vertex. Without loss of generality, suppose it is f,,, and one of its adjacent vertices is f,,—1. Fixing o(fy,—1),
there are at most d,(y,_,) choices for o(f,) to make d(c;1,...,w) not vanish. Thus we have

1

E [5@—-1 m]

o B Bw . ’
Ayt -+ Dot

< E d-’ ...d_’Bw’l(Sa;l,...,w—l E [d_BT 50;w—1,wH

= o(f1)se0(fw—1) |: a(f1) o(fw-1) ( )U(fw) (fuw) ( )
d

—Buw o(fw—1) 1—p1 —Buw-1 . .
BTN e L AR SRR
1 ) B

—B1 Bw—2 Bw—-1+1 . _

S a [do(fl) sy (f oy 001w 1)] :

Observe that the last line has the form of recursion in the sense that we now have a connected graph
consisting of f1,..., fiu_1 with degrees 1, ..., Bw_2, Bw_1 + 1, hence we obtain that

B [15@;1,...,@] < 1

dityy e doty T i ) (n—w 1)
1

TP 1) (n—wt 1)

min

O
Proposition 6.
Eftr(NY)] < deb%
for some absolute constant C'.
Proof. We have
Etr(N)] = Y E[Nii, ... NiyiJ, (34)

1<ia, . ip<n
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which is a sum over all cycles iy — --- — 7, — i1 of length b. According to the independence of N;;, all
terms are zero but those terms in which every {is, 511} appears at least two times. Consider cycles with w
distinct vertices and j distinct edges appearing. Let V(b, w, j) be the set of all such cycles. Using Proposition
[V(b, w, j)| will be bounded by

Copb/ 21wl (Z) = OO/ (n — 1) (n—w + 1)

where C; is an absolute constant. While Proposition [5| gives the expected contribution to sum (34) over
cycles of the certain shape, which means

> E[N; 4y, - .- Niyi,]
(il,...,ib)GV(b,w,j)

— GKIJE Z E[Na(il)o'(iz) ce No’(ih)a(h)]
e S(n) . . :
(31,-++,0p) EV(b,w,5)

(i1,..,0p) EV(b,w,5)
Kb—2j
At — 1) (n—w+1)

min

IN

COWP2H = p(n — 1) ... (n—w+1) x

Kgb b/27w+1
< CtndM/? x ()

min .
min

n
e

min

Cb

for some absolute constant C' in which we used the fact that j > w — 1 and b = O(logn), K = O ( "”")

logn
Theorem 3.1. Suppose K = O (,/ 1(;”%’;;) then

C
\% dmin

holds with high probability for some absolute constant C.

(=

Proof. Setting b = 4[logn| which is an even number, we write the constant in Proposition @ as C here,
then the Proposition [f] together with the Markov’s inequality gives

3¢, 3bCb
rhW> }:m“w%>]

Vv dmin b/2
< 1
=3 St
Hence < \/% with high probability in which C' = 3C is an absolute constant. O

3.3 Proof of Lemma [3.2]

Proof. First we have

drn X
1Blles = llabs(B) - wlloo < [[@lllocl|Bllo < 4/ Z==IBlloo

min

Hence it suffices to prove by showing that

logn

L — — dmin
K) 1Bl - IBIS 2 BIE - [ Tat U (35)

l
t]
61 ®I H B ®I )SkHoo < ( max |5|

j=1 min
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holds with probability exceeding 1 — # Denote by a(J )

column. In this way, we can expand the left side of (35| . as

the element of matrix B% in p-th row and ¢-th

(2 l
( alﬁlaﬂl)ag : a’gl) 1alNazﬂL(sﬁl Uk) (36)

in which we used the fact that Sy = s ® Uy. Here the bummation is taken over all possible integer arrays o
and B which are both of length {. Recall that sg, = \/ ‘5‘ and N, , = ﬁvaq if (p, ¢) € € while N , =0

otherwise. We thereby denote by # as the set consisting of all pairs (a, 3) such that («;, ;) € € for all j.
Hence it suffices to prove that

