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Abstract
The ability to transfer skills across tasks has the
potential to scale up reinforcement learning (RL)
agents to environments currently out of reach. Re-
cently, a framework based on two ideas, successor
features (SFs) and generalised policy improve-
ment (GPI), has been introduced as a principled
way of transferring skills. In this paper we extend
the SF&GPI framework in two ways. One of the
basic assumptions underlying the original formu-
lation of SF&GPI is that rewards for all tasks of
interest can be computed as linear combinations
of a fixed set of features. We relax this constraint
and show that the theoretical guarantees support-
ing the framework can be extended to any set of
tasks that only differ in the reward function. Our
second contribution is to show that one can use
the reward functions themselves as features for
future tasks, without any loss of expressiveness,
thus removing the need to specify a set of features
beforehand. This makes it possible to combine
SF&GPI with deep learning in a more stable way.
We empirically verify this claim on a complex
3D environment where observations are images
from a first-person perspective. We show that the
transfer promoted by SF&GPI leads to very good
policies on unseen tasks almost instantaneously.
We also describe how to learn policies specialised
to the new tasks in a way that allows them to
be added to the agent’s set of skills, and thus be
reused in the future.

1. Introduction
In recent years reinforcement learning (RL) has undergone a
major change in terms of the scale of its applications: from
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relatively small and well-controlled benchmarks to problems
designed to challenge humans—who are now consistently
outperformed by artificial agents in domains considered out
of reach only a few years ago (Mnih et al., 2015; Bowling
et al., 2015; Silver et al., 2016; 2017).

At the core of this shift has been deep learning, a ma-
chine learning paradigm that recently attracted a lot of at-
tention due to impressive accomplishments across many
areas (Goodfellow et al., 2016). Despite the successes
achieved by the combination of deep learning and RL,
dubbed “deep RL”, the agents’s basic mechanics have re-
mained essentially the same, with each problem tackled
as an isolated monolithic challenge. An alternative would
be for our agents to decompose a problem into smaller
sub-problems, or “tasks”, whose solutions can be reused
multiple times, in different scenarios. This ability of explic-
itly transferring skills to quickly adapt to new tasks could
lead to another leap in the scale of RL applications.

Recently, Barreto et al. (2017) proposed a framework for
transfer based on two ideas: generalised policy improvement
(GPI), a generalisation of the classic dynamic-programming
operation, and successor features (SFs), a representation
scheme that makes it possible to quickly evaluate a policy
across many tasks. The SF&GPI approach is appealing
because it allows transfer to take place between any two
tasks, regardless of their temporal order, and it integrates
almost seamlessly into the RL framework.

In this paper we extend Barreto et al.’s (2017) framework
in two ways. First, we argue that its applicability is broader
than initially shown. SF&GPI was designed for the scenario
where each task corresponds to a different reward function;
one of the basic assumptions in the original formulation was
that the rewards of all tasks can be computed as a linear
combination of a fixed set of features. We show that such an
assumption is not strictly necessary, and in fact it is possible
to have guarantees on the performance of the transferred
policy even on tasks that are not in the span of the features.

The realisation above adds some flexibility to the problem
of computing features that are useful for transfer. Our sec-
ond contribution is to show a simple way of addressing this



Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement

problem that can be easily combined with deep learning.
Specifically, by looking at the associated approximation
from a slightly different angle, we show that one can replace
the features with actual rewards. This makes it possible
to apply SF&GPI online at scale. In order to verify this
claim, we revisit one of Barreto et al.’s (2017) experiments
in a much more challenging format, replacing a fully ob-
servable 2-dimensional environment with a 3-dimensional
domain where observations are images from a first-person
perspective. We show that the transfer promoted by SF&
GPI leads to good policies on unseen tasks almost instanta-
neously. Furthermore, we show how to learn policies that
are specialised to the new tasks in a way that allows them to
be added to the agent’s ever-growing set of skills, a crucial
ability for continual learning (Thrun, 1996).

2. Background
In this section we present the background material that will
serve as a foundation for the rest of the paper.

