
Learning to Coordinate with Coordination Graphs
in Repeated Single-Stage Multi-Agent Decision Problems

Eugenio Bargiacchi 1 Timothy Verstraeten 1 Diederik M. Roijers 1 2 Ann Nowé 1 Hado van Hasselt 3

Abstract
Learning to coordinate between multiple agents
is an important problem in many reinforcement
learning problems. Key to learning to coordi-
nate is exploiting loose couplings, i.e., condi-
tional independences between agents. In this
paper we study learning in repeated fully coop-
erative games, multi-agent multi-armed bandits
(MAMABs), in which the expected rewards can
be expressed as a coordination graph. We pro-
pose multi-agent upper confidence exploration
(MAUCE), a new algorithm for MAMABs that ex-
ploits loose couplings, which enables us to prove
a regret bound that is logarithmic in the number of
arm pulls and only linear in the number of agents.
We empirically compare MAUCE to sparse coop-
erative Q-learning, and a state-of-the-art combina-
torial bandit approach, and show that it performs
much better on a variety of settings, including
learning control policies for wind farms.

1. Introduction
Many decision problems can be phrased as coordination
problems of many artificial intelligent agents (Boutilier,
1996). Examples include robot soccer (Kok et al., 2003),
warehouse commissioning (Claes et al., 2017), and traffic
light control (Wiering, 2000). We consider the cooperative
case, where there is a single goal to be optimised. A naive
approach could be to consider a super agent that decides
on the actions of all agents involved, which could easily
result in an action space which is prohibitively large. How-
ever, many coordination tasks have loose couplings. This
means that the total reward to optimise can be decomposed
into a sum of local rewards that only depend on (possibly

1Dept. of Computer Science, Vrije Universiteit Brussel, Brus-
sels, Belgium 2Fac. of Science, Vrije Universiteit Amsterdam,
The Netherlands 3DeepMind, London, UK. Correspondence to:
Eugenio Bargiacchi <svalorzen@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

overlapping) subsets of agents. Then, each agent’s action
can only directly affects the rewards of few small subsets of
agents. Key to making coordination efficient is exploiting
such loose couplings.

For an example of such a coordination task, consider an
autonomously controlled wind farm in which each agent
represents a wind turbine that is able to adjust the alignment
of its blades to the wind (see Section 6.3). Each turbine
can maximize its own power output by aligning the blades
exactly perpendicular to the wind, but doing so may hinder
turbines that are behind it due to turbulence (Van Dijk et al.,
2016). It should be possible to do better through coordi-
nation. However, considering the full joint action over all
turbines leads to a high-dimensional action space, which
would be hard to optimise. Instead, we can see that this
problem is loosely coupled, by noting that the power output
of each turbine only directly depends on a small subset of
other turbines — the turbines upwind within a certain dis-
tance. This means that the total output can be phrased as a
sum of local rewards that depend on small subsets of agents.

In this paper, we formalize multi-agent multi-armed bandits
(MAMABs) and investigate how to balance exploration and
exploitation in the joint action taken by the agents, such
that the loss due to taking suboptimal joint actions during
learning is bounded. Building on the upper confidence
bound (UCB) framework (Auer et al., 2002) for single-agent
multi-armed bandits, we formulate a new algorithm that we
call multi-agent upper confidence exploration (MAUCE)
(Section 4). MAUCE balances exploitation and exploration
using local estimates and local upper confidence bounds.

We prove in Section 5 that MAUCE achieves a regret bound
that depends on the harmonic mean of the local upper con-
fidence bounds, rather than their sum, as we would get by
applying the combinatorial bandit framework (Cesa-Bianchi
& Lugosi, 2012; Chen et al., 2013). This leads to a regret
logarithmic in the number of arm-pulls and linear in the
number of agents. In contrast, the naive approach of con-
sidering the full joint action is exponential in the number
of agents. In Section 6 we compare empirically the perfor-
mance of MAUCE to other approaches from the literature,
and show that it achieves much less regret in various settings,
including wind farm control.

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

2. Related Work
Multi-agent reinforcement learning and planning with loose
couplings has mainly been studied in sequential problems
(Guestrin et al., 2002; Kok & Vlassis, 2006; De Hauwere
et al., 2010; Scharpff et al., 2016). In such sequential set-
tings however, the value function does not permit an ex-
act factorization. Therefore, only in the planning setting
(Scharpff et al., 2016), some guarantees can be provided.
For learning (Kok & Vlassis, 2006), the focus has been on
empirical performance. In this paper, we focus on MAMAB,
which permit an exact factorization of the value function.

This work is related to combinatorial bandits (Bubeck &
Cesa-Bianchi, 2012; Cesa-Bianchi & Lugosi, 2012; Gai
et al., 2012; Chen et al., 2013), in which sets of arms can be
pulled simultaneously. In our setting, these variables corre-
spond to the different agents, and similarly to the combinato-
rial bandit framework, the action space grows exponentially
with the size of the sets of rewards. We consider a spe-
cific variant, called the semi-bandit problem (Audibert et al.,
2011), in which local components of the global reward are
observable. Chen et al. (2013) considered this variant and
constructed an algorithm. However, that algorithm assumes
access to an (α, β)-oracle that provides a joint action that
outputs an α fraction of the optimal expected reward with
a certain probability β. Instead, we assume the availability
of a coordination graph, which is often a more reasonable
assumption in multi-agent settings.

