Supplementary material

In the following sections we provide additional material (proofs and figures) that supplement our main results. Section A outlines the preliminary facts and notations that we use for the proofs. The subsequent sections provide the detailed proofs for respective lemmas and theorems. Figure 5 compares the theoretical upper bound estimate with the actual simulated values for modes of two layer DBMs ($C(n, m_1, m_2)$).

A. Preliminary Facts and Notations

In the proofs that follow we use the following facts and notations:

1. The probability density function (pdf) of standard normal distribution $\mathcal{N}(0,1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

2. The cumulative distribution function (cdf) of standard normal distribution

$$\Phi(x) = \int_{-\infty}^{x} \phi(x) dx = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right] \text{ where } \operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$$

3. The pdf of a skew normal distribution $\hat{\mathcal{N}}$ with skew parameter α

$$f(x) = 2\phi(x)\Phi(\alpha x)$$

4. If $X \sim \mathcal{N}(\mu, \sigma^2)$, $a \in \mathbb{R}, \alpha = \frac{a-\mu}{\sigma}$, then X conditioned on X > a follows a truncated normal distribution with moments

$$\mathbb{E}[X|X > a] = \mu + \sigma \frac{\phi(\alpha)}{Z}$$
$$Var(X|X > a) = \sigma^{2} \left[1 + \alpha \frac{\phi(\alpha)}{Z} - \left(\frac{\phi(\alpha)}{Z}\right)^{2}\right]$$

where $Z = 1 - \Phi(\alpha)$.

5. Squeeze Theorem⁸: Let, $\{a_m\}, \{b_m\}, \{c_m\}$ be sequences such that $\forall m \geq m_0 \ (m_0 \in \mathbb{R})$

$$a_m \le b_m \le c_m$$

Further, let $\lim_{m\to\infty} a_m = \lim_{m\to\infty} c_m = L$, then

$$\lim_{m \to \infty} b_m = L$$

B. Proof of Lemma 1 (See page 4)

Lemma 1. A vector v is perfectly reconstructible for an $RBM_{n,m}(\theta) \iff$ the state $\{v, up(v)\}$ is one-flip stable.

Proof. Let $\mathbf{h}^* = up(\mathbf{v})$ (conditioning on θ is implicit). If \mathbf{v} is perfectly reconstructible $\implies \mathbf{v} = \arg \max_{\mathbf{v}} P(\mathbf{v}|\mathbf{h}^*) \implies \forall \mathbf{v}' \neq \mathbf{v}, P(\mathbf{v}', \mathbf{h}^*) < P(\mathbf{v}, \mathbf{h}^*)$. Similarly since $\mathbf{h}^* = \arg \max_{\mathbf{h}} P(\mathbf{h}|\mathbf{v}), \forall \mathbf{h}' \neq \mathbf{h}^*, P(\mathbf{v}, \mathbf{h}') < P(\mathbf{v}, \mathbf{h}^*)$. Hence the state $\{\mathbf{v}, \mathbf{h}^*\}$ is stable against any number of flips of visible units and against any number of flips of hidden units, $\implies \{\mathbf{v}, \mathbf{h}^*\}$ is atleast one-flip stable.

Conversely let $\{\mathbf{v}^*, \mathbf{h}^*\}$ be one-flip stable. We shall prove by contradiction that $up(\mathbf{v}^*) = \mathbf{h}^*$ and $down(\mathbf{h}^*) = \mathbf{v}^*$. Assume $up(\mathbf{v}^*) = \mathbf{h}' \neq \mathbf{h}^*$. We use the fact that for an RBM the hidden units are conditionally independent of each other given the visible units. Thus $\mathbf{h}' = \arg \max_{\mathbf{h}} P(\mathbf{h}|\mathbf{v}^*) = \{\arg \max_{h_j} P(h_j|\mathbf{v}^*)\}_{j=1}^m$. Further $P(\mathbf{h}^*|\mathbf{v}^*) = \prod_{j=1}^m P(h_j^*|\mathbf{v}^*)$. Let k be an index such that $h'_k \neq h^*_k$. Since $h'_k = \arg \max_{h_k} P(h_k|\mathbf{v}^*)$, $\implies P(h'_k|\mathbf{v}^*) > P(h^*_k|\mathbf{v}^*)$. Moreover, $P(\mathbf{v}^*, \mathbf{h}^*) = P(\mathbf{v}^*)P(\mathbf{h}^*|\mathbf{v}^*) = P(\mathbf{v}^*)\prod_{j=1}^m P(h^*_j|\mathbf{v}^*)$. Thus just by flipping h^*_k to h'_k we can increase the probability of the state $\{\mathbf{v}^*, \mathbf{h}^*\}$. This contradicts the one-flip stability hypothesis. Similarly using the conditional independence of visible units given the hidden units we can show that down(\mathbf{h}^*) = \mathbf{v}^* .