2.1. Reinforcement learning

In RL an agent interacts with an environment and selects ac-
tions in order to maximise the expected amount of reward re-
ceived (Sutton & Barto, 1998). We model this scenario using
the formalism of Markov decision processes (MDPs, Puter-
man, 1994). An MDP is a tupleM ≡ (S,A, p, R, γ) whose
components are defined as follows. The sets S andA are the
state and action spaces, respectively. The function p defines
the dynamics of the MDP: specifically, p(·|s, a) gives the
next-state distribution upon taking action a in state s. The
random variable R(s, a, s′) determines the reward received
in the transition s a−→ s′; it is often convenient to consider
the expected value of this variable, r(s, a, s′). Finally, the
discount factor γ ∈ [0, 1) gives smaller weights to future re-
wards. Given an MDP, the goal is to maximise the expected
return Gt =

∑∞
i=0 γ

iRt+i, where Rt = R(St, At, St+1).
In order to do so the agent computes a policy π : S 7→ A.

A principled way to address the RL problem is to use meth-
ods derived from dynamic programming (DP) (Puterman,
1994). RL methods based on DP usually compute the action-
value function of a policy π, defined as:

Qπ(s, a) ≡ Eπ [Gt |St = s,At = a] , (1)

where Eπ[·] denotes expectation over the sequences of tran-
sitions induced by π. The computation of Qπ(s, a) is called
policy evaluation. Once a policy π has been evaluated, we
can compute a greedy policy π′(s) ∈ argmaxaQ

π(s, a)
that is guaranteed to perform at least as well as π, that is:
Qπ
′
(s, a) ≥ Qπ(s, a) for any (s, a) ∈ S × A. The com-

putation of π′ is referred to as policy improvement. The
alternation between policy evaluation and policy improve-
ment is at the core of many DP-based RL algorithms, which

usually carry out these steps only approximately.

As a convention, we will add a tilde to a symbol to indicate
that the associated quantity is an approximation; we will
then refer to the respective tunable parameters as θ. For
example, the agent computes an approximation Q̃π ≈ Qπ
by tuning θQ. In deep RL some of the approximations
computed by the agent, like Q̃π , are represented by complex
nonlinear approximators composed of many levels of nested
tunable functions; among these, the most popular models
are by far deep neural networks (Goodfellow et al., 2016).

In this paper we are interested in the problem of transfer
in RL (Taylor & Stone, 2009; Lazaric, 2012). Specifically,
we ask the question: given a set of MDPs that only differ
in their reward function, how can we leverage knowledge
gained in some MDPs to speed up the solution of others?

2.2. SF&GPI

Barreto et al. (2017) propose a framework to solve a re-
stricted version of the problem above. Specifically, they
restrict the scenario of interest to MDPs whose expected
one-step reward can be written as

r(s, a, s′) = φ(s, a, s′)>w, (2)

whereφ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈ Rd
are weights. In order to build some intuition, it helps to
think of φ(s, a, s′) as salient events that may be desirable
or undesirable to the agent. Based on (2) one can define an
environmentMφ(S,A, p, γ) as

Mφ ≡ {M(S,A, p, r, γ)|r(s, a, s′) = φ(s, a, s′)>w}, (3)

that is,Mφ is the set of MDPs induced by φ through all
possible instantiations of w. We call each M ∈Mφ a task.
Given a task Mi ∈ Mφ defined by wi ∈ Rd, we will use
Qπi to refer to the value function of π on Mi.

Barreto et al. (2017) propose SF&GPI as a way to pro-
mote transfer between tasks inMφ. As the name suggests,
GPI is a generalisation of the policy improvement step de-
scribed in Section 2.1. The difference is that in GPI the
improved policy is computed based on a set of value func-
tions rather than on a single one. Let Qπ1 , Qπ2 , ...Qπn

be the action-value functions of n policies defined on
a given MDP, and let Qmax = maxiQ

πi . If we de-
fine π(s) ← argmaxaQ

max(s, a) for all s ∈ S, then
Qπ(s, a) ≥ Qmax(s, a) for all (s, a) ∈ S × A. The re-
sult also extends to the scenario where we replace Qπi with
approximations Q̃πi , in which case the lower bound on
Qπ(s, a) gets looser with the approximation error, as in
approximate DP (Bertsekas & Tsitsiklis, 1996).

