## Supplementary material

In the following sections we provide additional material (proofs and figures) that supplement our main results. Section A outlines the preliminary facts and notations that we use for the proofs. The subsequent sections provide the detailed proofs for respective lemmas and theorems. Figure 5 compares the theoretical upper bound estimate with the actual simulated values for modes of two layer DBMs $\left(\mathcal{C}\left(n, m_{1}, m_{2}\right)\right)$.

## A. Preliminary Facts and Notations

In the proofs that follow we use the following facts and notations:

1. The probability density function (pdf) of standard normal distribution $\mathcal{N}(0,1)$

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

2. The cumulative distribution function (cdf) of standard normal distribution

$$
\Phi(x)=\int_{-\infty}^{x} \phi(x) d x=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] \text { where } \operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} d t
$$

3. The pdf of a skew normal distribution $\hat{\mathcal{N}}$ with skew parameter $\alpha$

$$
f(x)=2 \phi(x) \Phi(\alpha x)
$$

4. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), a \in \mathbb{R}, \alpha=\frac{a-\mu}{\sigma}$, then $X$ conditioned on $X>a$ follows a truncated normal distribution with moments

$$
\begin{aligned}
\mathbb{E}[X \mid X>a] & =\mu+\sigma \frac{\phi(\alpha)}{Z} \\
\operatorname{Var}(X \mid X>a) & =\sigma^{2}\left[1+\alpha \frac{\phi(\alpha)}{Z}-\left(\frac{\phi(\alpha)}{Z}\right)^{2}\right]
\end{aligned}
$$

where $Z=1-\Phi(\alpha)$.
5. Squeeze Theorem ${ }^{8}$ : Let, $\left\{a_{m}\right\},\left\{b_{m}\right\},\left\{c_{m}\right\}$ be sequences such that $\forall m \geq m_{0}\left(m_{0} \in \mathbb{R}\right)$

$$
a_{m} \leq b_{m} \leq c_{m}
$$

Further, let $\lim _{m \rightarrow \infty} a_{m}=\lim _{m \rightarrow \infty} c_{m}=L$, then