M 0@ 0

1 a ..
N I AP
€] (a,B)cH \/doéldﬁl s daz—1ﬁz—1dm

lOgTL l _ _ l’IllIl
<\ CK) - IBlle - IBICY B [Tt IU, (37)

W @ 0

1,018, 00 - U814
: : - Xo Bi--- XaLBL
%):EH \/daldﬁl s dm—1d51—1dal o

SCl(logn)l/2 Bl - IBIE 7 11 Blha (38)

max

or in a stronger sense,

since || X,q|| < K for all p,q. To this end, we employ the power moment method, which needs us to show

2k
2k 1 (2 0
ap alaﬁl gttt aﬁl71 o
E , c X g - X ) g
(a%:e?-[rl_]; \/daldﬁl "'dal,ld,@lfldal 16 B
<(logn) - ||B||2* - || B||2kt=k1=2k . | B||FL . )

holds for all integer k such that ki < O(logn). The left side of can be furthermore relaxed and expanded
to
CONN ) a®

a
() ) (r)
s ﬁ(T) (T Blrl’ (r)

\/d <r>dﬁ(r> .d al” d,@m d al”

ko)

ZH

(& cH2k r=1

2k
H XOL(IT)IBSr') Ce Xa§7~)6l(r)‘| ’ (40)

r=1

where & = (a®,...,a®?), 8= (8W,...,8%%). Here H?* is defined such that (&, 8) € H2* if and only if
(™), B ) € H. An important observation is that E[X,, 3, ... Xa,3,] is non-zero if and only if all unordered
pairs {a;, 5;} will appear at least two times among these 2k pairs since all X, are independent for distinct

{p,q} and E[X,,] = 0. Let Jor C H?* be the set consisting of all (&, 3) such that every (« gr),ﬁj ) would
appear at least two times among these 2kl unordered pairs, which means it suffices to prove that

‘ €] (2) a®
> I

a e 5<r> )
(&,B)€ T2y, T=1

o T80 o
\/d <r>d o - .d al"), d 50, d af™

< (logn)™ - | Bllw - 1B 22" - | Bl o (41)
To estimate the sum in the left side of , we introduce the concept of summing graph.
Definition 1. A summing graph Gs = (Vs, &1, E2) is formally defined as following:

1. Vs contains 1 + n nodes, in which one node is special and called the root node while the remaining n
nodes are used to represent n variables that we are summing over. In fact, the root node represents the

fixed index 1 in ailim n .
»Q
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2. &1 1is a undirected edge set on vertexr set Vs. If (u,v) € &1, then the variables represented by u,v are
adjacent in G.

3. & is an undirected labeled edge set on vertex set Vs and Ey can contain multiple edges. Fach edge in
& has the form (p,q,n) where p,q is the end node while n is an integer label.

A summing graph G, combined with a vector 8 can induce a sum (G, 0) as defined below:

2G.0)= > [l [B"uw/F,6)

veU(Gs) (p,q,n)EES

in which we define

UG =f{ve{l,....,n}:: for every (p, q) € &, vp,vq are adjacent in G},

F(gsvvae) H 0 /2 H p/2

PEVs d PEVs mln

Return to the original problem. For some (é, 8) € Jax, we can divide all 2kl terms of form {oz(7 5(7)}
into a number of groups such that each group includes the same unordered pairs. By the deﬁnltlon of ij
each group has a size of at least 2. Without loss of generality we could assume all groups are of size 2 or 3.
For example, if some {p, ¢} occurs 7 times among 2kl unordered pairs, we can divide these 7 terms into 3
groups of size 2, 2, 3 respectively. Let the number of groups with size 2 be kl — 3u, then the number of groups
with size 3 would be 2u since there are 2kl terms in total. To obtain identical relations between ordered
pairs (ay), ﬂj(r)), we can use a bit string of length 2kl to indicate whether the corresponding (agr), ﬂ;r)) has
the same order as its first appearance. Fixing u, the number of possible groupings would be

(2k1)! B (2k1)!
oM =3uG2u (k] — 3u)!(2u)!  2%4.5%(kl — 3u)!(2u)!”