In the context of transfer, GPI makes it possible to leverage
knowledge accumulated over time, across multiple tasks, to
learn a new task faster. Suppose that the agent has access
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to n policies π1, π2, ..., πn. These can be arbitrary policies,
but for the sake of the argument let us assume they are so-
lutions for tasks M1, M2, ..., Mn. Suppose also that when
exposed to a new task Mn+1 ∈ Mφ the agent computes
Q
πi
n+1—the value functions of the policies πi under the re-

ward function induced by wn+1. In this case, applying GPI
to the set {Qπ1

n+1, Q
π2
n+1, ..., Q

πn
n+1} will result in a policy

that performs at least as well as any of the policies πi.

Clearly, the approach above is appealing only if we have a
way to quickly compute the value functions of the policies
πi on the task Mn+1. This is where SFs come in handy. SFs
make it possible to compute the value of a policy π on any
task Mi ∈Mφ by simply plugging in the representation the
vector wi defining the task. Specifically, if we substitute (2)
in (1) we have

Qπi (s, a) = Eπ
[∑∞

i=tγ
i−tφi+1 |St = s,At = a

]>
wi

≡ ψπ(s, a)>wi, (4)

where φt = φ(st, at, st+1) and ψπ(s, a) are the SFs of
(s, a) under policy π. As one can see, SFs decouple the
dynamics of the MDP Mi from its rewards (Dayan, 1993).
One benefit of doing so is that if we replace wi with wj in
(4) we immediately obtain the evaluation of π on task Mj .
It is also easy to show that

ψπ(s, a) = Eπ[φt+1 + γψπ(St+1, π(St+1)) |St = s,At = a],
(5)

that is, SFs satisfy a Bellman equation in which φi play the
role of rewards. Therefore, SFs can be learned using any
conventional RL method (Szepesvári, 2010).

The combination of SFs and GPI provides a general frame-
work for transfer in environments of the form (3). Sup-
pose that we have learned the functions Qπi

i using the
representation scheme (4). When exposed to the task de-
fined by rn+1(s, a, s′) = φ(s, a, s′)>wn+1, as long as we
have wn+1 we can immediately compute Qπi

n+1(s, a) =
ψπi (s, a)>wn+1. This reduces the computation of all
Q
πi
n+1 to the problem of determining wn+1, which can be

posed as a supervised learning problem whose objective is
to minimise some loss derived from (2). Once Qπi

n+1 have
been computed, we can apply GPI to derive a policy π that is
no worse, and possibly better, than π1, ..., πn on task Mn+1.

3. Extending the notion of environment
Barreto et al. (2017) focus on environments of the form (3).
In this paper we propose a more general notion of environ-
ment:

M(S,A, p, γ) ≡ {M(S,A, p, ·, γ)}. (6)

M contains all MDPs that share the same S, A, p, and γ,
regardless of whether their rewards can be computed as a
linear combination of the features φ. Clearly,M⊃Mφ.

We want to devise a transfer framework for environmentM.
Ideally this framework should have two properties. First, it
should be principled, in the sense that we should be able to
provide theoretical guarantees regarding the performance
of the transferred policies. Second, it should give rise to
simple methods that are applicable in practice, preferably in
combination with deep learning. Surprisingly, we can have
both of these properties by simply looking at SF&GPI from
a slightly different point of view, as we show next.

3.1. Guarantees on the extended environment

Barreto et al. (2017) provide theoretical guarantees on the
performance of SF&GPI applied to any task M ∈ Mφ.
In this section we show that it is in fact possible to derive
guarantees for any task inM. Our main result is below:

Proposition 1. Let M ∈ M and let Q
π∗j
i be the

action-value function of an optimal policy of Mj ∈ M
when executed in Mi ∈ M. Given approximations
{Q̃π1

i , Q̃
π2
i , ..., Q̃

πn
i } such that

∣∣∣Qπ∗ji (s, a)− Q̃πji (s, a)
∣∣∣ ≤

ε for all s ∈ S, a ∈ A, and j ∈ {1, 2, ..., n}, let

π(s) ∈ argmaxamaxjQ̃
πj
i (s, a). (7)

Then,

‖Q∗ −Qπ‖∞ ≤
2

1− γ

(
‖r − ri‖∞ + min

j
‖ri − rj‖∞ + ε

)
,

(8)
whereQ∗ is the optimal value function ofM ,Qπ is the value
function of π in M , and ‖f − g‖∞ = maxs,a |f(s, a) −
g(s, a)|.