3. Background
Before introducing our new algorithm, we first need to de-
fine our learning problem. This problem, the multi-agent
multi-armed bandit, is a repeated fully cooperative multi-
agent game. We first define the single-agent version of
our setting, and then add the multi-agent elements. The
single-agent version of our setting is commonly known as
the multi-armed bandit (MAB):
Definition 1. A single-agent multi-armed bandit (MAB)
(Thompson, 1933) is a tuple 〈A, F 〉 where

• A is a set of actions or arms, and
• F (a), called the reward function, is a random function

taking an arm, a ∈ A, as input. Specifically, for each
a ∈ A, F (a) is a random variable associated with
a probability distribution Pa : R → [0, 1] over real-
valued rewards r.

We refer to the mean reward of an arm as µa = EPa
[r] =∫∞

−∞ rPa(r)dr, and to the optimal reward as the mean re-
ward of the best arm µ∗ = maxa µa.

The goal of an agent interacting with a MAB is to minimize
the expected regret.
Definition 2. The expected cumulative regret of pulling

a sequence of arms for timestep t = 1 to the horizon T
(following the definition of Agrawal & Goyal, 2012), is

E

[
T∑
t=1

µ∗ − µa(t)

]
,

where a(t) is the arm pulled at time t, and na(t) is the
number of times arm a is pulled until timestep t.

In a multi-agent multi-armed bandit (MAMAB) there are
multiple agents, and the rewards are factored:

Definition 3. A multi-agent multi-armed bandit (MAB) is a
tuple 〈A,D, F 〉 where

• D is the set of m enumerated agents,
• A = A1 × · · · × Am is a set of joint actions, which is

the Cartesian product of the sets of individual actions,
Ai, for each of the m agents in D, and

• F (a), called the global reward function, is a random
function taking a joint action, a ∈ A, as input, but
with added structure. Specifically, there are ρ possibly
overlapping subsets of agents, and the global reward
is decomposed into ρ local noisy reward functions:
F (a) =

∑ρ
e=1 f

e(ae) where fe(ae) ∈ [0, remax]. A
local function fe only depends on the joint action ae

of the subset De of agents.

We refer to the mean reward of a joint action as µa, which
in turn is factorized into the same local reward components
as F (a): µa =

∑ρ
e=1 µ(ae). For simplicity, we refer to an

agent i by its index.

µa thus maps joint actions to real-valued expected rewards
via real-valued local expected rewards, i.e., it is a coordi-
nation graph (CoG) (Guestrin et al., 2002; Kok & Vlassis,
2006). When µa and all its components are known, it can
be used to extract the optimal reward µ∗. A naive way to
do so would be to ‘flatten’ the CoG, i.e., enumerate all joint
actions, compute their associated mean reward, and then
maximize. However, this is typically infeasible, as the num-
ber of joint actions, A ≡ |A|, is exponential in the number
of agents. For instance, if each agent has two actions, then
A = 2m. Therefore, extracting the optimal reward and asso-
ciated actions is typically done via algorithms like variable
elimination (VE). In VE, agents are eliminated from the
CoG sequentially, thus solving the maximization problem
as a series of local subproblems: one per agent. When an
agent is eliminated, VE computes its best responses to all
possible actions of its neighbors, i.e., the agents with which
it shares a local reward function. The local values of these
best responses are then used to create a new local mean
reward, replacing those to which the eliminated agent was
connected. This exploits the graphical structure resulting
from the factorization, and the size of the local subproblems
depends only on the induced width, i.e., how many agents

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

Algorithm 1 MAUCE
1: Input: An MAMAB with a factorized reward function,
F (a) =

∑ρ
e=1 f

e(ae), a time horizon T
2: Initialize µ̂e(ae) and ne(ae) to zero.
3: for i = 1 to T do
4: at = arg maxa µ̂t(a) + ct(a) where,

µ̂et (a) =
∑ρ
e=1 µ̂t(a

e) and,

ct(a) =
√

1
2 (
∑ρ
e=1 n

e
t (a

e)−1(remax)2) log(tA)

5: rt=
∑ρ
e=1r

e
t (a

e) (execute a, obtain local rewards)
6: Update µ̂et (a

e) using ret (a
e) for all ae ⊂ at

7: Increment net (a
e) by 1 for all ae ⊂ at

8: end for

the eliminated agent shares a local reward function with at
the time of its elimination. When the coordination graph is
sparse, i.e., agents are only involved in a small number of
local reward functions, the induced width is typically much
smaller than the size of the joint action space, making the
maximization problem tractable.