For some grouping configuration with kl — u groups together with a 2kl bit string like mentioned above, a
summing group G; could be constructed as below:

e V(Gy) has 2(kl—u)+1 nodes. In particular, one of them represents 1, which is the root node, while each
of others represents exactly one element in kI — u groups. More precisely, each node can be regarded

as a set of variables of form agr) or Bi(r) so that all variables in the same node are forced to have the
same value.

e The edge joining nodes representing agr), ﬁi(r) would be in & (G;) for all possible 4, 7. Thus each node
except the root node is associated with exact one edge in & (G).

e Starting from an empty 2(G1), add a labeled edge (ﬂm 51)17 i+ 1) for all possible ﬂ( ") 51)1, and add
(r)

a labeled edge (root, a( ") , 1) for all possible a7 ’. Recall that £2(G;) is a unordered edge set containing
multiple edges.

e 0, is defined as an integer vector of the same length as the number of nodes in G;. Let 6, be 0 for
root node 0, and ¢, , be the number of times that variable represented by node p appears in a( ™) and
BZ-(T) except ,81 " Tt is clear that 01, > 2 for node p where p is not the root node and does not contain

variable of form Bl(r). Hence there are at most 2k indices p such that 6, = 1.

In this way, we can easily verify that

| (ORRC) o
> I

(T) IB('") ) te B(*) ("")
(&,B)E€Tor T=1

< (61, 61)

g1

\/d <r>dﬁ<r> .d al” d5<r> d al”

in which G is taken over all possible configurations of grouping.
Next, we will provide an estimation on ¥(Gy, 01) by induction where Gy contains 2(kl — u) 4+ 1 nodes.
Claim:
$(G1.01) < B - IBIEE 7 1B M- dgy "

min
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Proposition 7. We can remove some edges from E2(Gy1) to obtain a graph Gs satisfying
e Go is a tree with edge set £1(G2) U E2(Ga).
e &(Gy) does not contain multiple edges any more.
e FExcept the root node, each node in Gy is associated with exactly one edge in ;.

Define the difference between two graphs G and G’ as

A(G,G) = Z n

(p,q,m)€E2(G")\E2(9)
for graph G C G’, then we have

2(G1,01) < || B||29192)5(G,, 05).

max

Since there are 2kl edges in £3(G1) but only kI — u edges in £3(Gs), we have

A(Gy,G2) > Kkl 4 u.

In the following, we will construct a sequence of summing graphs Gs,...,G,, in a inductive way, where
G, is a summing graph with only one node, the root node. Specifically, we impose an inductive assumption
which holds for G; and Gy: G, is a tree over edge set £1(G.) U&(G,) for z=2,...,m

Suppose G, (z > 2) is given and has more than one nodes, then we can choose from tree G, a leaf node 7,
which is not the root node. By inductive assumption there exists some 7, with (7,,7.) € £1(G.) and some
v, with (7.,v,) € £(G.), and G.41 is still a tree where G, is obtained by removing {7,,7,} and their
associated edges from G,. There are two possible bounds:

1. 0. -, > 2. In this case, let 8., be the same as 8, on all components except 0.1, =0, , — 2. Then
we have

26,0 = Y I 1Bl [F(G:0.62)

vel(G:) (p,q,n)€E2(Gz2)

IIED DD II BB,

VEU(Gz41) Vrz Vn, €N (vr,) (P1g, n)€52(gz+1)