⁸http://mathonline.wikidot.com/the-squeeze-theorem-for-convergent-sequences

C. Proof of Lemma 2 (See page 5)

Lemma 2. For the set $RBM_{n,m}$, if a given vector \mathbf{v} has $r(\geq 1)$ ones, $\mathbf{h} = up(\mathbf{v})$ has l ones and $l \gg 1$, then ⁹ for r > 1,

$$\mathbb{E}\left[\mathbb{1}_{[\nu \text{ is PR.}]}\right] \leq \left[\frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{l}{\pi r - 2}}\right)\right]^{r} \left(\frac{1}{2}\right)^{n - r}.$$

For r = 1, the expression $\mathbb{E}\left[\mathbb{1}_{[v \text{ is } PR]}\right]$ equates to $\left(\frac{1}{2}\right)^{n-1}$. where $\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$

Proof. We first note that given a visible vector $\mathbf{v} \in \{0,1\}^n$ the most likely configuration of the hidden vector

$$\left\{h_j = [up(\mathbf{v})]_j = \mathbb{1}_{\left[\sum_{i=1}^n w_{ij}v_i > 0\right]}\right\}_{j=1}^m$$

Likewise given a hidden vector **h**, the most likely visible vector

$$\left\{v_i = \left[\operatorname{down}(\mathbf{h})\right]_i = \mathbb{1}_{\left[\sum_{j=1}^m w_{ij}h_j > 0\right]}\right\}_{i=1}^n$$

Case 1: r = 1

By symmetry it can be assumed $v_1 = 1$, and $v_i = 0 (\forall i > 1)$. Then $\{h_j = \mathbb{1}_{[w_{1j}>0]}\}_{j=1}^m$. Since each of w_{1j} is i.i.d. as per $\mathcal{N}(0, \sigma^2)$, h_j is a Bernoulli random variable with $P(h_j = 1) = \frac{1}{2}$. Again by symmetry it is assumed the first l units $\{h_j\}_{j=1}^l$ are one. Then the most likely *reconstructed* visible vector is given by $\{\hat{v}_i = \mathbb{1}_{[X_i = \sum_{j=1}^l w_{ij}>0]}\}_{i=1}^n$. Since $w_{1j} > 0$ for all $1 \le j \le l \implies \hat{v}_1 = 1$. Also, for all $i > 1, w_{ij} \sim \mathcal{N}(0, \sigma^2) \implies X_i \sim \mathcal{N}(0, l\sigma^2) \implies \{\hat{v}_i\}_{i>1}$ is a Bernoulli random variable with $\{P[\hat{v}_i = 1] = \frac{1}{2}\}_{i=2}^n$. The result then follows by mutual independence of \hat{v}_i .

Case 2: *r* > 1

For r(>1) ones in **v** and l ones in $\mathbf{h} = up(\mathbf{v})$ the problem of computing $\{P[\hat{v}_i = 1]\}_{i=1}^r$ can be reformulated in terms of matrix row and column sums, viz, given $W \in \mathbb{R}^{r \times l}$ where all entries $w_{ij} \sim \mathcal{N}(0, \sigma^2)$ are i.i.d. and given that all the column sums $\{C_j = \sum_{i=1}^r w_{ij} > 0\}_{j=1}^l$, to compute the probability that all the row sums are positive, i.e., $\{R_i = \sum_{j=1}^l w_{ij} > 0\}_{i=1}^r$.