When we are not simply maximizing over the joint actions
to extract the optimal reward, but also need to explore to
learn what the values of the mean rewards are, the situ-
ation becomes more complex. Again, we could ‘flatten’
the MAMAB by treating each joint action as a separate
arm in a single-agent MAB, but this quickly leads to too
many arms to be able to learn effectively with popular algo-
rithms such as UCB (Auer et al., 2002) of which the regret
bounds depend on the number of arms. Furthermore, just
adding the standard exploration bonuses to each of the local
mean rewards leads to over-exploration, as we will show
experimentally in Section 6. Instead, we propose to treat
exploration and exploitation as separate objectives during
a VE-like scheme, and taking inspiration from the multi-
objective literature (Roijers et al., 2015), define a new VE-
like subroutine, that allows us to define a MAUCE (Section
4) for which we can prove a much tighter regret-bound.

4. Multi-Agent Upper Confidence
Exploration

In this section we propose our new algorithm for MAM-
ABs: Multi-Agent Upper Confidence Exploration (MAUCE)
(Algorithm 1).

MAUCE executes a joint action at every timestep that maxi-
mizes the estimated mean reward for a given factorization
of the reward function, µ̂(a), plus an exploration bonus,
ct(a), that is computed using the same factorization. To do
so, it keeps mean estimates of local rewards µ̂e(ae), and
local counts net (a

e) for each subset of agents. These local
estimates depend only on the subset of actions ae ⊂ a for
this group of agents De ⊂ D. Not all joint actions have to

be selected often, or even at all. Note that the counts net (a
e)

used to compute the bonus for an action a can change over
time, even if the joint action a has never been selected, be-
cause MAUCE observes and uses the local rewards, ret (a

e).
This enables the algorithm to exploit the graphical structure
to compute tighter exploration bonuses while guaranteeing
a tight regret bound. Despite not guaranteeing to explore all
joint actions, the algorithm achieves guaranteed logarithmic
regret. The proof for this regret bound is given in Section 5.

Besides the local counts, the exploration bonus also depends
on the maximum value of the local rewards remax, the time
index t, and A. We note that A is exponential in the number
of agents. Contrary to single-agent MABs, it is not trivial
to maximize over µ̂(a) + ct(a), as we need to maximize
over a A efficiently, and ct(a) is a non-linear function in
the local counts net (a

e). Hence, MAUCE requires a special
algorithm to perform this maximization.

4.1. Maximizing µ̂(a) + c(a)

We observe that we can express the estimated mean
as the sum of local estimated means, and that ct(a)
can be expressed as a function over the inverse counts:
y(
∑ρ
e=1 n

e
t (a

e)−1(remax)2). Hence, when we write down
the local estimates as two-element vectors: an estimated
mean component and a weighted inverse counts component,

ve(ae) = (µ̂e(ae), net (a
e)−1(remax)2), (1)

we can express the mean plus exploration bonus as a func-
tion applied to the sum of these vectors:

zt(v(a)) = µ̂(a) + ct(a) = v[1] +

√
1

2
v[2] log(tA), (2)

where

v(a) =

ρ∑
e=1

ve(ae). (3)

Vector formulations of reward, as those of Equations 1–3,
are often used in the multi-objective decision making litera-
ture (Roijers & Whiteson, 2017). Consider multi-objective
variable elimination (MOVE) (Rollón & Larrosa, 2006; Roi-
jers et al., 2015), a multi-objective framework based on
variable elimination that is able to handle vectors. Instead
of single best responses for eliminated agents, MOVE pro-
duces sets of vectors that are possibly optimal as intermedi-
ate results. At each agent elimination, MOVE computes all
possible (local) value vectors for the subproblem of elimi-
nating the agent i, and prunes away those that are locally
dominated. After MOVE eliminates the last agent it outputs
a possibly very large set of possibly optimal vectors, e.g., a
Pareto front or convex coverage set.

In contrast to MOVE, we only want to output a single vector,
i.e., the one that maximizes zt (Equation 2). To do this we

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

tighten MOVE’s simple domination pruning by introducing
lower and upper bounds on the exploration part of the vector.
This results in an algorithm in which the number of vectors
in the intermediate solution sets steeply decreases in the
last agent eliminations (in contrast to MOVE, in which the
intermediate sets typically continue to grow in size). We
call this algorithm upper confidence variable elimination
(UCVE).

First, we define the input of UCVE. Specifically, to be able
to work with sets of vectors as intermediate results, we
first reformulate the problem of finding the optimal joint
action in these terms. Specifically, we define the input
to UCVE as a set F of local upper confidence vector set
functions (UCVSFs). For each fe of F (a), F contains an
identically scoped UCVSF ue. Each ue initially contains a
singleton set, ue(ae) = {ve(ae)}, where ve(ae) is defined
as in Equation 1. Eliminating an agent i, is performed by
replacing all ue(ae) which have i in scope, i.e., i ∈ De,
by a new function that incorporates the possibly optimal
responses of i. These possibly optimal responses are again
vectors in the form of Equation 1.