$$
\lim _{m \rightarrow \infty} b_{m}=L
$$

## B. Proof of Lemma 1 (See page 4)

Lemma 1. A vector $\boldsymbol{v}$ is perfectly reconstructible for an $R B M_{n, m}(\theta) \Longleftrightarrow$ the state $\{\boldsymbol{v}, \operatorname{up}(\boldsymbol{v})\}$ is one-flip stable.
Proof. Let $\mathbf{h}^{*}=\operatorname{up}(\mathbf{v})$ (conditioning on $\theta$ is implicit). If $\mathbf{v}$ is perfectly reconstructible $\Longrightarrow \mathbf{v}=\arg \max _{\mathbf{v}} P\left(\mathbf{v} \mid \mathbf{h}^{*}\right) \Longrightarrow$ $\forall \mathbf{v}^{\prime} \neq \mathbf{v}, P\left(\mathbf{v}^{\prime}, \mathbf{h}^{*}\right)<P\left(\mathbf{v}, \mathbf{h}^{*}\right)$. Similarly since $\mathbf{h}^{*}=\arg \max _{\mathbf{h}} P(\mathbf{h} \mid \mathbf{v}), \forall \mathbf{h}^{\prime} \neq \mathbf{h}^{*}, P\left(\mathbf{v}, \mathbf{h}^{\prime}\right)<P\left(\mathbf{v}, \mathbf{h}^{*}\right)$. Hence the state $\left\{\mathbf{v}, \mathbf{h}^{*}\right\}$ is stable against any number of flips of visible units and against any number of flips of hidden units, $\Longrightarrow\left\{\mathbf{v}, \mathbf{h}^{*}\right\}$ is atleast one-flip stable.
Conversely let $\left\{\mathbf{v}^{*}, \mathbf{h}^{*}\right\}$ be one-flip stable. We shall prove by contradiction that $u p\left(\mathbf{v}^{*}\right)=\mathbf{h}^{*}$ and down $\left(\mathbf{h}^{*}\right)=\mathbf{v}^{*}$. Assume $\operatorname{up}\left(\mathbf{v}^{*}\right)=\mathbf{h}^{\prime} \neq \mathbf{h}^{*}$. We use the fact that for an RBM the hidden units are conditionally independent of each other given the visible units. Thus $\mathbf{h}^{\prime}=\arg \max _{\mathbf{h}} P\left(\mathbf{h} \mid \mathbf{v}^{*}\right)=\left\{\arg \max _{h_{j}} P\left(h_{j} \mid \mathbf{v}^{*}\right)\right\}_{j=1}^{m}$. Further $P\left(\mathbf{h}^{*} \mid \mathbf{v}^{*}\right)=\prod_{j=1}^{m} P\left(h_{j}^{*} \mid \mathbf{v}^{*}\right)$. Let $k$ be an index such that $h_{k}^{\prime} \neq h_{k}^{*}$. Since $h_{k}^{\prime}=\arg \max _{h_{k}} P\left(h_{k} \mid \mathbf{v}^{*}\right), \Longrightarrow P\left(h_{k}^{\prime} \mid \mathbf{v}^{*}\right)>P\left(h_{k}^{*} \mid \mathbf{v}^{*}\right)$. Moreover, $P\left(\mathbf{v}^{*}, \mathbf{h}^{*}\right)=P\left(\mathbf{v}^{*}\right) P\left(\mathbf{h}^{*} \mid \mathbf{v}^{*}\right)=P\left(\mathbf{v}^{*}\right) \prod_{j=1}^{m} P\left(h_{j}^{*} \mid \mathbf{v}^{*}\right)$. Thus just by flipping $h_{k}^{*}$ to $h_{k}^{\prime}$ we can increase the probability of the state $\left\{\mathbf{v}^{*}, \mathbf{h}^{*}\right\}$. This contradicts the one-flip stability hypothesis. Similarly using the conditional independence of visible units given the hidden units we can show that down $\left(\mathbf{h}^{*}\right)=\mathbf{v}^{*}$.

[^0]
## C. Proof of Lemma 2 (See page 5)

Lemma 2. For the set $\boldsymbol{R B} \boldsymbol{M}_{n, m}$, if a given vector $\boldsymbol{v}$ has $r(\geq 1)$ ones, $\boldsymbol{h}=\operatorname{up}(\boldsymbol{v})$ has $l$ ones and $l \gg 1$,then ${ }^{9}$ for $r>1$,

$$
\mathbb{E}\left[\mathbb{1}_{[\boldsymbol{v} \text { is } P R .]}\right] \leq\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{l}{\pi r-2}}\right)\right]^{r}\left(\frac{1}{2}\right)^{n-r} .
$$

For $r=1$, the expression $\mathbb{E}\left[\mathbb{1}_{[\boldsymbol{v} \text { is PR. }]}\right]$ equates to $\left(\frac{1}{2}\right)^{n-1}$. where $\operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} d t$

Proof. We first note that given a visible vector $\mathbf{v} \in\{0,1\}^{n}$ the most likely configuration of the hidden vector

$$
\left\{h_{j}=[\operatorname{up}(\mathbf{v})]_{j}=\mathbb{1}_{\left[\sum_{i=1}^{n} w_{i j} v_{i}>0\right]}\right\}_{j=1}^{m}
$$

Likewise given a hidden vector $\mathbf{h}$, the most likely visible vector

$$
\left\{v_{i}=[\operatorname{down}(\mathbf{h})]_{i}=\mathbb{1}_{\left[\sum_{j=1}^{m} w_{i j} h_{j}>0\right]}\right\}_{i=1}^{n}
$$