Using properties of normal distribution it can be shown that conditioned on the fact that $C_j > 0$, the posterior distribution of w_{ij} shall be *skew-normal* with mean $\mu_{ij} = \sigma \sqrt{\frac{2}{\pi r}}$ and variance $\sigma_{ij}^2 = \sigma^2 \left(1 - \frac{2}{\pi r}\right)$. Since the random variables $\{w_{ij}|C_j > 0\}_{j=1}^l$ are independent the posterior mean of R_i shall be $\tilde{\mu}_i = l\sigma \sqrt{\frac{2}{\pi r}}$ and the posterior variance $\tilde{\sigma}_i^2 = l\sigma^2 \left(1 - \frac{2}{\pi r}\right)$. Since $l \gg 1$ by *Central Limit Theorem* R_i follow a normal distribution. Since the R_i are negatively correlated (proof follows) and $\{P[\hat{v}_i = 1] = \frac{1}{2}\}_{i>r}$ by similar reasoning as in Case 1 we get our desired upper bound.

Negatively Correlated R_i 's: Conditioned on the fact $\{C_j > 0\}_{j=1}^l$ the random variables $\{R_i\}_{i=1}^r$ are not independent. They are negatively correlated because for all $R_i, R_t(t \neq i)$,

$$P(R_i > 0 | \{C_j > 0\}_{j=1}^l, R_t > 0) < P(R_i > 0 | \{C_j > 0\}_{j=1}^l)$$

Hence the expression given in Lemma 2 is an upper bound since we have neglected the negative correlation among the R_i and in the process over-estimated the probabilities.

⁹Here $l \gg 1$ means l is atleast 50 hidden units, which according to us is a reasonable assumption.

D. Proof of Lemma 3 (See page 5)

Lemma 3. For the set $RBM_{n,m}$, if \mathbf{v} has r(>1) ones, $\mathbf{h} = up(\mathbf{v})$ has l ones, then $\exists \mu_c, \tilde{\mu}_c, \sigma_c, \tilde{\sigma}_c \in \mathbb{R}_+$ such that conditioned on $\{R_t > 0\}_{t=1}^{i-1}, C_j > 0$, the moments of posterior distribution of w_{ij} is given by

$$\mathbb{E}\left[w_{ij}|\{R_t > 0\}_{t=1}^{i-1}, C_j > 0\right] = (\tilde{\mu}_c - \mu_c)\frac{\sigma^2}{\sigma_c^2}$$

Var $\left[w_{ij}|\{R_t > 0\}_{t=1}^{i-1}, C_j > 0\right] = \tilde{\sigma}_c^2 \left(\frac{\sigma^2}{\sigma_c^2}\right)^2 + \sigma^2 \beta$

where $\beta = \left(1 - \frac{\sigma^2}{\sigma_c^2}\right)$

Proof. The conditional distribution for $R_1 = \sum_{j=1}^l w_{1j}$ is obtained from the proof of Lemma 2.

$$\left(R_1|\{C_j>0\}_{j=1}^l\right)\sim \mathcal{N}\left(\tilde{\mu}_1,\tilde{\sigma}_1^2\right)$$

where $\tilde{\mu}_1 = l\sigma \sqrt{\frac{2}{\pi r}}, \tilde{\sigma}_1^2 = l\sigma^2 \left(1 - \frac{2}{\pi r}\right)$. Using similar arguments as in proof of Lemma 2, conditioned on $R_t > 0$ the posterior distribution of w_{tj} shall be skew normal $\hat{\mathcal{N}}\left[\sigma\sqrt{\frac{2}{\pi l}}, \sigma^2\left(1-\frac{2}{\pi l}\right)\right]$. Then conditioned on $\{R_t > 0\}_{t=1}^{i-1}, C_j$ shall be distributed as per skew normal

$$\left(C_j | \{R_t > 0\}_{t=1}^{i-1}\right) \sim \hat{\mathcal{N}}(\mu_c, \sigma_c^2)$$

where

$$\mu_c = (i-1)\sigma \sqrt{\frac{2}{\pi l}} \text{ and } \sigma_c^2 = (i-1)\sigma^2 \left(1 - \frac{2}{\pi l}\right) + (r-i+1)\sigma^2$$

