
Using Inherent Structures to design Lean 2-layer RBMs

Supplementary material
In the following sections we provide additional material (proofs and figures) that supplement our main results. Section A
outlines the preliminary facts and notations that we use for the proofs. The subsequent sections provide the detailed proofs
for respective lemmas and theorems. Figure 5 compares the theoretical upper bound estimate with the actual simulated
values for modes of two layer DBMs (C(n,m1,m2)).

A. Preliminary Facts and Notations
In the proofs that follow we use the following facts and notations:

1. The probability density function (pdf) of standard normal distribution N (0, 1)

φ(x) =
1√
2π

exp

(
−x

2

2

)
2. The cumulative distribution function (cdf) of standard normal distribution

Φ(x) =

∫ x

−∞
φ(x)dx =

1

2

[
1 + erf

(
x√
2

)]
where erf(x) =

1√
π

∫ x

−x
e−t

2

dt

3. The pdf of a skew normal distribution N̂ with skew parameter α

f(x) = 2φ(x)Φ(αx)

4. If X ∼ N (µ, σ2), a ∈ R, α = a−µ
σ , then X conditioned on X > a follows a truncated normal distribution with

moments

E [X|X > a] = µ+ σ
φ(α)

Z

V ar(X|X > a) = σ2

[
1 + α

φ(α)

Z
−
(
φ(α)

Z

)2
]

where Z = 1− Φ(α).

5. Squeeze Theorem8: Let, {am}, {bm}, {cm} be sequences such that ∀m ≥ m0 (m0 ∈ R)

am ≤ bm ≤ cm
Further, let limm→∞ am = limm→∞ cm = L, then

lim
m→∞

bm = L

B. Proof of Lemma 1 (See page 4)
Lemma 1. A vector v is perfectly reconstructible for an RBMn,m(θ) ⇐⇒ the state {v,up(v)} is one-flip stable.

Proof. Let h∗ = up(v) (conditioning on θ is implicit). If v is perfectly reconstructible =⇒ v = arg maxv P (v|h∗) =⇒
∀v′ 6= v, P (v′,h∗) < P (v,h∗). Similarly since h∗ = arg maxh P (h|v),∀h′ 6= h∗, P (v,h′) < P (v,h∗). Hence the state
{v,h∗} is stable against any number of flips of visible units and against any number of flips of hidden units, =⇒ {v,h∗}
is atleast one-flip stable.
Conversely let {v∗,h∗} be one-flip stable. We shall prove by contradiction that up(v∗) = h∗ and down(h∗) = v∗. Assume
up(v∗) = h′ 6= h∗. We use the fact that for an RBM the hidden units are conditionally independent of each other given
the visible units. Thus h′ = arg maxh P (h|v∗) = {arg maxhj P (hj |v∗)}mj=1. Further P (h∗|v∗) =

∏m
j=1 P (h∗j |v∗).

Let k be an index such that h′k 6= h∗k. Since h′k = arg maxhk P (hk|v∗), =⇒ P (h′k|v∗) > P (h∗k|v∗). Moreover,
P (v∗,h∗) = P (v∗)P (h∗|v∗) = P (v∗)

∏m
j=1 P (h∗j |v∗). Thus just by flipping h∗k to h′k we can increase the probability

of the state {v∗,h∗}. This contradicts the one-flip stability hypothesis. Similarly using the conditional independence of
visible units given the hidden units we can show that down(h∗) = v∗.

8http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences

http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences
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C. Proof of Lemma 2 (See page 5)
Lemma 2. For the set RBMn,m, if a given vector v has r(≥ 1) ones, h = up(v) has l ones and l� 1,then 9 for r > 1,

E
[
1[v is PR.]

]
≤

[
1

2
− 1

2
erf

(
−
√

l

πr − 2

)]r (
1

2

)n−r
.

For r = 1, the expression E
[
1[v is PR.]