Case 1: $r=1$
By symmetry it can be assumed $v_{1}=1$, and $v_{i}=0(\forall i>1)$. Then $\left\{h_{j}=\mathbb{1}_{\left[w_{1 j}>0\right]}\right\}_{j=1}^{m}$. Since each of $w_{1 j}$ is i.i.d. as per $\mathcal{N}\left(0, \sigma^{2}\right), h_{j}$ is a Bernoulli random variable with $P\left(h_{j}=1\right)=\frac{1}{2}$. Again by symmetry it is assumed the first $l$ units $\left\{h_{j}\right\}_{j=1}^{l}$ are one. Then the most likely reconstructed visible vector is given by $\left\{\hat{v}_{i}=\mathbb{1}_{\left[X_{i}=\sum_{j=1}^{l} w_{i j}>0\right]}\right\}_{i=1}^{n}$. Since $w_{1 j}>0$ for all $1 \leq j \leq l \Longrightarrow \hat{v}_{1}=1$. Also, for all $i>1, w_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right) \Longrightarrow X_{i} \sim \mathcal{N}\left(0, l \sigma^{2}\right) \Longrightarrow\left\{\hat{v}_{i}\right\}_{i>1}$ is a Bernoulli random variable with $\left\{P\left[\hat{v}_{i}=1\right]=\frac{1}{2}\right\}_{i=2}^{n}$. The result then follows by mutual independence of $\hat{v}_{i}$.
Case 2: $r>1$
For $r(>1)$ ones in $\mathbf{v}$ and $l$ ones in $\mathbf{h}=u p(\mathbf{v})$ the problem of computing $\left\{P\left[\hat{v}_{i}=1\right]\right\}_{i=1}^{r}$ can be reformulated in terms of matrix row and column sums, viz, given $W \in \mathbb{R}^{r \times l}$ where all entries $w_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are i.i.d. and given that all the column sums $\left\{C_{j}=\sum_{i=1}^{r} w_{i j}>0\right\}_{j=1}^{l}$, to compute the probability that all the row sums are positive, i.e., $\left\{R_{i}=\sum_{j=1}^{l} w_{i j}>0\right\}_{i=1}^{r}$.
Using properties of normal distribution it can be shown that conditioned on the fact that $C_{j}>0$, the posterior distribution of $w_{i j}$ shall be skew-normal with mean $\mu_{i j}=\sigma \sqrt{\frac{2}{\pi r}}$ and variance $\sigma_{i j}^{2}=\sigma^{2}\left(1-\frac{2}{\pi r}\right)$. Since the random variables $\left\{w_{i j} \mid C_{j}>0\right\}_{j=1}^{l}$ are independent the posterior mean of $R_{i}$ shall be $\tilde{\mu}_{i}=l \sigma \sqrt{\frac{2}{\pi r}}$ and the posterior variance $\tilde{\sigma}_{i}^{2}=l \sigma^{2}\left(1-\frac{2}{\pi r}\right)$. Since $l \gg 1$ by Central Limit Theorem $R_{i}$ follow a normal distribution. Since the $R_{i}$ are negatively correlated (proof follows) and $\left\{P\left[\hat{v}_{i}=1\right]=\frac{1}{2}\right\}_{i>r}$ by similar reasoning as in Case 1 we get our desired upper bound.

Negatively Correlated $R_{i}$ 's: Conditioned on the fact $\left\{C_{j}>0\right\}_{j=1}^{l}$ the random variables $\left\{R_{i}\right\}_{i=1}^{r}$ are not independent. They are negatively correlated because for all $R_{i}, R_{t}(t \neq i)$,

$$
P\left(R_{i}>0 \mid\left\{C_{j}>0\right\}_{j=1}^{l}, R_{t}>0\right)<P\left(R_{i}>0 \mid\left\{C_{j}>0\right\}_{j=1}^{l}\right)
$$

Hence the expression given in Lemma 2 is an upper bound since we have neglected the negative correlation among the $R_{i}$ and in the process over-estimated the probabilities.

[^1]
## D. Proof of Lemma 3 (See page 5)

Lemma 3. For the set $\boldsymbol{R B M} M_{n, m}$, if $\boldsymbol{v}$ has $r(>1)$ ones, $\boldsymbol{h}=\operatorname{up}(\boldsymbol{v})$ has lones, then $\exists \mu_{c}, \tilde{\mu}_{c}, \sigma_{c}, \tilde{\sigma}_{c} \in \mathbb{R}_{+}$such that conditioned on $\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0$, the moments of posterior distribution of $w_{i j}$ is given by

$$
\begin{aligned}
\mathbb{E}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right] & =\left(\tilde{\mu}_{c}-\mu_{c}\right) \frac{\sigma^{2}}{\sigma_{c}^{2}} \\
\operatorname{Var}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right] & =\tilde{\sigma}_{c}^{2}\left(\frac{\sigma^{2}}{\sigma_{c}^{2}}\right)^{2}+\sigma^{2} \beta
\end{aligned}
$$

where $\beta=\left(1-\frac{\sigma^{2}}{\sigma_{c}^{2}}\right)$
Proof. The conditional distribution for $R_{1}=\sum_{j=1}^{l} w_{1 j}$ is obtained from the proof of Lemma 2.