The proof of Proposition 1 is in the supplementary material.
Our result provides guarantees on the performance of the
GPI policy (7) applied to an MDP M with arbitrary reward
function r(s, a). Note that, although the proposition does
not restrict any of the tasks to be inMφ, in order to compute
the GPI policy (7) we still need an efficient way of evaluat-
ing the policies πj on task Mi. As explained in Section 2,
one way to accomplish this is to assume that Mi and all Mj

appearing in the statement of the proposition belong toMφ;
this allows the use of SFs to quickly compute Q̃πji (s, a).

Let us thus take a closer look at Proposition 1 under the
assumption that all MDPs belong toMφ, except perhaps
for M . The proposition is based on a reference MDP Mi ∈
Mφ. If Mi = Mj for some j, the second term of (8) disap-
pears, and we end up with a lower bound on the performance
of a policy computed for Mi when executed in M . More
generally, one should think of Mi as the MDP inMφ that is
“closest” toM in some sense (so it may be thatMi 6= Mj for
all j). Specifically, if ri(s, a, s′) = φ(s, a, s′)>wi, we can
think of wi as the vector that provides the best approxima-
tion φ(s, a, s′)>wi ≈ r(s, a, s′) under some well-defined
criterion. The first term of (8) can thus be seen as the
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“distance” between M and Mφ, which suggests that the
performance of SF&GPI should degrade gracefully as we
move away from the original environmentMφ. In the par-
ticular case where M ∈Mφ the first term of (8) vanishes,
and we recover Barreto et al.’s (2017) Theorem 2.

3.2. Uncovering the structure of the environment

We want to solve a subset of the tasks inM and use GPI
to promote transfer between these tasks. In order to do so
efficiently, we need a function φ that covers the tasks of
interest as much as possible. If we were to rely on Barreto
et al.’s (2017) original results, we would have guarantees
on the performance of the GPI policy only if φ spanned all
the tasks of interest. Proposition 1 allows us to remove this
requirement, since now we have theoretical guarantees for
any choice of φ. In practice, though, we want features φ
such that the first term of (8) is small for all tasks of interest.

There might be contexts in which we have direct access to
features φ(s, a, s′) that satisfy (2), either exactly or approx-
imately. Here though we are interested in the more general
scenario where this structure is not available, nor given to
the agent in any form. In this case the use of SFs requires a
way of unveiling such a structure.

Barreto et al. (2017) assume the existence of a φ ∈ Rd
that satisfy (2) exactly and formulate the problem of com-
puting an approximate φ̃ as a multi-task learning problem.
The problem is decomposed into D regressions, each one
associated with a task. For reasons that will become clear
shortly we will call these tasks base tasks and denote them
by M̂ ≡ {M1,M2, ...,MD} ⊂ Mφ. The multi-task prob-
lem thus consists in solving the approximations

φ̃(s, a, s′)>w̃i ≈ ri(s, a, s′), for i = 1, 2, ..., D, (9)

where ri is the reward of Mi (Caruana, 1997; Baxter, 2000).