Algorithm 2 UCVE(F)

Input : A set of local upper confidence vector set functions
F and an elimination order q (a queue with all agents)
Output : An optimal joint action, a∗

1: while q is not empty do
2: i← q.dequeue()
3: Fi ← the subset of UCVSFs inF that have i in scope
4: xu, xl ← compute upper and lower bounds on the

exploration part of the vectors for the remaining fac-
tors in F \ Fi

5: unew(·)← a new UCVSF
6: for all ae−i ∈ ADe\{i} do
7: V ←

⋃
ai∈Ai

⊕
ue∈Fi

ue(ae−i × {ai})

8: unew(ae−i)←prune(V, xu, xl)
9: end for

10: F ← F \ Fi ∪ {unew}
11: end while
12: u← retrieve final factor from F
13: return the optimal joint action from u

UCVE is provided in Algorithm 2. Note that we only de-
scribe what is traditionally known as the forward pass of the
variable elimination scheme. This is because to retrieve the
optimal joint action, we make use of the tagging scheme of
MOVE (Roijers et al., 2015), where vectors are tagged with
the appropriate action of an agent during its elimination.

UCVE eliminates all agents in a predetermined order, q,
in the main loop (line 1–11). On line 2 the next agent i is

popped off the queue, and on line 3 the factors that have i in
scope, Fi are collected. The functions inFi will be replaced
in F by a new UCVSF, unew, incorporating the possible
best responses to every possible local joint action of the
neighbors of i. This new UCVSF has all the neighboring
agents De \ {i} of agent i in scope.

First, all possible vectors V that can be made with the
UCVSFs in Fi are computed (on line 7), across all actions
of i, for a given ae−i:

V =
⋃

ai∈Ai

⊕
ue∈Fi

ue(ae−i × {ai}),

where Ai is the action space of agent i, and the cross-sum
operator A ⊕ B is defined as A ⊕ B = {a + b : a ∈
A ∧ b ∈ B}. Note that the resulting actions always include
the appropriate actions ai (which is under the union) and
the appropriate actions from ae−i. After V is computed, the
vectors in V that cannot lead to an optimal joint action need
to be pruned.

Each vector in V consists of an estimated mean and a
weighted inverse counts part that will lead to the exploration
bonus. Because the weighted inverse counts cannot be lin-
early added to the estimated mean, we cannot a priori tell
whether a vector v ∈ V is better than another vector v′ ∈ V
when v[1] > v′[1] but v[2] < v′[2]. We thus define a prun-
ing operator that satisfies the two conditions necessary for
correctness in a multi-objective variable elimination-scheme
(Roijers, 2016), i.e., (1) no excess values are kept, and (2)
no unnecessary values are returned after the last agent elim-
ination. We compute an upper and a lower bound on the ex-
ploration bonus for the remaining functions in F \Fi, using
the sums of the maximum, resp. minimum, values for the ex-
ploration part, xu =

∑
ue∈F\Fi

maxae maxv∈ue(ae) v[2]

and xl =
∑
ue∈F\Fi

minae minv∈ue(ae) v[2]. Specifically,
a vector v ∈ V cannot contribute to the optimal value if
there is another vector v′ ∈ V such that

v[1]+

√
1

2
(v[2]+xu) log(tA)<v′[1]+

√
1

2
(v′[2]+xl) log(tA)

Hence, prune removes those candidate local upper confi-
dence vectors that cannot contribute to finding the maximal
mean plus exploration bonus. This immediately satisfies
correctness condition (1), as it follows from the definition
of upper and lower bounds.

After all agents have been eliminated, there is only one
UCVSF left, containing a single local upper confidence vec-
tor. UCVE retrieves the optimal vector— which maximizes
the µ̂(a) + ct(a) —and the associated joint action, at, from
the final UCVSF, satisfying correctness condition 2. We
thus have defined an efficient algorithm that correctly out-
puts the joint action that maximizes µ̂(a) + ct(a), and can
therefore be used to select joint actions inside of MAUCE.

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

5. Linear Regret Bound for Collaborative
Multi-Agent Settings

The efficiency of our method is achieved by exploiting local-
ized structures within the global reward. If there are no such
structures, then a worst-case regret of O(A log T) can be
achieved by employing an upper-confidence bound (UCB)
algorithm (Auer et al., 2002; Auer & Ortner, 2010). As A
grows exponentially with the number of agents, the global
action space is simply too large to make this bound of practi-
cal use. However, we show that when the global reward can
be decomposed into local reward functions over subsets of
agents, the regret obtained when using our method becomes
much smaller. In fact, when the local rewards all have the
same range, the regret of our method becomes linear in the
number of agents.

Assume there are ρ subsets of agents, called groups, and
that there is a decomposition of the global reward F (a) =∑ρ
e=1 f

e(ae) where fe(ae) ∈ [0, remax]. W.l.o.g., let us
also consider non-identical groups and that

∑ρ
e=1 r

e
max = 1.

The local function fe only depends on the actions of a
group De. We maintain the sample mean reward µ̂et (a

e)
and number of pulls net (a

e) for each local joint action ae

taken by group De at time t. Finally, we define the gap
between the true expected rewards of the optimal action a∗
and action a to be ∆(a) = E [F (a∗)]− E [F (a)].