$$
\left(R_{1} \mid\left\{C_{j}>0\right\}_{j=1}^{l}\right) \sim \mathcal{N}\left(\tilde{\mu}_{1}, \tilde{\sigma}_{1}^{2}\right)
$$

where $\tilde{\mu}_{1}=l \sigma \sqrt{\frac{2}{\pi r}}, \tilde{\sigma}_{1}^{2}=l \sigma^{2}\left(1-\frac{2}{\pi r}\right)$. Using similar arguments as in proof of Lemma 2 , conditioned on $R_{t}>0$ the posterior distribution of $w_{t j}$ shall be skew normal $\hat{\mathcal{N}}\left[\sigma \sqrt{\frac{2}{\pi l}}, \sigma^{2}\left(1-\frac{2}{\pi l}\right)\right]$. Then conditioned on $\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}$ shall be distributed as per skew normal

$$
\left(C_{j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}\right) \sim \hat{\mathcal{N}}\left(\mu_{c}, \sigma_{c}^{2}\right)
$$

where

$$
\mu_{c}=(i-1) \sigma \sqrt{\frac{2}{\pi l}} \text { and } \sigma_{c}^{2}=(i-1) \sigma^{2}\left(1-\frac{2}{\pi l}\right)+(r-i+1) \sigma^{2}
$$

Here we approximate the above distribution to be Normal since if $i$ is large then Central Limit Theorem would be applicable, otherwise the normally distributed variables $\left\{w_{k j}\right\}_{k=i}^{r}$ would dominate the sum. Then conditioned on $\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>$ $0, C_{j}$ shall be distributed as per truncated normal distribution (Barr \& Sherrill, 1999) with moments

$$
\begin{aligned}
\mathbb{E}\left[C_{j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right] & =\tilde{\mu}_{c}=\mu_{c}+\sigma_{c} \frac{\phi}{Z} \\
\operatorname{Var}\left[C_{j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right] & =\tilde{\sigma}_{c}^{2}=\sigma_{c}^{2}\left[1-\frac{\mu_{c} \phi}{\sigma_{c} Z}-\frac{\phi^{2}}{Z^{2}}\right]
\end{aligned}
$$

where $\sigma_{c}^{2}=(i-1) \sigma^{2}\left(1-\frac{2}{\pi l}\right)+(r-i+1) \sigma^{2}$,
$\mu_{c}=(i-1) \sigma \sqrt{\frac{2}{\pi l}}, Z=\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\frac{\mu_{c}}{\sigma_{c} \sqrt{2}}\right)$ and $\phi=\frac{1}{\sqrt{2 \pi}} e^{\left(-\frac{\mu_{c}^{2}}{2 \sigma_{c}^{2}}\right)}$. Then $\mathbb{E}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}=c\right]=\left(c-\mu_{c}\right) \frac{\sigma^{2}}{\sigma_{c}^{2}}$ and $\operatorname{Var}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}=c\right]=\sigma^{2}\left(1-\frac{\sigma^{2}}{\sigma_{c}^{2}}\right)$. The result then follows from Laws of total expectation and total variance respectively.

Remark. The random variables $\left\{\tilde{w}_{i j}=w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right\}_{j=1}^{l}$ shall be negatively correlated with one another so we should subtract the covariance terms while determining the effective variance of $R_{i}=\sum_{j=1}^{l} \tilde{w}_{i j}$. Thus if we don't subtract the covariance terms from the variance we would get a lower bound on the posterior probability of $R_{i}$ being positive. However it is close as can be seen in Figure 3.