IN

/ (F(ngrlv v, 0z+1>dv7

M gmeea@ein 1B vy, 1
< aelon) S NS B,
weU(Gor1) F(Get1,0, 02” rs vm, EN(vr,) dr.
= Z H(p a9, n)€£2 (ngrl ’ Bn 'Up’vq ’ Z | Bn(Tz,Vz)
veEU(G241) (gz+1’ v 02+1 Ur, ’

= Z H(p,q,n)egz(ngrl) |[Bn]”pv”q| ||BHOAO(QZ,QZ+1)
veEU(Gzr1) F(gz+1,v,92+1)

=2(G241,v, 02+1)||B||OAO(QZ,QZ+1)

2. Ttis trivial that 0, ., > 1 and 6, ., > 1. So we can always let 6, be the same as 6, on all components
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except 0,417, =0, . —1and 0,41, =6, , — 1. Then we have

20,00 = > I 1Bl [F(G.0,02)

veU(gz) (p,q,n)€E2(92)

= Z Z Z H “Bn}”pﬁvq | “Bn(TZWZ)}UTzaUuz

VEU(G41) V1o Vr, EN (vr,) (Py4, n)682(92+1)

3 p.gmeeas Jop | 1
< n Z+1 p>Yq L Bn(Tz7Vz) . )
B (gz-‘rlav 9z+1 Z Z ded-rrz |[ } w2 VT2

veU(Gz41) Vr, Un, EN(vry)

/(F(ngrlvv;eerl)\/deTﬂ'Z)

- Z H(I”q’")egg(ngrl) “Bn VpY Q| E w. Bn(TZsz)]
B F(G.11,v,0.41) " et
veU(Gz11) T T Vrz
_ Hpamees.on B s vl . g1y 5
< D 1Bl 1 Bllw
F(gz+1av702+1)
veU(Gz41)

X(Got1, ez-s-l)||BH<>Ao(gz’gz+l)_1 | Bllw

Since at first ¢, > 1 for all non-root nodes p and 6,41, < 6, , happens only if node p is removed from
G., the second bound always works. Besides, we have bounds

£(G:.02) < £(Gas1, 0:40) || BIIZ=9+) ™ min{ || Blloo, || Bl } (42)

if 0, >2.

E(gma om) = dmin 2 em’i/2-

Now let’s calculate Zz Orn,i- Initially we have
D 0= 61 =2k(2—1).

The inductive steps give Zl 0,41, = ZZ 0., — 2 and there are kl — v inductive steps in total. Hence

> O = 2k(21 — 1) = 2(kl — u) = 2kl — 2k + 2u,

which means 3(G,,,0,,) = d;ﬁf‘”‘lﬁ'“
Note that there are at most 2k nodes p with 65, = 1, which means the bound holds for all inducative
steps except 2k steps. In this way, together with the fact || B|lmax < ||Blleo and A(G1,Gm) = t, X(G1,601)

could be expressed as

151 )
61,0 < (11 ) 10009 32006 5(3,.. 0,

2k
< HBHw HB”kl HBHA(gl,gm) kld kl+k+u
||B|| max min

_kl—2k —k(—1)+
< [|BI2F| B|IE, || B 2k ay KD

min

For G,, which contains a single root node, we have
E(gm’ em) = dmin_zi Om.+/2 = dmin_k(l_l)_ua

where the last equation comes from the fact Y, 601 ; =2k(20 —1) and >, 0,41, =, 0., — 2 if and only an
edge in £2(G,) was removed, but there are exact kl — u edges in £2(G1) so that

> O = E:&Z 2(kl — u) = 2kl — 2k + 2u.