Here we approximate the above distribution to be Normal since if *i* is large then *Central Limit Theorem* would be applicable, otherwise the normally distributed variables $\{w_{kj}\}_{k=i}^r$ would dominate the sum. Then conditioned on $\{R_t > 0\}_{t=1}^{i-1}, C_j > 0$ $0, C_i$ shall be distributed as per truncated normal distribution (Barr & Sherrill, 1999) with moments

$$\mathbb{E}\left[C_{j}|\{R_{t}>0\}_{t=1}^{i-1}, C_{j}>0\right] = \tilde{\mu}_{c} = \mu_{c} + \sigma_{c}\frac{\phi}{Z}$$
$$\operatorname{Var}\left[C_{j}|\{R_{t}>0\}_{t=1}^{i-1}, C_{j}>0\right] = \tilde{\sigma}_{c}^{2} = \sigma_{c}^{2}\left[1 - \frac{\mu_{c}\phi}{\sigma_{c}Z} - \frac{\phi^{2}}{Z^{2}}\right]$$

where $\sigma_c^2 = (i-1)\sigma^2 \left(1 - \frac{2}{\pi l}\right) + (r-i+1)\sigma^2$,

 $\mu_c = (i-1)\sigma\sqrt{\frac{2}{\pi l}}, Z = \frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(-\frac{\mu_c}{\sigma_c\sqrt{2}}\right) \text{ and } \phi = \frac{1}{\sqrt{2\pi}}e^{\left(-\frac{\mu_c^2}{2\sigma_c^2}\right)}. \text{ Then } \mathbb{E}\left[w_{ij}|\{R_t > 0\}_{t=1}^{i-1}, C_j = c\right] = (c-\mu_c)\frac{\sigma^2}{\sigma_c^2}$ and $\operatorname{Var}\left[w_{ij}|\{R_t > 0\}_{t=1}^{i-1}, C_j = c\right] = \sigma^2\left(1 - \frac{\sigma^2}{\sigma_c^2}\right).$ The result then follows from Laws of total expectation and total variance respectively.

Remark. The random variables $\{\tilde{w}_{ij} = w_{ij} | \{R_t > 0\}_{t=1}^{i-1}, C_j > 0\}_{j=1}^{l}$ shall be negatively correlated with one another so we should subtract the covariance terms while determining the effective variance of $R_i = \sum_{j=1}^{l} \tilde{w}_{ij}$. Thus if we don't subtract the covariance terms from the variance we would get a lower bound on the posterior probability of R_i being positive. However it is close as can be seen in Figure 3.

E. Proof of Theorem 1 (See page 5)

Theorem 1. (ISC of RBM_{*n*,*m*}) There exist non-trivial functions $L(n,m), U(n,m) : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}_+$ such that ISC of the set *RBM_{<i>n*,*m*} obeys the following inequality.

$$\frac{1}{n}\log_2(L(n,m)) \le \mathcal{C}(n,m) \le \frac{1}{n}\log_2(U(n,m))$$

Proof. The upper bound follows from Lemma 2 and applying linearity of expectation.

$$U_{n,m} = \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left[\frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{l}{\pi r - 2}}\right)\right]^{r} \left(\frac{1}{2}\right)^{n - r}$$

For lower bound, we use Lemma 3. We have $\mathbb{E}\left[w_{ij}|\{R_t>0\}_{t=1}^{i-1}, C_j>0\right] = \tilde{\mu}_i(r,l)$ and $\operatorname{Var}\left[w_{ij}|\{R_t>0\}_{t=1}^{i-1}, C_j>0\right] = (\tilde{\sigma}_i(r,l))^2$. Thus posterior mean and variance of $\{R_i\}_{i=1}^r$ shall be $l\tilde{\mu}_i(r,l)$ and $l(\tilde{\sigma}_i(r,l))^2$ respectively. Then summing over all possibilities of l and applying linearity of expectation we get the lower bound.

$$L_{n,m} = \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left\{ \prod_{i=1}^{r} \left[\frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r,l)\sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r,l)}\right)\right] \right\} \left(\frac{1}{2}\right)^{n-r}$$

F. Proof of Corollory 1 (See page 5)

Corollary 1. (Large *m* limit) For the set $RBM_{n,m}$, $\lim_{m\to\infty} C(n,m) = \log_2 1.5 = 0.585$ where C(n,m) is defined in Theorem 1.