## E. Proof of Theorem 1 (See page 5)

Theorem 1. (ISC of $\mathbf{R B M}_{n, m}$ ) There exist non-trivial functions $L(n, m), U(n, m): \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}_{+}$such that ISC of the set $\boldsymbol{R} \boldsymbol{B} \boldsymbol{M}_{n, m}$ obeys the following inequality.

$$
\frac{1}{n} \log _{2}(L(n, m)) \leq \mathcal{C}(n, m) \leq \frac{1}{n} \log _{2}(U(n, m))
$$

Proof. The upper bound follows from Lemma 2 and applying linearity of expectation.

$$
U_{n, m}=\sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{l}{\pi r-2}}\right)\right]^{r}\left(\frac{1}{2}\right)^{n-r}
$$

For lower bound, we use Lemma 3. We have $\mathbb{E}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right] \quad=\quad \tilde{\mu}_{i}(r, l)$ and $\operatorname{Var}\left[w_{i j} \mid\left\{R_{t}>0\right\}_{t=1}^{i-1}, C_{j}>0\right]=\left(\tilde{\sigma}_{i}(r, l)\right)^{2}$. Thus posterior mean and variance of $\left\{R_{i}\right\}_{i=1}^{r}$ shall be $l \tilde{\mu}_{i}(r, l)$ and $l\left(\tilde{\sigma}_{i}(r, l)\right)^{2}$ respectively. Then summing over all possibilities of $l$ and applying linearity of expectation we get the lower bound.

$$
L_{n, m}=\sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left\{\prod_{i=1}^{r}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r, l) \sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r, l)}\right)\right]\right\}\left(\frac{1}{2}\right)^{n-r}
$$

## F. Proof of Corollory 1 (See page 5)

Corollary 1. (Large $m$ limit) For the set $\boldsymbol{R B} \boldsymbol{M}_{n, m}$, $\lim _{m \rightarrow \infty} \mathcal{C}(n, m)=\log _{2} 1.5=0.585$ where $C(n, m)$ is defined in Theorem 1.

Proof. We shall show that $\lim _{m \rightarrow \infty} U_{n, m} \leq 1.5^{n}$ and $\lim _{m \rightarrow \infty} L_{n, m} \geq 1.5^{n}$. Then using Squeeze Theorem and the fact that limits preserve inequalities the result shall hold.

$$
\lim _{m \rightarrow \infty} U_{n, m}=\lim _{m \rightarrow \infty}\left\{\sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{l}{\pi r-2}}\right)\right]^{r}\left(\frac{1}{2}\right)^{n-r}\right\}
$$

If we replace the $l$ inside the erf function by $m$ then we would be increasing the value of the expression since $m \geq l$. Thus

$$
\begin{aligned}
\lim _{m \rightarrow \infty} U_{n, m} & \leq \lim _{m \rightarrow \infty}\left\{\sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{r}\left[1-\operatorname{erf}\left(-\sqrt{\frac{m}{\pi r-2}}\right)\right]^{r}\left(\frac{1}{2}\right)^{n-r}\right\} \\
& =\lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{r}[2]^{r}\left(\frac{1}{2}\right)^{n-r} \\
& =1.5^{n}
\end{aligned}
$$

To get a lower bound on $L_{n, m}$ we choose a small fixed constant $\epsilon>0$. Then

$$
\begin{aligned}
\lim _{m \rightarrow \infty} L_{n, m} & =\lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \sum_{l=1}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left\{\prod_{i=1}^{r}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r, l) \sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r, l)}\right)\right]\right\}\left(\frac{1}{2}\right)^{n-r} \\
& \geq \lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \sum_{l=m \epsilon}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left\{\prod_{i=1}^{r}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r, l) \sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r, l)}\right)\right]\right\}\left(\frac{1}{2}\right)^{n-r} \\
& \geq \lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \sum_{l=m \epsilon}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\left\{\prod_{i=1}^{r}\left[\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r, l) \sqrt{\frac{m \epsilon}{2}}}{\tilde{\sigma}_{i}(r, l)}\right)\right]\right\}\left(\frac{1}{2}\right)^{n-r}
\end{aligned}
$$