Theorem 1. If at each time t we choose at such that

at = arg max
a

wt(a)

= arg max
a

µ̂t(a) + ct(a) ,

with

µ̂t(a) =

ρ∑
e=1

µ̂et (a
e) ,

ct(a) =

√√√√1

2

(
ρ∑
e=1

net (a
e)−1(remax)2

)
log(tA) ,

then the expected global regret is bounded by

E

[
T∑
t=1

∆(at)

]
≤

2N
∑ρ
e=1(remax)2 log(TA)

mina ∆(a)2
+log T+1 ,

where N ≡
∑ρ
e=1

∏
i∈De Ai is the total number of local

joint actions and Ai = |Ai|.

Proof. Let Ct(a) be the event that ∆(a) > 2ct(a) holds
and Ct(a) its negation. By the law of the excluded middle,
we can then write

E [∆(at)] = E [∆(at) |Ct(at)]P (Ct(at))

+ E
[
∆(at)

∣∣Ct(at)]P (Ct(at))

which implies

E

[
T∑
t=1

∆(at)

]
≤

T∑
t=1

P (Ct(at))

+ E
[
∆(at) | Ct(at)

]
E
[
I
{
Ct(at)

}]
where I{·} is the indicator function. We first look at all
time steps on which Ct(at) holds. Specifically, we bound
the probability that this event occurs. Using the law of total
probability and chain rule, we can derive

P (Ct(at)) ≤
∑
a∈A

P (a = at |Ct(a)) (4)

By definition, action at maximizes the upper bound wt(·).
Therefore,

P (a = at | Ct(a))

= P (wt(a) = wt(at) |Ct(a))

≤ P (wt(a) ≥ wt(a∗) |Ct(a))

= P (µ̂t(a)− µ̂t(a∗) ≥ ct(a∗)− ct(a) |Ct(a))

≤ exp
(
− 2(∆(a) + ct(a∗)− ct(a))2∑ρ

e=1(remax)2 (net (a
e)−1 + net (a

e
∗)
−1)

)
In the last step, we used Hoeffding’s inequality. This is pos-
sible, as µ̂t(a) is a sum of i.i.d. random variables bounded
within the interval

[
0,

remax

ne
t (a

e)

]
. We now apply condition

Ct(a) such that ∆(a) > 2ct(a) and derive

P (a = at | Ct(a))

≤ exp
(
− 2(ct(a) + ct(a∗))

2∑ρ
e=1(remax)2 (net (a

e)−1 + net (a
e
∗)
−1)

)
≤ exp

(
− 2ct(a)2 + 2ct(a∗)

2∑ρ
e=1(remax)2 (net (a

e)−1 + net (a
e
∗)
−1)

)
= exp (− log(tA))

≤ (tA)−1

Using (4), we can conclude

T∑
t=1

P (Ct(at)) ≤
T∑
t=1

(tA)−1A ≤ log T + 1 (5)

where for the last step we used
∑T
t=1 t

−1 < log T + γ +
3

6T+2 < log T + 1 (Chen & Qi, 2003), where γ is Euler’s
constant.

Now, we look at the time steps where Ct(at) holds. Either
at = a∗ and ∆(at) = 0, or

∆(at) ≤ 2ct(at)

∆(at)
2 ≤ 2 log(tA)

ρ∑
e=1

(remax)2(net (a
e
t))
−1

1 ≤ 2 log(tA)

mine net (a
e
t)

∑ρ
e=1(remax)2

mina6=a∗ ∆(a)2

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

min
e
net (a

e
t) ≤ 2 log(TA)

∑ρ
e=1(remax)2

mina6=a∗ ∆(a)2
(6)

Note that as there are at most N =
∑ρ
e=1

∏
i∈De Ai

local joint actions, the left-hand side will increase ev-
ery at most N time steps. Since the right-hand side is
fixed and does not depend on t, (6) can only be true on
at most 2N log(TA)

∑ρ
e=1(remax)2/mina6=a∗ ∆(a)2 dif-

ferent time steps. This implies that
T∑
t=1

E
[
∆(at) | Ct(at)

]
E
[
I
{
Ct(at)

}]
≤ E

[
T∑
t=1

I
{
Ct(at) ∧ at 6= a∗

}]

≤
2N log(TA)

∑ρ
e=1(remax)2

mina6=a∗ ∆(a)2

Together with (4) and (5), this implies

E

[
T∑
t=1

∆(at)

]
≤

2N log(TA)
∑ρ
e=1(remax)2

mina6=a∗ ∆(a)2
+ log T + 1

Corollary 1. If Ai ≤ k for all agents i, and if |De| ≤ d for
all groups De, then

E

[
T∑
t=1

∆(at)

]
≤ 2ρkd (log T +m log k)

mina6=a∗ ∆(a)2
+ log T + 1 .

Proof.
∑ρ
e=1 r

e
max = 1 implies

∑ρ
e=1(remax)2 ≤ 1. Ad-

ditionally, logA =
∑m
i=1 logAi ≤ m log k. Finally,

N =
∑ρ
e=1

∏
i∈De Ai ≤ ρkd.