Proof. We shall show that $\lim_{m\to\infty} U_{n,m} \leq 1.5^n$ and $\lim_{m\to\infty} L_{n,m} \geq 1.5^n$. Then using Squeeze Theorem and the fact that limits preserve inequalities the result shall hold.

$$\lim_{m \to \infty} U_{n,m} = \lim_{m \to \infty} \left\{ \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left[\frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{l}{\pi r - 2}}\right)\right]^{r} \left(\frac{1}{2}\right)^{n-r} \right\}$$

If we replace the l inside the erf function by m then we would be increasing the value of the expression since $m \ge l$. Thus

$$\lim_{m \to \infty} U_{n,m} \leq \lim_{m \to \infty} \left\{ \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left(\frac{1}{2}\right)^{r} \left[1 - \operatorname{erf}\left(-\sqrt{\frac{m}{\pi r - 2}}\right)\right]^{r} \left(\frac{1}{2}\right)^{n - r} \right\}$$
$$= \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left(\frac{1}{2}\right)^{r} [2]^{r} \left(\frac{1}{2}\right)^{n - r}$$
$$= 1.5^{n}$$

To get a lower bound on $L_{n,m}$ we choose a small fixed constant $\epsilon > 0$. Then

$$\lim_{m \to \infty} L_{n,m} = \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{l=1}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left\{ \prod_{i=1}^{r} \left[\frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r,l)\sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r,l)}\right)\right] \right\} \left(\frac{1}{2}\right)^{n-r}$$

$$\geq \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{l=m\epsilon}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left\{ \prod_{i=1}^{r} \left[\frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r,l)\sqrt{\frac{l}{2}}}{\tilde{\sigma}_{i}(r,l)}\right)\right] \right\} \left(\frac{1}{2}\right)^{n-r}$$

$$\geq \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{l=m\epsilon}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left\{ \prod_{i=1}^{r} \left[\frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r,l)\sqrt{\frac{m\epsilon}{2}}}{\tilde{\sigma}_{i}(r,l)}\right)\right] \right\} \left(\frac{1}{2}\right)^{n-r}$$

Since $\tilde{\mu}_i(r, l)$ and $\tilde{\sigma}_i(r, l)$ are non-zero finite quantities regardless of the value of l and m and ϵ is a fixed non-zero constant,

$$\lim_{m \to \infty} L_{n,m} \geq \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{l=m\epsilon}^{m} \binom{m}{l} \left(\frac{1}{2}\right)^{m} \left\{ \prod_{i=1}^{r} \left[\frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(-\frac{\tilde{\mu}_{i}(r,l)\sqrt{\frac{m\epsilon}{2}}}{\tilde{\sigma}_{i}(r,l)}\right)\right] \right\} \left(\frac{1}{2}\right)^{n-r}$$
$$= \lim_{m \to \infty} \sum_{r=1}^{n} \binom{n}{r} \sum_{\substack{l=m\epsilon \\ Prob(l>m\epsilon)}}^{m} \left\{ \left(\frac{1}{2}\right)^{r} [2]^{r} \right\} \left(\frac{1}{2}\right)^{n-r}$$

Since ϵ is an arbitrarily small number that we have chosen and l denotes the number of successes in m Bernoulli trials, Prob $(l > m\epsilon) = 1$.

$$\implies \lim_{m \to \infty} L_{n,m} \ge 1.5^n$$
$$\implies 1.5^n \le \lim_{m \to \infty} L_{n,m} \le \lim_{m \to \infty} \mathcal{C}(n,m) \le \lim_{m \to \infty} U_{n,m} \le 1.5^n$$

G. Proof of Theorem 2 (See page 6)

Theorem 2. (ISC of RBM_{*n*,*m*₁,*m*₂}) For an *RBM*_{*n*,*m*₁,*m*₂} $(n, m_1 > 0 \text{ and } m_2 \ge 0)$, if we denote $u = \max(m_1, n + m_2)$, $l = \min(m_1, n + m_2)$, then

$$\mathcal{C}(n, m_1, m_2) \le \frac{1}{n} \log_2 S$$

whenever $S < \gamma 2^n$, $S = \left[1 - \frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{u}{\pi l - 4}}\right)\right]^l$

Proof. As shown in Figure 2 we construct a single layer RBM_{n+m_2,m_1} that has the same bipartite connections as RBM_{n,m_1,m_2} . The expected number of perfectly reconstructible vectors for the single layer RBM can then be obtained from Equation 10.

$$\begin{aligned} \mathcal{C}(n+m_2,m_1) &\leq & \frac{1}{n} \log_2 U_{n+m_2,m_1} = \frac{1}{n} \log_2 S \\ &= & \frac{1}{n} \log_2 \left[1 - \frac{1}{2} \operatorname{erf} \left(-\sqrt{\frac{u}{\pi l - 4}} \right) \right] \end{aligned}$$