In this section we argue that (9) can be replaced by a much
simpler approximation problem. Suppose for a moment that
we know a function φ and D vectors wi that satisfy (9)
exactly. If we then stack the vectors wi to obtain a ma-
trix W ∈ RD×d, we can write r(s, a, s′) = Wφ(s, a, s′),
where the ith element of r(s, a, s′) ∈ RD is ri(s, a, s′).
Now, as long as we have d linearly independent tasks wi,
we can write φ(s, a, s′) = (W>W)−1W>r(s, a, s′) =
W†r(s, a, s′). Since φ is given by a linear transformation
of r, any task representable by the former can also be rep-
resented by the latter. To see why this is so, note that for
any task in Mφ we have r(s, a, s′) = w>φ(s, a, s′) =
w>W†r(s, a, s′) = (w′)>r(s, a, s′). Therefore, we can
use the rewards r themselves as features, which means that
we can replace (9) with the much simpler approximation

φ̃(s, a, s′) = r̃(s, a, s′) ≈ r(s, a, s′). (10)

One potential drawback of directly approximating r(s, a, s′)

is that we no longer have the flexibility of distinguishing
between d, the dimension of the environmentMφ, and D,
the number of base tasks in M̂. Since in general we will
solve (9) or (10) based on data, having D > d may lead to a
better approximation. On the other hand, using r̃(s, a, s′) as
features has a number of advantages that in many scenarios
of interest should largely outweigh the loss in flexibility.

One such advantage becomes clear when we look at the
scenario above from a different perspective. Instead of
assuming we know aφ and a W that satisfy (9), we can note
that, given any set of D tasks ri(s, a, s′), k ≤ D of them
will be linearly independent. Thus, the reasoning above
applies without modification. Specifically, if we use the
tasks’s rewards as features, as in (10), we can think of them
as inducing a φ(s, a, s′) ∈ Rk—and, as a consequence, an
environmentMφ. This highlights a benefit of replacing (9)
with (10): the fact that we can work directly in the space of
tasks, which in many cases may be more intuitive. When
we think of φ as a non-observable, abstract, quantity, it can
be difficult to define what exactly the base tasks should be.
In contrast, when we look at r directly the question we are
trying to answer is: is it possible to approximate the reward
function of all tasks of interest as a linear combination of
the functions ri? As one can see, the set M̂ works exactly
as a basis, and thus the name “base tasks”.

Another interesting consequence of using an approximation
φ̃(s, a, s′) ≈ r(s, a, s′) as features is that the resulting SFs
are nothing but ordinary action-value functions. Specifically,
the jth component of ψ̃

πi
(s, a) is simply Q̃πij (s, a). Next

we discuss how this gives rise to a simple approach that can
be combined with deep learning in a stable way.

4. Transfer in deep reinforcement learning
As described in the introduction, we are interested in using
SF&GPI to build scalable agents that can be combined
with deep learning in a stable way. Since deep learning
generally involves vast amounts of data whose storage is
impractical, we will be mostly focusing on methods that
work online. As a motivating example for this section we
show in Algorithm 1 how SFs and GPI can be combined
with Watkins & Dayan’s (1992) Q-learning.1

Algorithm 1 differs from standard Q-learning in two main
ways. First, instead of selecting actions based on the value
function being learned, the behaviour of the agent is deter-
mined by GPI (line 7). Depending on the set of SFs Ψ̃ used
by the algorithm, this can be a significant improvement over
the greedy policy induced by Q̃πn+1 , which usually is the
main determinant of a Q-learning agent’s behaviour.

1We use x α←− y meaning x← x+ αy. We also use∇θf(x)
to denote the gradient of f(x) with respect to the parameters θ.
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Algorithm 1 SF&GPI with ε-greedy Q-learning

Require:

 φ̃, Ψ̃ ≡ {ψ̃
π1
, ..., ψ̃

πn} features, SFs
extend basis learn a new SF?
αψ, αw, ε,ns hyper-parameters

1: if extend basis then
2: create ψ̃

πn+1 parametrised by θψ
3: Ψ̃← Ψ̃ ∪ {ψ̃

πn+1}
4: select initial state s ∈ S
5: for ns steps do
6: if Bernoulli(ε)=1 then a← Uniform(A) // exploration
7: else a← argmaxb maxi ψ̃

πi
(s, b)>w̃ // GPI

8: Execute action a and observe r and s′

9: w̃
αw←−−

[
r − φ̃(s, a, s′)>w̃

]
φ̃(s, a, s′) // learn w̃

10: if extend basis then // will learn new SFs
11: a′ ← argmaxbψ̃

πn+1
(s, b)>w̃

12: for i← 1, 2, ..., d do
13: δ ← φ̃i(s, a, s

′) + γψ̃
πn+1

i (s′, a′)− ψ̃πn+1

i (s, a)