The important thing to note is that the given regret bound
is linear in the number of agents m and in the number of
functions ρ, which implies — since ρ ≤

(
m
d

)
< md — that

it is polynomial in m, with degree at most d+ 1. This is a
huge improvement over the naive ‘flattened’ regret bound,
which is exponential in the number of agents.
Corollary 2. If, in addition to the assumptions in Corollary
1, each local function has the same range such that remax =
ρ−1, then

E

[
T∑
t=1

∆(at)

]
≤ 2kd (log T +m log k)

mina6=a∗ ∆(a)2
+ log T + 1 .

Proof. If remax = ρ−1 for each e, then
∑ρ
e=1(remax)2 =

ρ−1 and therefore N
∑ρ
e=1(remax)2 = kd.

Note that this implies that under the assumption that each
local function has the same range, 1) the regret no longer
depends on ρ and 2) the regret is linear in the number of
agents.

6. Experiments
In order to test the performance of MAUCE, and compare
it to competing approaches, we tested it on three different
settings of increasing complexity, which are described be-
low. We compared our results against several baselines: a
uniformly random action selector, Sparse Cooperative Q-
Learning (SCQL) (Kok & Vlassis, 2006), and Learning with
Linear Rewards (LLR) (Gai et al., 2012).

SCQL is a multi-agent Q-Learning based algorithm that can
leverage domain knowledge about agents’ interdependen-
cies to lower its sample requirements. SCQL was originally
proposed in the context of multi-agent MDPs, but does ap-
ply to MAMABs. To allow for exploration we use both
optimistic initialization and an ε-greedy policy, with the ε
parameter linearly decreasing over time: ε = 0.05− 10−5t.

LLR is a UCB algorithm from the combinatorial bandit
literature that applies most to MAMABs, as it assumes that
the rewards are a linear combination of what we refer to
as local reward functions. Contrary to MAUCE however,
it computes upper confidence bounds on the local reward
components separately, before summing them, rather than
our vector-based formulation of Equations 1–3. LLR is
parameterless, aside from the knowledge of which agents
depend on each other.

In all experiments the rewards were normalized so that the
maximum possible regret per timestep is one. The max-
imum possible reward was computed by directly solving
non-stochastic versions of the problems with Variable Elim-
ination (or brute-force enumeration). Reward normalization
enables directly comparing the output results to see how
each approach performs across different settings.

We now describe each of our problem settings: the 0101-
Chain, which is simple but illustrates the fast learning prop-
erties of MAUCE; Gem Mining, which is real-world in-
spired and adapted from an established benchmark multi-
objective coordination graph; and Wind Farm, a real-world
coordination problem, in which we connect our learning
problem to a state-of-the-art wind farm simulator.

All the code needed to run the experiments can be
found at https://bitbucket.org/Svalorzen/
mauce-experiments/src/master/

6.1. 0101-Chain

The 0101-Chain is a simple MAMAB, with a known optimal
action. The problem consists of n agents, and n− 1 local
reward functions. Each local reward function f i(ai, ai+1)
is connected to the agent with the same index, i, and to i+1.

The optimal action in the 0101-Chain problem is ai = 0 if i
is even, and ai = 1 is i is odd. The reward tables for each
local group are given in Table 1.

https://bitbucket.org/Svalorzen/mauce-experiments/src/master/
https://bitbucket.org/Svalorzen/mauce-experiments/src/master/

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

i is even ai+1 = 0 ai+1 = 1

ai = 0 f(suc;0.75)
n−1

1
n−1

ai = 1 f(suc;0.25)
n−1

f(suc;0.9)
n−1

Table 1. The reward table for 0101-Chain. n is the number of
agents in the problem. f(suc; p) is a Bernoulli distribution with
success probability p, i.e., f(1; p) = p and f(0; p) = 1−p. The
table for odd agents is the same but transposed.

6.2. Gem Mining

village
mine

Figure 1. Gem Mining example. Each village represents an agent,
while the mines represent the local reward functions.

Our Gem Mining problem is adapted from the Mining
Day problem from (Roijers et al., 2015), which is a multi-
objective coordination graph benchmark problem.

In Gem Mining, a mining company mines gems from a set
of mines (local reward functions) located in the mountains
(see Figure 1). The mine workers live in villages at the foot
of the mountains. The company has one van in each village
(agents) for transporting workers and must determine every
morning to which mine each van should go (actions), but
vans can only travel to nearby mines (graph connectivity).
Workers are more efficient when there are more workers
at a mine: the probability of finding a gem in a mine is
x ·1.03w−1, where x is the base probability of finding a gem
in a mine and w is the number of workers at the mine. To
generate an instance with v villages (agents), we randomly
assign 1-5 workers to each village and connect it to 2–4
mines. Each village is only connected to mines with a
greater or equal index, i.e., if village i is connected to m
mines, it is connected to mines i to i + m − 1. The last
village is connected to 4 mines and thus the number of mines
is v + 3.

6.3. Wind Farm

In our wind farm experiment, we used a state-of-the-art sim-
ulator (Van Dijk et al., 2016) to mimic the energy production
of a series of wind turbines when exposed to a global in-
coming wind vector. In the real world, turbines can often
be oriented at certain angles to maximize production. This
is a non-trivial control task, as the turbulence caused by
a turbine will negatively affect turbines downwind. The

W

1 2
3

4 5

6
7 8

9

a0

(1,2,3)
(3)
(3,4,5,6)
(6)
(6,7,8,9)
(9)
(9,0,a)

Figure 2. Wind farm setup. The incoming wind is denoted by
an arrow. Each local group is denoted by a different color and
line type. Groups are listed explicitly on the left. Note the three
single-agent groups on the left to handle per-agent rewards.

direction of this generated turbulence depends on the angle
that the turbine has w.r.t. the incoming wind vector.