20



Note that the third cases would appear at most 2k times and the second cases appear exactly kl times,
which means

2(G1,01) < | Bllmax I BIZ I BIRT 9 K28 5(Gon, 0,0)

max

Return to calculate . We have

1 2 !
’a( )ma( ()r) ) ..al <)r> o)
Loy’ By 7oy By

S

< d »dymy...d o dyoy d
(&,B)E T2k r=1 \/ (X(l) Bg ) ag—)l ﬂl(—)l a; )

< 22(91791)
G1
=) > X(G1,01)

u>0 |V(G1)|=kl—ut1

R (2H1)! _
< IBISIB I BIS™ ™ > Sy = swyiay) G

For the last line above, we have

(2k1)! B (2k1)!

for some absolute constant C'. Thus

(DR ¢) @

a a o
9105 a0 T

S

—— — < (Clogn)™|| BI12F||B||EL | Bl H -2k a, K
(d,ﬁ)ejzk r=1 \/ O‘Y) BY) O‘z(i)1 61(1)1 CVl(r)

min

for some absolute constant C.

3.3.1 A Lower Bound on ||B|«

In the simple case, it is clear that B = LT, BL = I — ss”, Bs = 0. In the following I will explore the
relationship between ||B|loo and dimax/dmin. Without loss of generality, suppose di = dpax and da = duin,
then consider the vector which is a linear combination of the first column of L denoted as col; (L) and s:

1-1/Vdids

vV = COl]_(L) — ms.

In this way, it can be easily verified that

o]l = Y2+ 1/ V2
T Vi +Vd,
and
Bv = Beol (L) = coly (I — ssT),
o
&

|Bofloe > 1 -
€]

1
>
-2

since |€| > 2d;. Hence we have

1Bloe > M > 1 /ﬂ > 1 dmax.
2(\/£+ 1/\/@) 4 d2 4 dmin
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3.4 Proof of Lemma [3.3

Suppose

\/IIB B Togn

the inequality turns into

l
I(e5 @ ) [T(BY @ Ln)N) Skl < O[B! ‘;““nwu
Jj=1

Thus we have

; i Amin i i+l
(5 © Ln)(BiN)" By ... (B;N)"** BiN (S ® In)|| < UKI - 1Bil 4o (C1C) 2=tz 1,

€]

On the other hand, by choosing small enough absolute constant C, we have

CoK 1
BillIN|l < |1B: <—
BN < 1Bl Z2= < 75

1
IBilllIAIm = ill < BN < 15+

Thus applying Lemma [2.4] provides the desired conclusion.

4 Proof of Exact Recovery Conditions Under the Full Setting

4.1 Proof of Theorem 3.1

We prove Theorem 3.1 by establishing the concentration under the un-normalized data, i.e., which is identical
to set d; = nt. To begin with, let us rewrite the data matrix under the proposed model of mapping and
observation graph. Since we assume the observation graph and the input pair-wise maps are generated

through independent procedures, it follows that

o 1 I,—+ 11T with probability n;;t
X = il Up, — =117 with probability (1 — n;;)t
n 0" with probability (1 — t)

Here 7;;,1 <1i,7 <n form a matrix (p — ¢)(I; ® (117)) + q117.
(43) gives rise to

. i 1
E[X;] =1y, - —11"),
n
and
1 (1 —nt) (I, — %11T) with probability n;;t
Ny =X — E[X;j] = —q Ur.— L3117 — (L, — £117)  with probability (1 — ;)¢
—nijt(Im — 2117) with probability (1 — ¢)

It is obvious that N;;1 =0 and N};l = 0. Moreover,

1+ mgt <3

[ Vi < —

nt
Decompose X = E[X] + N, it follows that
— 1 1
E[X] = ~((p = 9)(Ix ® (117)) + ¢(117)) & (Lp, — —117).
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Following the convention of notation, let
1
A=—(p— gk (117)) + ¢(117)).
It is easy to check that the rank of A is k, and its top k eigenvalues are given by
Al(A):q—i-]%, /\i(A):]%Jgigk. (47)

Let (ﬁl, H},) be an orthonormal basis for R¥, then it is easy to see that the corresponding top k eigenvectors

k 1
S _\/71® —1,H;).
e - (\/E k)

o 1
515y = (In, — —117) ® I,
o

of A are given by

Moreover,

To apply Lemma [3.3] it is easy to see that
1
g+ 5

1
B, = (Iny — ;011T) ® I,

and 1 1
Bi=——I,, — —11" oI, 2<i<k.
P—q no
Denote 1
T= I, — —11")® I.
o

It is easy to check that
HTHUJ = 2’ ||T||OO = 27 ||THmax =1.