14: θψ
αψ←−− δ∇θψ ψ̃

πn+1

i (s, a) // learn ψ̃
πn+1

15: if s′ is not terminal then s← s′

16: else select initial state s ∈ S

Algorithm 1 also deviates from conventional Q-learning in
the way a policy is learned. There are two possibilities here.
One of them is for the agent to rely exclusively on the GPI
policy computed over Ψ̃ (when the variable extend basis
is set to false). In this case no specialised policy is learned
for the current task, which reduces the RL problem to the
supervised problem of determining w̃ (solved in line 9 as a
least-squares regression).

Another possibility is to use data collected by the GPI
policy to learn a policy πn+1 specifically tailored for the
task. As shown in lines 13 and 14, this comes down to
solving equation (5). When πn+1 is learned the function
Q̃πn+1(s, a) = ψ̃

πn+1
(s, a)>w̃ also takes part in GPI. This

means that, if the approximations Q̃πi(s, a) are reasonably
accurate, the policy computed by Algorithm 1 should be
strictly better thanQ-learning’s counterpart. The SFs ψ̃

πn+1

can then be added to the set Ψ̃, and therefore a subsequent
execution of Algorithm 1 will result in an even stronger
agent. The ability to build and continually refine a set of
skills is widely regarded as a desirable feature for continual
(or lifelong) learning (Thrun, 1996).

4.1. Challenges involved in building features

In order to use Algorithm 1, or any variant of the SF&GPI
framework, we need the features φ̃(s, a, s′). A natural way
of addressing the computation of φ̃(s, a, s′) is to see it as a
multi-task problem, as in (9). We now discuss the difficulties
involved in solving this problem online at scale.

The solution of (9) requires data coming from D base tasks.
In principle, we could look at the collection of sample tran-

sitions as a completely separate process. However, here
we are assuming that the base tasks M̂ are part of the RL
problem, that is, we want to collect data using policies that
are competent in M̂. In order to maximise the potential for
transfer, while learning the policies πi for the base tasks
Mi we should also learn the associated SFs ψ̃

πi ; this cor-
responds to building the initial set Ψ̃ used by Algorithm 1.
Unfortunately, learning value functions in the form (4) while
solving (9) can be problematic. Since the SFs ψ̃

πi depend
on φ̃, learning the former while refining the latter can clearly
lead to undesirable solutions (this is akin to having a non-
stationary reward function). On top of that, the computation
of φ̃ itself depends on the SFs ψ̃

πi , for they ultimately de-
fine the data distribution used to solve (9). This circular
dependency can make the process of concurrently learning
φ̃ and ψ̃

πi unstable—something we observed in practice.

One possible solution is to use a conventional value func-
tion representation while solving (9) and only learn SFs for
the subsequent tasks (Barreto et al., 2017). This has the
disadvantage of not reusing the policies learned in M̂ for
transfer. Alternatively, one can store all the data and learn
the SFs associated with the base tasks only after φ̃ has been
learned, but this may be difficult in scenarios involving large
amounts of data. Besides, any approximation errors in φ̃
will already be reflected in the initial Ψ̃ computed in M̂.

4.2. Learning features online while retaining
transferable knowledge

To recapitulate, we are interested in solving D base tasks
Mi and, while doing so, build φ̃ and the initial set Ψ̃ to
be used by Algorithm 1. We want φ̃ and Ψ̃ to be learned
concurrently, so we do not have to store transitions, and
preferably Ψ̃ should not reflect approximation errors in φ̃.

We argue that one can accomplish all of the above by re-
placing (9) with (10), that is, by directly approximating
r(s, a, s′), which is observable, and adopting the resulting
approximation as the features φ̃ required by Algorithm 1.