]
equates to

(
1
2

)n−1
. where erf(x) = 1√

π

∫ x
−x e

−t2dt

Proof. We first note that given a visible vector v ∈ {0, 1}n the most likely configuration of the hidden vector

{
hj = [up(v)]j = 1[

∑n
i=1 wijvi>0]

}m
j=1

Likewise given a hidden vector h, the most likely visible vector

{
vi = [down(h)]i = 1[

∑m
j=1 wijhj>0]

}n
i=1

Case 1: r = 1
By symmetry it can be assumed v1 = 1, and vi = 0(∀i > 1). Then

{
hj = 1[w1j>0]

}m
j=1

. Since each of w1j is i.i.d.

as per N (0, σ2), hj is a Bernoulli random variable with P (hj = 1) = 1
2 . Again by symmetry it is assumed the first l

units {hj}lj=1 are one. Then the most likely reconstructed visible vector is given by
{
v̂i = 1[Xi=

∑l
j=1 wij>0]

}n
i=1

. Since

w1j > 0 for all 1 ≤ j ≤ l =⇒ v̂1 = 1. Also, for all i > 1, wij ∼ N (0, σ2) =⇒ Xi ∼ N (0, lσ2) =⇒ {v̂i}i>1 is a
Bernoulli random variable with

{
P [v̂i = 1] = 1

2

}n
i=2

. The result then follows by mutual independence of v̂i.

Case 2: r > 1
For r(> 1) ones in v and l ones in h = up(v) the problem of computing {P [v̂i = 1]}ri=1 can be reformulated in
terms of matrix row and column sums, viz, given W ∈ Rr×l where all entries wij ∼ N (0, σ2) are i.i.d. and given
that all the column sums {Cj =

∑r
i=1 wij > 0}l

j=1
, to compute the probability that all the row sums are positive, i.e.,{

Ri =
∑l
j=1 wij > 0

}r
i=1

.

Using properties of normal distribution it can be shown that conditioned on the fact that Cj > 0, the posterior dis-

tribution of wij shall be skew-normal with mean µij = σ
√

2
πr and variance σ2

ij = σ2
(
1− 2

πr

)
. Since the random

variables {wij |Cj > 0}lj=1 are independent the posterior mean of Ri shall be µ̃i = lσ
√

2
πr and the posterior variance

σ̃2
i = lσ2

(
1− 2

πr

)
. Since l � 1 by Central Limit Theorem Ri follow a normal distribution. Since the Ri are negatively

correlated (proof follows) and
{
P [v̂i = 1] = 1

2

}
i>r

by similar reasoning as in Case 1 we get our desired upper bound.

Negatively Correlated Ri’s: Conditioned on the fact {Cj > 0}lj=1 the random variables {Ri}ri=1 are not independent.
They are negatively correlated because for all Ri, Rt(t 6= i),

P (Ri > 0|{Cj > 0}lj=1 , Rt > 0) < P (Ri > 0|{Cj > 0}lj=1)

Hence the expression given in Lemma 2 is an upper bound since we have neglected the negative correlation among the Ri
and in the process over-estimated the probabilities.

9Here l� 1 means l is atleast 50 hidden units, which according to us is a reasonable assumption.
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D. Proof of Lemma 3 (See page 5)
Lemma 3. For the set RBMn,m, if v has r(> 1) ones, h = up(v) has l ones, then ∃µc, µ̃c, σc, σ̃c ∈ R+ such that
conditioned on {Rt > 0}i−1t=1, Cj > 0, the moments of posterior distribution of wij is given by

E
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= (µ̃c − µc)

σ2

σ2
c

Var
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= σ̃2

c

(
σ2

σ2
c

)2

+ σ2β

where β =
(

1− σ2

σ2
c

)
Proof. The conditional distribution for R1 =

∑l
j=1 w1j is obtained from the proof of Lemma 2.

(
R1|{Cj > 0}lj=1

)
∼ N

(
µ̃1, σ̃

2
1

)
where µ̃1 = lσ

√
2
πr , σ̃2

1 = lσ2
(
1− 2

πr

)
. Using similar arguments as in proof of Lemma 2, conditioned on Rt > 0 the

posterior distribution of wtj shall be skew normal N̂
[
σ
√

2
πl , σ

2
(
1− 2

πl

)]
. Then conditioned on {Rt > 0}i−1t=1, Cj shall

be distributed as per skew normal (
Cj |{Rt > 0}i−1t=1

)
∼ N̂ (µc, σ

2
c )

where

µc = (i− 1)σ

√
2

πl
and σ2

c = (i− 1)σ2

(
1− 2

πl

)
+ (r − i+ 1)σ2

Here we approximate the above distribution to be Normal since if i is large then Central Limit Theorem would be applicable,
otherwise the normally distributed variables {wkj}rk=i would dominate the sum. Then conditioned on {Rt > 0}i−1t=1, Cj >
0, Cj shall be distributed as per truncated normal distribution (Barr & Sherrill, 1999) with moments