Applying Lemma we obtain the following stability bound on the top k(m — 1) eigen-vectors of X:

Lemma 4.1. Let U = (UlT, e ,U,TL)T be the top k(m — 1) eigen-vectors of X. Then there exists a rotation
matric R € O(k(m — 1)) and a universal constant ¢, so that when
1
p—q=ck Og(n)7
nt
we have w.h.p,
— 1 1
max. Ui — (el Sk ® Hy) - R|| < 6 (48)

Complete the proof of Theorem 3.1. Since the spectral norm bounds the difference between the
corresponding rows, it follows from Lemma that (1) the distance between the corresponding elements
between each pair of objects in the embedding space is upper bounded by 1/3, (2) diptra < 1/3, and (3)
dinter > 2/3. This means both the intra-cluster maps and the underlying clusters can be recovered, which
ends the proof.

4.2 Proof of Theorem 3.2

We prove a stronger recovery condition for inter-cluster maps. Note that inter-cluster map recovery solves
the following linear assignment:

X = argmax(X,Cy), Cg = Z X0, X

"X (49)
XEPm

(1,7)€E,i€cq,jEct

We prove a stronger exact recovery condition as follows. To begin with, we define the minimum number
of inter-cluster edges between one pair of clusters as.

Ninterzlgrsng?gk]vsty Nst :|{(Za.])|(lv.])65716087]6675” (50)
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Lemma 4.2. Given an absolute constant cinter > 0. Suppose the intra-cluster rate q and Ninger satisfy the
following constraint:

Cinter IOg(n)

q=>
Ninter
Then we have with probability at least 1 — 7’227’5:,
8
i X ; 1< < k. 1
1211§nm Cst(aa Cl) > 1§gﬁxgm Cbt(a’ b)a xS 7é < k (5 )

Proof: First of all, it is easy to check that

E[Cst(a,b)]:{ %g(—q)+q a=b

1—gq) a#b
We apply union bounds by showing that with probability at least 1 — T;T’fj, we have
min Cot(a,a) > l(1 —-q)+ g, (52)
1<s#t<k,1<a<m m 2
s Calad) < (1—q)+ L. (53)

Note that each diagonal element X ;;, X ;]" X;.i(a,a) is a random Bernoulli random variable with probability
1—;’ + g, we can apply lower Chernoff bound to obtain a lower tail bound on Cy(a, a), which is

Nstq2
8(q + )

1—gq q

PT[Cst(aa a) S Nst( + q— 5)] S eXp(i

Nintcrq2
<exp(——————). 54
P= e T o
Similarly, each off-diagonal element X j;, X7 X;_;(a, b) is a random Bernoulli random variable with probability
1-¢

m

, we can apply upper Chernoff bound to obtain a upper tail bound on Cy;(a,b), which is

Nstq2
8( + =9)

m

17q, g)] < exp(— ) < exp(_m)' (5)
6

m

Pr[C’St(a,b) S Nst(

Since ¢ = 4/ Cinter 1;,%:0. It follows that combing and lead to

1— in er1 1
PrlCur(a,a) < N = 4 g = 1)) < (- Cneer 080y o1 (56)
m 2 8 n- 8
1— 1
P’I"[Cst(aa b) > Nst( 1 + %)] < Cinter (57)
n-s

Applying union bounds and , we have that the inter-cluster maps can be recovered with probability
27,2

at least 1 — -k O
n 8
Since the observation graph is generated from the Erdds-Rényi model G(n,t). It is easy to check that
the number of inter-cluster edges between a pair of clusters concentrates at [;L—]j;, 2222 t] with overwhelming
probability (for example using Chernoff bound), which ends the proof. O
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