However this quantity is an overestimate. This counts the number of pairs of vectors $\{\mathbf{v}, \mathbf{h}_2\}$ such that $\begin{pmatrix} \mathbf{v} \\ \mathbf{h}_2 \end{pmatrix}$ is perfectly reconstructible for RBM_{n+m2,m1}. Among these, there can be vectors like $\begin{pmatrix} \mathbf{v}^{(1)} \\ \mathbf{h}^{(1)}_2 \end{pmatrix}$ and $\begin{pmatrix} \mathbf{v}^{(2)} \\ \mathbf{h}^{(2)}_2 \end{pmatrix}$ where $\mathbf{v}^{(1)} = \mathbf{v}^{(2)}$ resulting in repetitions. Assuming such vectors $\mathbf{v}^{(i)}$ are uniformly distributed among the 2^n possibilities, we approximate the problem to the following. Given 2^n distinct vectors, we make S draws from them uniformly randomly with replacement. The expected number of distinct vectors that result is given by $2^n \left[1 - \left(1 - \frac{1}{2^n}\right)^S\right]$. If $S < \gamma 2^n$ then binomial approximation an be applied and we get the desired result.

H. Proof of Corollary 2 (See page 6)

Corollary 2. (Layer 1 Wide, Layer 2 Narrow) For an RBM_{n,m_1,m_2} $(n, m_1 > 0 and m_2 \ge 0)$, if $\alpha_1 = \frac{m_1}{n} > \frac{1}{\gamma}$ and $\alpha_2 = \frac{m_2}{n} < \gamma$ then

$$C(n, m_1, m_2) \le (1 + \alpha_2) \log_2(1.5)$$

Proof. For $\alpha_1 > \frac{1}{\gamma}$, $S = \left[1 - \frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{n\alpha_1}{\pi n(1+\alpha_2)-4}}\right)\right]^{n(1+\alpha_2)} = 1.5^{n(1+\alpha_2)}$.

Moreover for $\alpha_2 < \gamma$, since $S = 1.5^{n(1+\alpha_2)} < 1.5^{n(1+\gamma)} = 2^{n(1+\gamma)\log_2(1.5)} = 2^{0.614n} (<\gamma 2^n)$ for reasonable choices of n), we can apply binomial approximation and the result follows.

I. Proof of Corollary 3 (See page 6)

Corollary 3. (Fixed budget on parameters) For an RBM_{n,m_1,m_2} $(n, m_1 > 0 and m_2 \ge 0)$, if there is a budget of cn^2 on the total number of parameters, i.e, $\alpha_1(1 + \alpha_2) = c$ then the maximum possible ISC, $\max_{\alpha_1,\alpha_2} C(n, \alpha_1, \alpha_2) \le \tilde{U}(n, \alpha_1^*, \alpha_2^*)$ where

$$\tilde{U}(n, \alpha_1^*, \alpha_2^*) = \begin{cases} \min(1, \sqrt{c} \log_2(1.29)) & \text{if } c \ge 1\\ c \log_2\left[1 - \frac{1}{2} \operatorname{erf}\left(-\sqrt{\frac{1}{\pi c}}\right)\right] & \text{if } c < 1 \end{cases}$$

Proof. We consider two regimes.

Regime 1 ($\alpha_1 \leq 1 + \alpha_2$)

In this regime using Theorem 2, $C(n, m_1, m_2) \leq \frac{1}{n} \log_2 S$ where

$$S = \left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{u}{\pi l - \underbrace{4}_{=\mathcal{O}(1)}}}\right)\right]^{l} = \left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{nc}{\alpha_{1}}}{\pi n\alpha_{1}}\right)\right]^{n\alpha_{1}} = \left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{c}{\pi\alpha_{1}^{2}}}\right)\right]^{n\alpha_{1}}$$