Since $\tilde{\mu}_{i}(r, l)$ and $\tilde{\sigma}_{i}(r, l)$ are non-zero finite quantities regardless of the value of $l$ amd $m$ and $\epsilon$ is a fixed non-zero constant,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} L_{n, m} & \geq \lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \sum_{l=m \epsilon}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}\{\prod_{i=1}^{r}[\frac{1}{2}-\frac{1}{2} \operatorname{erf} \underbrace{\left(-\frac{\tilde{\mu}_{i}(r, l) \sqrt{\frac{m \epsilon}{2}}}{\tilde{\sigma}_{i}(r, l)}\right)}_{\rightarrow-\infty}]\}\left(\frac{1}{2}\right)^{n-r} \\
& =\lim _{m \rightarrow \infty} \sum_{r=1}^{n}\binom{n}{r} \underbrace{\sum_{l=m \epsilon}^{m}\binom{m}{l}\left(\frac{1}{2}\right)^{m}}_{\operatorname{Prob}(l>m \epsilon)}\left\{\left(\frac{1}{2}\right)^{r}[2]^{r}\right\}\left(\frac{1}{2}\right)^{n-r}
\end{aligned}
$$

Since $\epsilon$ is an arbitrarily small number that we have chosen and $l$ denotes the number of successes in $m$ Bernoulli trials, $\operatorname{Prob}(l>m \epsilon)=1$.

$$
\begin{gathered}
\Longrightarrow \lim _{m \rightarrow \infty} L_{n, m} \geq 1.5^{n} \\
\Longrightarrow 1.5^{n} \leq \lim _{m \rightarrow \infty} L_{n, m} \leq \lim _{m \rightarrow \infty} \mathcal{C}(n, m) \leq \lim _{m \rightarrow \infty} U_{n, m} \leq 1.5^{n}
\end{gathered}
$$

## G. Proof of Theorem 2 (See page 6)

Theorem 2. (ISC of $\mathbf{R B M}_{n, m_{1}, m_{2}}$ ) For an $\boldsymbol{R B M} M_{n, m_{1}, m_{2}}\left(n, m_{1}>0\right.$ and $\left.m_{2} \geq 0\right)$, if we denote $u=\max \left(m_{1}, n+\right.$ $\left.m_{2}\right), l=\min \left(m_{1}, n+m_{2}\right)$, then

$$
\mathcal{C}\left(n, m_{1}, m_{2}\right) \leq \frac{1}{n} \log _{2} S
$$

whenever $S<\gamma 2^{n}, S=\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{u}{\pi l-4}}\right)\right]^{l}$

Proof. As shown in Figure 2 we construct a single layer $\mathrm{RBM}_{n+m_{2}, m_{1}}$ that has the same bipartite connections as $\mathbf{R B M}_{n, m_{1}, m_{2}}$. The expected number of perfectly reconstructible vectors for the single layer RBM can then be obtained from Equation 10.

$$
\begin{aligned}
\mathcal{C}\left(n+m_{2}, m_{1}\right) & \leq \frac{1}{n} \log _{2} U_{n+m_{2}, m_{1}}=\frac{1}{n} \log _{2} S \\
& =\frac{1}{n} \log _{2}\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{u}{\pi l-4}}\right)\right]^{l}
\end{aligned}
$$

However this quantity is an overestimate. This counts the number of pairs of vectors $\left\{\mathbf{v}, \mathbf{h}_{2}\right\}$ such that $\binom{\mathbf{v}}{\mathbf{h}_{2}}$ is perfectly reconstructible for $\mathrm{RBM}_{n+m_{2}, m_{1}}$. Among these, there can be vectors like $\binom{\mathbf{v}^{(1)}}{\mathbf{h}_{2}^{(1)}}$ and $\binom{\mathbf{v}^{(2)}}{\mathbf{h}_{2}^{(2)}}$ where $\mathbf{v}^{(1)}=\mathbf{v}^{(2)}$ resulting in repetitions. Assuming such vectors $\mathbf{v}^{(i)}$ are uniformly distributed among the $2^{n}$ possibilities, we approximate the problem to the following. Given $2^{n}$ distinct vectors, we make $S$ draws from them uniformly randomly with replacement. The expected number of distinct vectors that result is given by $2^{n}\left[1-\left(1-\frac{1}{2^{n}}\right)^{S}\right]$. If $S<\gamma 2^{n}$ then binomial approximation an be applied and we get the desired result.