We setup our simulated wind farm using 11 turbines (see
Figure 2). Each turbine has a choice between three different
actions (angles) that it can turn to. The last 4 turbines
downwind (2, 5, 8, and a) are set directly against the wind
and are not controlled by agents, as they cannot generate
turbulence that can impact power production. However, the
remaining 7 turbines do influence the rest of the farm, and
so must cooperate to maximize power production.

We vary the wind speed in the simulator at each timestep,
following a truncated normal distribution with mean 8.1 m/s.
The overall reward is normalized to a [0, 1] interval using
the maximum possible overall reward at the highest wind
strength and the minimum possible reward per turbine at
the minimum wind strength. While this makes it impossible
to compute the true regret, as choosing the optimal action
does not result in a 0 regret in expectation, it avoids having
to calculate the true expected reward for all actions in this
scenario, which is non-trivial.

Differently from the previous experiments, rewards in this
settings are obtained per-agent from the simulator rather
than per-group. Thus, we use single-agent local groups to
prevent dependencies between the reward functions of each
group. The reward for agents in more than one group is
given solely to their single-agent group, and none to the
others (rather than splitting).

6.4. Results

We tested the performance of MAUCE on the higly struc-
tured 0101-Chain problem with 11 agents for 10,000 joint
action executions, and compare its performance against ran-
dom, SCQL and LLR. The results (Figure 3) indicate that
both SCQL and MAUCE can learn effectively, far outclass-
ing random joint action selection and LLR.

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

(a) 0101-Chain, All Algorithms (b) 0101-Ch., MAUCE&SCQL (c) Gem Mining (d) Wind Farm

Figure 3. Cumulative regret for all experiments as a function of the number of actions executed: a) 0101-Chain averaged over 100 runs, b)
Same as 3(a), only SCQL and MAUCE, c) Gem Mining, averaged over 5 random setups, 100 runs per setup, and d) Wind Farm, 10 runs.

When comparing MAUCE and SCQL (Figure 3(b)),
MAUCE achieves considerably less regret than SCQL. This
is because MAUCE’s exploration strategy is based on the
aggregation of local exploration bounds, while SCQL uses
an ε-greedy exploration strategy. On the other hand, SCQL
does learn the optimal joint action quickly, thanks to op-
timistic initialization and this aggressive exploration strat-
egy. We note that after a while, we decreased ε to 0, i.e.,
only exploit, making the regret graph a flat line from that
point onward. We note that the annealing of ε needed to be
fine-tuned. We thus conclude that MAUCE is an effective
algorithm that can exploit the graphical structure, leading to
superior performance for this highly-structured problem.

We then tested MAUCE against the other algorithms on ran-
domly generated Gem Mining instances with 5 villages and
8 mines, to compare performances on a more challenging
problem. Figure 3(c) represents the average regret over mul-
tiple different scenarios. We observe that, while SCQL and
LLR are all able to achieve sublinear regret curves, MAUCE
handles the exploration-exploitation tradeoffs best, resulting
in the lowest regret over time.

Finally, to test the performance of MAUCE on a real-world
problem, we run the algorithms on a Wind Farm instance
(Figure 3(d)). Due to the high computational costs of run-
ning the simulator, we perform only ten runs. As explained
before, the measure shown is not an exact form of regret, as
the optimal action will not result in a 0 regret in expectation.

The MAUCE algorithm once again performs best, with less
cumulative regret than both LLR and SCQL. The LLR algo-
rithm also doesn’t seem to achieve any significant learning
with respect to the random policy. Note that MAUCE keeps
learning and fine tuning this policy over the whole duration
of the experiment, which allows it to increasingly achieve
lower regret than SCQL. At timestep 10000, the difference
between the two is 43.258, while at timestep 40000 it is
81.373. It is important to note that SCQL could probably be
made to perform better by finely tuning the initialization val-
ues and epsilon updates, but this would take significant hu-
man time and repetitive trials. MAUCE can instead directly

manage the exploration-exploitation trade-off by using its
local bounds for each local joint action.

We thus conclude that MAUCE is an effective algorithm for
trading off exploration versus exploitation in MAMABs, and
has superior performance w.r.t. the alternative algorithms.