E
[
Cj |{Rt > 0}i−1t=1, Cj > 0

]
= µ̃c = µc + σc

φ

Z

Var
[
Cj |{Rt > 0}i−1t=1, Cj > 0

]
= σ̃2

c = σ2
c

[
1− µcφ

σcZ
− φ2

Z2

]
where σ2

c = (i− 1)σ2
(
1− 2

πl

)
+ (r − i+ 1)σ2,

µc = (i− 1)σ
√

2
πl , Z = 1

2 −
1
2 erf

(
− µc
σc
√
2

)
and φ = 1√

2π
e

(
− µ2c

2σ2c

)
. Then E

[
wij |{Rt > 0}i−1t=1, Cj = c

]
= (c− µc)σ

2

σ2
c

and Var
[
wij |{Rt > 0}i−1t=1, Cj = c

]
= σ2

(
1− σ2

σ2
c

)
. The result then follows from Laws of total expectation and total

variance respectively.

Remark. The random variables {w̃ij = wij |{Rt > 0}i−1t=1, Cj > 0}lj=1 shall be negatively correlated with one another so
we should subtract the covariance terms while determining the effective variance of Ri =

∑l
j=1 w̃ij . Thus if we don’t

subtract the covariance terms from the variance we would get a lower bound on the posterior probability of Ri being
positive. However it is close as can be seen in Figure 3.

E. Proof of Theorem 1 (See page 5)
Theorem 1. (ISC of RBMn,m) There exist non-trivial functions L(n,m), U(n,m) : Z× Z→ R+ such that ISC of the
set RBMn,m obeys the following inequality.

1

n
log2(L(n,m)) ≤ C(n,m) ≤ 1

n
log2(U(n,m))
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Proof. The upper bound follows from Lemma 2 and applying linearity of expectation.

Un,m =

n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m [
1

2
− 1

2
erf

(
−
√

l

πr − 2

)]r (
1

2

)n−r

For lower bound, we use Lemma 3. We have E
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= µ̃i(r, l) and

Var
[
wij |{Rt > 0}i−1t=1, Cj > 0

]
= (σ̃i(r, l))

2. Thus posterior mean and variance of {Ri}ri=1 shall be lµ̃i(r, l) and
l(σ̃i(r, l))

2 respectively. Then summing over all possibilities of l and applying linearity of expectation we get the lower
bound.

Ln,m =

n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m
r∏
i=1

1

2
− 1

2
erf

− µ̃i(r, l)
√

l
2

σ̃i(r, l)


(

1

2

)n−r

F. Proof of Corollory 1 (See page 5)
Corollary 1. (Large m limit) For the set RBMn,m, limm→∞ C(n,m) = log2 1.5 = 0.585 where C(n,m) is defined in
Theorem 1.

Proof. We shall show that limm→∞ Un,m ≤ 1.5n and limm→∞ Ln,m ≥ 1.5n. Then using Squeeze Theorem and the fact
that limits preserve inequalities the result shall hold.

lim
m→∞

Un,m = lim
m→∞

{
n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m [
1

2
− 1

2
erf

(
−
√

l

πr − 2

)]r (
1

2

)n−r}

If we replace the l inside the erf function by m then we would be increasing the value of the expression since m ≥ l. Thus

lim
m→∞

Un,m ≤ lim
m→∞

{
n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m(
1

2

)r [
1− erf

(
−
√

m

πr − 2

)]r (
1

2

)n−r}

= lim
m→∞

n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m(
1

2

)r
[2]
r

(
1

2

)n−r
= 1.5n

To get a lower bound on Ln,m we choose a small fixed constant ε > 0. Then

lim
m→∞

Ln,m = lim
m→∞

n∑
r=1

(
n

r

) m∑
l=1

(
m

l

)(
1

2

)m
r∏
i=1

1

2
− 1

2
erf

− µ̃i(r, l)
√

l
2

σ̃i(r, l)