As discussed in Section 3.2, when using rewards as fea-
tures the resulting SFs are collections of value functions:
ψ̃
πi

= Q̃
πi ≡ [Q̃πi1 , Q̃

πi
2 , ..., Q̃

πi
D ]. This leads to a particu-

larly simple way of building the features φ̃ while retaining
transferable knowledge in Ψ̃. Given a set of D base tasks
Mi, while solving them we only need to carry out two extra
operations: compute approximations r̃i(s, a, s′) of the func-
tions ri(s, a, s′), to be used as φ̃, and evaluate the resulting
policies on all tasks—i.e., compute Q̃πij —to build Ψ̃.

Before providing a practical method to compute φ̃ and Ψ̃,
we note that, although the approximations r̃i(s, a, s′) can
be learned independently from each other, the computation
of Q̃

πi requires policy πi to be evaluated under different
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reward signals. This can be accomplished in different ways;
here we assume that the agent is able to interact with the
tasks Mi in parallel. We can consider that at each transition
the agent observes rewards from all the base tasks, r ∈ RD,
or a single scalar ri associated with one of them. We will
assume the latter, but our solution readily extends to the
scenario where the agent simultaneously observes D tasks.

Algorithm 2 shows a possible way of implementing our
solution, again using Q-learning as the basic RL method.
We highlight the fact that GPI can already be used in this
phase, as shown in line 4, which means that the policies πi
can “cooperate” to solve each task Mi.

Algorithm 2 Build SF&GPI basis with ε-greedyQ-learning

Require:
{
M1,M2, ...,MD base tasks
αQ, αr, ε,ns hyper-parameters

1: for ns steps do
2: select a task t ∈ {1, 2, ..., D} and a state s ∈ S
3: if Bernoulli(ε)=1 then a← Uniform(A) // exploration
4: else a← argmaxb maxi Q̃

πi
t (s, b) // GPI

5: Execute action a in Mt and observe r and s′

6: θr
αr←−− [r − r̃t(s, a, s′)]∇θr r̃t(s, a, s

′)
7: for i← 1, 2, ..., D do
8: a′ ← argmaxbQ̃

πi
i (s, b) // a′ ≡ πi(s)

9: θQ
αQ←−−

[
r + γQ̃πit (s′, a′)− Q̃πit (s, a)

]
∇θQQ̃

πi
t (s, a)

10: return φ̃ ≡ [r̃1, ..., r̃D] and Ψ̃ ≡ {Q̃π1
, ..., Q̃

πD}

Note that if we were to learn general ψ̃
πi

(s, a) and
φ̃(s, a, s′) in parallel we would necessarily have to use
the latter to update the former, which means computing
an approximation on top of another (see (5)). In contrast,
when learning Q̃πij (s, a) we can use the actual rewards
rj(s, a, s

′), as opposed to the approximations r̃j(s, a, s′)
(line 9 of Algorithm 2). This means that φ̃ and Ψ̃ can be
learned concurrently without the accumulation of approxi-
mation errors in ψ̃

πi , as promised.

5. Experiments
In this section we use experiments to assess whether the
proposed approach can indeed promote transfer on large-
scale domains. Here we focus on what we consider the most
relevant aspects of our experiments; for further details and
additional results please see the supplementary material.

5.1. Environment

The environment we consider is conceptually similar to one
of the problems used by Barreto et al. (2017) to evaluate
their framework: the agent has to navigate in a room picking
up desirable objects while avoiding undesirable ones. Here

(a) Screenshot of environment

M1 1 0 0 0
M2 0 1 0 0
M3 0 0 1 0
M4 0 0 0 1

(b) Base tasks M̂

Figure 1. Environment and base tasks.

the problem is tackled in a particularly challenging format:
instead of observing the state st at time step t, as in the orig-
inal experiments, the agent interacts with the environment
from a first-person perspective, only receiving as observa-
tion a 84× 84 image ot that is insufficient to disambiguate
the actual underlying state of the MDP (see Figure 1(a)).

We used Beattie et al.’s (2016) DeepMind Lab platform to
design our 3D environment, which works as follows. The
agent finds itself in a room full of objects of different types.
There are five instances of each object type: “TV”, “ball”,
“hat”, and “balloon”. Whenever the agent hits an object it
picks it up and another object of the same type appears at
a random location in the room. This process goes on for a
minute, after which a new episode starts.