## H. Proof of Corollary 2 (See page 6)

Corollary 2. (Layer 1 Wide, Layer 2 Narrow) For an $\boldsymbol{R B} \boldsymbol{M}_{n, m_{1}, m_{2}}\left(n, m_{1}>0\right.$ and $\left.m_{2} \geq 0\right)$, if $\alpha_{1}=\frac{m_{1}}{n}>\frac{1}{\gamma}$ and $\alpha_{2}=\frac{m_{2}}{n}<\gamma$ then

$$
\mathcal{C}\left(n, m_{1}, m_{2}\right) \leq\left(1+\alpha_{2}\right) \log _{2}(1.5)
$$

Proof. For $\alpha_{1}>\frac{1}{\gamma}, S=\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{n \alpha_{1}}{\pi n\left(1+\alpha_{2}\right)-4}}\right)\right]^{n\left(1+\alpha_{2}\right)}=1.5^{n\left(1+\alpha_{2}\right)}$.
Moreover for $\alpha_{2}<\gamma$, since $S=1.5^{n\left(1+\alpha_{2}\right)}<1.5^{n(1+\gamma)}=2^{n(1+\gamma) \log _{2}(1.5)}=2^{0.614 n}\left(<\gamma 2^{n}\right.$ for reasonable choices of $n$ ), we can apply binomial approximation and the result follows.

## I. Proof of Corollary 3 (See page 6)

Corollary 3. (Fixed budget on parameters) For an $\boldsymbol{R B} \boldsymbol{M}_{n, m_{1}, m_{2}}\left(n, m_{1}>0\right.$ and $\left.m_{2} \geq 0\right)$, if there is a budget of $\underset{\tilde{U}}{ }{ }^{2}$ on the total number of parameters, i.e, $\alpha_{1}\left(1+\alpha_{2}\right)=c$ then the maximum possible ISC, $\max _{\alpha_{1}, \alpha_{2}} \mathcal{C}\left(n, \alpha_{1}, \alpha_{2}\right) \leq$ $\tilde{U}\left(n, \alpha_{1}^{*}, \alpha_{2}^{*}\right)$ where

$$
\tilde{U}\left(n, \alpha_{1}^{*}, \alpha_{2}^{*}\right)= \begin{cases}\min \left(1, \sqrt{c} \log _{2}(1.29)\right) & \text { if } c \geq 1 \\ c \log _{2}\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{1}{\pi c}}\right)\right] & \text { if } c<1\end{cases}
$$

Proof. We consider two regimes.
Regime $1\left(\alpha_{1} \leq 1+\alpha_{2}\right)$
In this regime using Theorem $2, \mathcal{C}\left(n, m_{1}, m_{2}\right) \leq \frac{1}{n} \log _{2} S$ where

$$
S=[1-\frac{1}{2} \operatorname{erf}(-\sqrt{\frac{u}{\pi l-\underbrace{4}_{=\mathcal{O}(1)}}})]^{l}=\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{\frac{n c}{\alpha_{1}}}{\pi n \alpha_{1}}}\right)\right]^{n \alpha_{1}}=\left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)\right]^{n \alpha_{1}}
$$

We will prove that $\frac{\partial S}{\partial \alpha_{1}}>0$. Taking natural logarithm on both sides,

$$
\begin{gathered}
\ln S=n \alpha_{1} \ln \left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)\right] \\
\frac{1}{S} \frac{\partial S}{\partial \alpha_{1}}=n \ln \left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)\right]+\frac{n \alpha_{1}}{1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)}\left[-\frac{1}{\sqrt{(\pi)}} \exp \left(-\frac{c}{\pi \alpha_{1}^{2}}\right)\right]\left(\frac{1}{\alpha_{1}^{2}} \sqrt{\frac{c}{\pi}}\right) \\
=n \ln \left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)\right]-\frac{n \alpha_{1}}{1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right)}\left[\frac{1}{\sqrt{(\pi)}} \exp \left(-\frac{c}{\pi \alpha_{1}^{2}}\right)\right]\left(\frac{1}{\alpha_{1}^{2}} \sqrt{\frac{c}{\pi}}\right)
\end{gathered}
$$