7. Conclusion
In this paper, we proposed the multi-agent upper con-
fidence exploration (MAUCE) algorithm for multi-agent
multi-armed bandits (MAMABs). While learning, MAUCE
leverages the graphical properties of the MAMAB by treat-
ing as separate objectives both exploration, expressed as
a function of the sum over weighted inverse local counts,
and exploitation, i.e., the sum over estimated mean local
rewards. Via a subroutine, upper confidence variable elimi-
nation (UCVE), that can handle these objectives, MAUCE
selects the action that best balances exploration and exploita-
tion according to the joint overall mean reward plus (upper
confidence) exploration bound. We have proven a regret
bound for MAUCE that is only linear in the number of
agents, rather than exponential, as it would be if we were
to flatten the MAMAB to a single-agent MAB. Further-
more, the regret bound is logarithmic in the number of arm
pulls. We compared MAUCE empirically to state-of-the-art
algorithms in multi-agent reinforcement learning and com-
binatorial bandits, and have shown that MAUCE achieves
much lower empirical regret than these approaches.

We note that the range parameters remax for MAUCE, which
represent the difference between the maximum and min-
imum possible reward for each local joint action, can be
difficult to guess in advance when the problem is not exactly
known, as in the Wind Farm experiments. One way to miti-
gate this, could be to estimate them from the coordination
graph of expected mean rewards learnt while running the
algorithm, rather than running preliminary experiments as
we did for the Wind Farm. We will test this in future work.
Furthermore, we aim to build on MAUCE to achieve quality
guarantees for reinforcement learning in multi-agent MDPs.

Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems

Acknowledgements

The first author was supported by Flanders Innovation &
Entrepreneurship (VLAIO), SBO project 140047: Stable
MultI-agent LEarnIng for neTworks (SMILE-IT), second
author was supported by an FWO PhD grant (Fonds Weten-
schappelijk Onderzoek - Vlaanderen), third author was a
Postdoctoral Fellow with the FWO (grant #12J0617N).

References
Agrawal, S. and Goyal, N. Analysis of Thompson sampling

for the multi-armed bandit problem. In COLT, pp. 39–1,
2012.

Audibert, J.-Y., Bubeck, S., and Lugosi, G. Minimax poli-
cies for combinatorial prediction games. In COLT, vol-
ume 19, pp. 107–132, 2011.

Auer, P. and Ortner, R. UCB revisited: Improved regret
bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Boutilier, C. Planning, learning and coordination in multia-
gent decision processes. In TARK 1996: Proceedings of
the 6th conference on Theoretical aspects of rationality
and knowledge, pp. 195–210, 1996.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. arXiv
preprint:1204.5721, 2012.

Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
Journal of Computer and System Sciences, 78(5):1404–
1422, 2012.

Chen, C.-P. and Qi, F. The best lower and upper bounds of
harmonic sequence. RGMIA research report collection, 6
(2), 2003.

Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi-
armed bandit: General framework, results and applica-
tions. In Proceedings of the 30th international conference
on machine learning, pp. 151–159, 2013.

Claes, D., Oliehoek, F., Baier, H., and Tuyls, K. Decen-
tralised online planning for multi-robot warehouse com-
missioning. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pp. 492–
500. International Foundation for Autonomous Agents
and Multiagent Systems, 2017.

De Hauwere, Y.-M., Vrancx, P., and Nowé, A. Learn-
ing multi-agent state space representations. In Proceed-
ings of the 9th International Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’10, pp. 715–
722, 2010.

Gai, Y., Krishnamachari, B., and Jain, R. Combinatorial net-
work optimization with unknown variables: Multi-armed
bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking (TON), 20(5):
1466–1478, 2012.

Guestrin, C., Koller, D., and Parr, R. Multiagent planning
with factored MDPs. In NIPS 2002: Advances in Neu-
ral Information Processing Systems 15, pp. 1523–1530,
2002.

Kok, J. and Vlassis, N. Collaborative multiagent reinforce-
ment learning by payoff propagation. Journal of Machine
Learning Research, 7:1789–1828, December 2006.

Kok, J. R., Spaan, M. T. J., Vlassis, N., et al. Multi-robot
decision making using coordination graphs. In Proceed-
ings of the 11th International Conference on Advanced
Robotics, ICAR, volume 3, pp. 1124–1129, 2003.

Roijers, D., Whiteson, S., and Oliehoek, F. Computing con-
vex coverage sets for faster multi-objective coordination.
Journal of Artificial Intelligence Research, 52:399–443,
2015.

Roijers, D. M. Multi-Objective Decision-Theoretic Plan-
ning. PhD thesis, University of Amsterdam, 2016.

Roijers, D. M. and Whiteson, S. Multi-objective decision
making. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 11(1):1–129, 2017.

Rollón, E. and Larrosa, J. Bucket elimination for multiob-
jective optimization problems. Journal of Heuristics, 12:
307–328, 2006.

Scharpff, J., Roijers, D. M., Oliehoek, F. A., Spaan, M.,
and de Weerdt, M. M. Solving transition-independent
multi-agent MDPs with sparse interactions. In AAAI16:
Proceedings of the 30th AAAI Conference on Artificial
Intelligence, 2016.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.

Van Dijk, M. T., Wingerden, J. W., Ashuri, T., Li, Y., and
Rotea, M. Yaw-misalignment and its impact on wind
turbine loads and wind farm power output. Journal of
Physics: Conference Series, 753(6), 2016.

Wiering, M. Multi-agent reinforcement learning for traffic
light control. In Machine Learning: Proceedings of the
Seventeenth International Conference (ICML’2000), pp.
1151–1158, 2000.