(

1

2

)n−r

≥ lim
m→∞

n∑
r=1

(
n

r

) m∑
l=mε

(
m

l

)(
1

2

)m
r∏
i=1

1

2
− 1

2
erf

− µ̃i(r, l)
√

l
2

σ̃i(r, l)


(

1

2

)n−r

≥ lim
m→∞

n∑
r=1

(
n

r

) m∑
l=mε

(
m

l

)(
1

2

)m{ r∏
i=1

[
1

2
− 1

2
erf

(
−
µ̃i(r, l)

√
mε
2

σ̃i(r, l)

)]}(
1

2

)n−r
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Since µ̃i(r, l) and σ̃i(r, l) are non-zero finite quantities regardless of the value of l amdm and ε is a fixed non-zero constant,

lim
m→∞

Ln,m ≥ lim
m→∞

n∑
r=1

(
n

r

) m∑
l=mε

(
m

l

)(
1

2

)m
r∏
i=1

1

2
− 1

2
erf

(
−
µ̃i(r, l)

√
mε
2

σ̃i(r, l)

)
︸ ︷︷ ︸

→−∞



(

1

2

)n−r

= lim
m→∞

n∑
r=1

(
n

r

) m∑
l=mε

(
m

l

)(
1

2

)m
︸ ︷︷ ︸

Prob(l>mε)

{(
1

2

)r
[2]
r

}(
1

2

)n−r

Since ε is an arbitrarily small number that we have chosen and l denotes the number of successes in m Bernoulli trials,
Prob(l > mε) = 1.

=⇒ lim
m→∞

Ln,m ≥ 1.5n

=⇒ 1.5n ≤ lim
m→∞

Ln,m ≤ lim
m→∞

C(n,m) ≤ lim
m→∞

Un,m ≤ 1.5n

G. Proof of Theorem 2 (See page 6)
Theorem 2. (ISC of RBMn,m1,m2

) For an RBMn,m1,m2
(n,m1 > 0 and m2 ≥ 0), if we denote u = max(m1, n +

m2), l = min(m1, n+m2), then

C(n,m1,m2) ≤ 1

n
log2 S

whenever S < γ2n, S =
[
1− 1

2 erf
(
−
√

u
πl−4

)]l
Proof. As shown in Figure 2 we construct a single layer RBMn+m2,m1

that has the same bipartite connections as
RBMn,m1,m2 . The expected number of perfectly reconstructible vectors for the single layer RBM can then be obtained
from Equation 10.

C(n+m2,m1) ≤ 1

n
log2 Un+m2,m1 =

1

n
log2 S

=
1

n
log2

[
1− 1

2
erf

(
−
√

u

πl − 4

)]l

However this quantity is an overestimate. This counts the number of pairs of vectors {v,h2} such that
(

v
h2

)
is perfectly

reconstructible for RBMn+m2,m1 . Among these, there can be vectors like
(

v(1)

h(1)
2

)
and

(
v(2)

h(2)
2

)
where v(1) = v(2) resulting

in repetitions. Assuming such vectors v(i) are uniformly distributed among the 2n possibilities, we approximate the prob-
lem to the following. Given 2n distinct vectors, we make S draws from them uniformly randomly with replacement. The
expected number of distinct vectors that result is given by 2n

[
1−

(
1− 1

2n

)S]
. If S < γ2n then binomial approximation

an be applied and we get the desired result.

H. Proof of Corollary 2 (See page 6)
Corollary 2. (Layer 1 Wide, Layer 2 Narrow) For an RBMn,m1,m2

(n,m1 > 0 and m2 ≥ 0), if α1 = m1

n > 1
γ and

α2 = m2

n < γ then
C(n,m1,m2) ≤ (1 + α2) log2(1.5)
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Proof. For α1 >
1
γ , S =

[
1− 1

2 erf

(
−
√

nα1

πn(1+α2)−4

)]n(1+α2)

= 1.5n(1+α2).

Moreover for α2 < γ, since S = 1.5n(1+α2) < 1.5n(1+γ) = 2n(1+γ) log2(1.5) = 20.614n(< γ2n for reasonable choices of
n), we can apply binomial approximation and the result follows.