Now since $c=\alpha_{1}\left(1+\alpha_{2}\right)$ and we are in the regime $\alpha_{1} \leq 1+\alpha_{2}, \Longrightarrow \frac{c}{\alpha_{1}^{2}} \geq 1$. Hence

$$
\begin{aligned}
\frac{1}{S} \frac{\partial S}{\partial \alpha_{1}} & \geq n \ln \left[1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{1}{\pi}}\right)\right]-\frac{\frac{n}{\sqrt{\pi}}}{1-\frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{1}{\pi}}\right)} \underbrace{\left[\left(\sqrt{\frac{c}{\pi \alpha_{1}^{2}}}\right) \exp \left(-\frac{c}{\pi \alpha_{1}^{2}}\right)\right]}_{x \exp \left(-x^{2}\right) \leq 0.428} \\
& =0.252 n-0.187 n \\
\Longrightarrow \frac{\partial S}{\partial \alpha_{1}} & >0
\end{aligned}
$$

Similarly we can show that in the Regime $\alpha_{1}>1+\alpha_{2}, \frac{\partial S}{\partial \alpha_{2}}>0$ which would imply $\frac{\partial S}{\partial \alpha_{1}}<0$.
Hence the maximum occurs when either $\alpha_{1}=1+\alpha_{2}=\sqrt{c}(c \geq 1)$ or $\alpha_{1}=c(c<1)$.


Figure 5. Comparison chart of the upper estimates with the actual simulation value for two layered RBM with $m_{1}+m_{2}=10$. The values are plotted for various values of $\beta=\frac{m_{2}}{m_{1}}$.

## J. Relationship between modes of joint and marginal distribution

## Proposition

Let $\left\{\mathbf{v}_{r}\right\}_{r=1}^{k}$ be visible vectors such that for each pair of vectors $\left\{\mathbf{v}_{i}, \mathbf{v}_{j}\right\}$ in $\left\{\mathbf{v}_{r}\right\}_{r=1}^{k}, d_{H}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) \geq 2$. For an $\operatorname{RBM}_{n, m_{1}, \ldots, m_{L}}(\theta)$ that fits the input distribution $p(\mathbf{v})=\frac{1}{k} \sum_{i=1}^{k} \delta\left(\mathbf{v}-\mathbf{v}_{i}\right)$, if a vector $\mathbf{v}$ is a mode of marginal distribution, then there exist vectors $\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}$ such that $\left(\mathbf{v},\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}\right)$ is a mode of joint distribution $p\left(\mathbf{v},\left\{\mathbf{h}_{l}\right\}_{l=1}^{L}\right)$.

Proof. Since $v$ is a mode, $\Longrightarrow p(\mathbf{v})=\frac{1}{k}>0$.
Further, let $\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}=\arg \max _{\left\{\mathbf{h}_{l}\right\}} P\left(\mathbf{v},\left\{\mathbf{h}_{l}\right\}_{l=1}^{L}\right)$, that is, the state $\left(\mathbf{v},\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}\right)$ is stable against flip of any hidden unit ${ }^{10}$. Moreover, since for all neighbours $\mathbf{v}^{\prime}$ of $\mathbf{v}, p\left(\mathbf{v}^{\prime}\right)=0 \Longrightarrow p\left(\mathbf{v}^{\prime},\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}\right)=0$, it implies that $\left(\mathbf{v},\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}\right)$ is stable against flip of any visible unit also.
Thus $\left(\mathbf{v},\left\{\mathbf{h}_{l}^{*}\right\}_{l=1}^{L}\right)$ is one-flip stable and hence a mode of the joint distribution.

[^2]
[^0]:    ${ }^{8}$ http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences

[^1]:    ${ }^{9}$ Here $l \gg 1$ means $l$ is atleast 50 hidden units, which according to us is a reasonable assumption.

[^2]:    ${ }^{10}$ Here we assume that energy function values of any two distinct configurations are different.