We will prove that $\frac{\partial S}{\partial \alpha_1} > 0$. Taking natural logarithm on both sides,

$$\ln S = n\alpha_1 \ln \left[1 - \frac{1}{2} \operatorname{erf} \left(-\sqrt{\frac{c}{\pi \alpha_1^2}} \right) \right]$$

$$\frac{1}{S}\frac{\partial S}{\partial \alpha_1} = n \ln\left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{c}{\pi\alpha_1^2}}\right)\right] + \frac{n\alpha_1}{1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{c}{\pi\alpha_1^2}}\right)} \left[-\frac{1}{\sqrt{(\pi)}}\exp\left(-\frac{c}{\pi\alpha_1^2}\right)\right] \left(\frac{1}{\alpha_1^2}\sqrt{\frac{c}{\pi}}\right)$$
$$= n \ln\left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{c}{\pi\alpha_1^2}}\right)\right] - \frac{n\alpha_1}{1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{c}{\pi\alpha_1^2}}\right)} \left[\frac{1}{\sqrt{(\pi)}}\exp\left(-\frac{c}{\pi\alpha_1^2}\right)\right] \left(\frac{1}{\alpha_1^2}\sqrt{\frac{c}{\pi}}\right)$$

Now since $c = \alpha_1(1 + \alpha_2)$ and we are in the regime $\alpha_1 \le 1 + \alpha_2$, $\implies \frac{c}{\alpha_1^2} \ge 1$. Hence

$$\frac{1}{S}\frac{\partial S}{\partial \alpha_1} \geq n \ln\left[1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{1}{\pi}}\right)\right] - \frac{\frac{n}{\sqrt{\pi}}}{1 - \frac{1}{2}\operatorname{erf}\left(-\sqrt{\frac{1}{\pi}}\right)}\underbrace{\left[\left(\sqrt{\frac{c}{\pi\alpha_1^2}}\right)\exp\left(-\frac{c}{\pi\alpha_1^2}\right)\right]}_{x \exp(-x^2) \leq 0.428}$$
$$= 0.252n - 0.187n$$
$$\Longrightarrow \frac{\partial S}{\partial \alpha_1} > 0$$

Similarly we can show that in the **Regime** $\alpha_1 > 1 + \alpha_2$, $\frac{\partial S}{\partial \alpha_2} > 0$ which would imply $\frac{\partial S}{\partial \alpha_1} < 0$. Hence the maximum occurs when either $\alpha_1 = 1 + \alpha_2 = \sqrt{c}$ ($c \ge 1$) or $\alpha_1 = c$ (c < 1).

Figure 5. Comparison chart of the upper estimates with the actual simulation value for two layered RBM with $m_1 + m_2 = 10$. The values are plotted for various values of $\beta = \frac{m_2}{m_1}$.

J. Relationship between modes of joint and marginal distribution

Proposition

Let $\{\mathbf{v}_r\}_{r=1}^k$ be visible vectors such that for each pair of vectors $\{\mathbf{v}_i, \mathbf{v}_j\}$ in $\{\mathbf{v}_r\}_{r=1}^k$, $d_H(\mathbf{v}_i, \mathbf{v}_j) \geq 2$. For an RBM_{*n*,*m*₁,...,*m*_L(θ) that fits the input distribution $p(\mathbf{v}) = \frac{1}{k} \sum_{i=1}^k \delta(\mathbf{v} - \mathbf{v}_i)$, if a vector \mathbf{v} is a mode of marginal distribution, then there exist vectors $\{\mathbf{h}_l^*\}_{l=1}^L$ such that $(\mathbf{v}, \{\mathbf{h}_l^*\}_{l=1}^L)$ is a mode of joint distribution $p(\mathbf{v}, \{\mathbf{h}_l\}_{l=1}^L)$.}

Proof. Since v is a mode, $\implies p(\mathbf{v}) = \frac{1}{k} > 0$. Further, let $\{\mathbf{h}_{l}^{*}\}_{l=1}^{L} = \arg \max_{\{\mathbf{h}_{l}\}} P(\mathbf{v}, \{\mathbf{h}_{l}\}_{l=1}^{L})$, that is, the state $(\mathbf{v}, \{\mathbf{h}_{l}^{*}\}_{l=1}^{L})$ is stable against flip of any **hidden** unit¹⁰. Moreover, since for all neighbours \mathbf{v}' of \mathbf{v} , $p(\mathbf{v}') = 0 \implies p(\mathbf{v}', \{\mathbf{h}_{l}^{*}\}_{l=1}^{L}) = 0$, it implies that $(\mathbf{v}, \{\mathbf{h}_{l}^{*}\}_{l=1}^{L})$ is stable against flip of any visible unit also.

Thus $(\mathbf{v}, {\mathbf{h}_l^*}_{l=1}^L)$ is one-flip stable and hence a mode of the joint distribution.

¹⁰Here we assume that energy function values of any two distinct configurations are different.