I. Proof of Corollary 3 (See page 6)
Corollary 3. (Fixed budget on parameters) For an RBMn,m1,m2

(n,m1 > 0 and m2 ≥ 0), if there is a budget of
cn2 on the total number of parameters, i.e, α1(1 + α2) = c then the maximum possible ISC, maxα1,α2 C(n, α1, α2) ≤
Ũ(n, α∗1, α

∗
2) where

Ũ(n, α∗1, α
∗
2) =

{
min(1,

√
c log2(1.29)) if c ≥ 1

c log2

[
1− 1

2 erf
(
−
√

1
πc

)]
if c < 1

Proof. We consider two regimes.

Regime 1 (α1 ≤ 1 + α2)

In this regime using Theorem 2, C(n,m1,m2) ≤ 1
n log2 S where

S =

1− 1

2
erf

−√√√√ u

πl − 4︸︷︷︸
=O(1)



l

=

1− 1

2
erf

−
√

nc
α1

πnα1

nα1

=

[
1− 1

2
erf

(
−
√

c

πα2
1

)]nα1

We will prove that ∂S
∂α1

> 0. Taking natural logarithm on both sides,

lnS = nα1 ln

[
1− 1

2
erf

(
−
√

c

πα2
1

)]

1

S

∂S

∂α1
= n ln

[
1− 1

2
erf

(
−
√

c

πα2
1

)]
+

nα1

1− 1
2 erf

(
−
√

c
πα2

1

) [− 1√
(π)

exp

(
− c

πα2
1

)](
1

α2
1

√
c

π

)

= n ln

[
1− 1

2
erf

(
−
√

c

πα2
1

)]
− nα1

1− 1
2 erf

(
−
√

c
πα2

1

) [ 1√
(π)

exp

(
− c

πα2
1

)](
1

α2
1

√
c

π

)

Now since c = α1(1 + α2) and we are in the regime α1 ≤ 1 + α2, =⇒ c
α2

1
≥ 1. Hence

1

S

∂S

∂α1
≥ n ln

[
1− 1

2
erf

(
−
√

1

π

)]
−

n√
π

1− 1
2 erf

(
−
√

1
π

) [(√ c

πα2
1

)
exp

(
− c

πα2
1

)]
︸ ︷︷ ︸

x exp(−x2)≤0.428

= 0.252n− 0.187n

=⇒ ∂S

∂α1
> 0

Similarly we can show that in the Regime α1 > 1 + α2, ∂S
∂α2

> 0 which would imply ∂S
∂α1

< 0.

Hence the maximum occurs when either α1 = 1 + α2 =
√
c (c ≥ 1) or α1 = c (c < 1).
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(a) 2nC(n,m1,m2) for n = 3
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(b) 2nC(n,m1,m2) for n = 5
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(c) 2nC(n,m1,m2) for n = 10

Figure 5. Comparison chart of the upper estimates with the actual simulation value for two layered RBM with m1 + m2 = 10. The
values are plotted for various values of β = m2

m1
.

J. Relationship between modes of joint and marginal distribution
Proposition
Let {vr}kr=1 be visible vectors such that for each pair of vectors {vi, vj} in {vr}kr=1, dH(vi, vj) ≥ 2. For an
RBMn,m1,...,mL(θ) that fits the input distribution p(v) = 1

k

∑k
i=1 δ(v − vi), if a vector v is a mode of marginal distri-

bution, then there exist vectors {h∗l }Ll=1 such that (v, {h∗l }Ll=1) is a mode of joint distribution p(v, {hl}Ll=1).

Proof. Since v is a mode, =⇒ p(v) = 1
k > 0.

Further, let {h∗l }Ll=1 = arg max{hl} P (v, {hl}Ll=1), that is, the state (v, {h∗l }Ll=1) is stable against flip of any hidden unit10.
Moreover, since for all neighbours v′ of v, p(v′) = 0 =⇒ p(v′, {h∗l }Ll=1) = 0, it implies that (v, {h∗l }Ll=1) is stable
against flip of any visible unit also.

Thus (v, {h∗l }Ll=1) is one-flip stable and hence a mode of the joint distribution.

10Here we assume that energy function values of any two distinct configurations are different.