The type of an object determines the reward associated with
it; thus, a task is defined (and can be referred to) by four
numbers indicating the rewards attached to each object type.
For example, in task 1-100 the agent is interested in objects
of the first type and should avoid objects of the second type,
while the other object types are irrelevant. We defined base
tasks that will be used by Algorithm 2 to build φ̃ and Ψ̃ (see
Figure 1(b)). The transfer ability of the algorithms will be
assessed on different, unseen, tasks, referred to as test tasks.

5.2. Agents

The SF&GPI agent adopted in the experiments is a variation
of Algorithms 1 and 2 that uses Watkins’s (1989) Q(λ) to
apply Q-learning with eligibility traces. The functions φ̃
and Ψ̃ are computed by a deep neural network whose archi-
tecture is shown in Figure 2. The network is composed of
three parts. The first one uses the history of observations and
actions up to time t, ht, to compute a state signal s̃t = f(ht).
The construction of s̃t can itself be broken into two stages
corresponding to specific functional modules: a convolu-
tional network (CNN) to handle the pixel-based observa-
tion ot and a long short-term network (LSTM) to compute
f(ht) in a recursive way (LeCun et al., 1998; Hochreiter
& Schmidhuber, 1997). The second part of the network is
composed of D + 1 specialised blocks that receive s̃t as
input and compute φ̃(s̃t, a) and ψ̃

πi
(s̃t, a) for all a ∈ A.

Each one of these blocks is a multilayer perceptron (MLP)
with a single hidden layer (Rumelhart et al., 1986). The
third part of the network is simply w̃, which combined with
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Figure 2. Deep architecture used. Rectangles represent MLPs.

φ̃ and ψ̃
πi will provide the final approximations.

The entire architecture was trained end-to-end through Algo-
rithm 2 using the base tasks shown in Figure 1(b). After the
SF&GPI agent had been trained it was tested on a test task,
now using Algorithm 1 with the newly-learned φ̃ and Ψ̃.
In order to handle the large number of sample trajectories
needed in our environment both Algorithms 1 and 2 used
the IMPALA distributed architecture (Espeholt et al., 2018).

Algorithm 1 was run with and without the learning of a spe-
cialised policy (controlled via the variable extend basis).
We call the corresponding versions of the algorithm “SF&
GPI-continual” and “SF&GPI-transfer”, respectively. We
compare SF&GPI with baseline agents that use the same
network architecture, learning algorithm, and distributed
data processing. The only difference is in the way the net-
work shown in Figure 2 is updated and used during the test
phase. Specifically, we ignore the MLPs used to compute φ̃
and ψ̃

πi and instead add another MLP, with the exact same
architecture, to be jointly trained with w̃ through Q(λ). We
then distinguish three baselines. The first one uses the state
signal s̃t = f(ht) learned in the base tasks to compute
an approximation Q̃(s̃, a)—that is, both the CNN and the
LSTM are fixed. We will refer to this method simply as
Q(λ). The second baseline is allowed to modify f(ht) dur-
ing test, so we call it “DQ(λ) fine tuning” as a reference
to its deep architecture. Finally, the third baseline, “DQ(λ)
from scratch”, learns its own representation f(ht).

5.3. Results and discussion

Figure 3 shows the results of SF&GPI and the baselines on
a selection of test tasks. The first thing that stands out in the
figures is the fact that SF&GPI-transfer learns very good
policies for the test tasks almost instantaneously. In fact, as
this version of the algorithm is solving a simple supervised
learning problem, its learning progress is almost impercepti-
ble at the scale the RL problem unfolds. Since the baselines

are solving the full RL problem, in some tasks their per-
formance eventually reaches, or even surpasses, that of the
transferred policies. SF&GPI-continual combines the desir-
able properties of both SF&GPI-transfer and the baselines.
On one hand, it still benefits from the instantaneous transfer
promoted by SF&GPI. On the other hand, its performance
keeps improving, since in this case the transferred policy is
used to learn a policy specialised to the current task. As a
result, SF&GPI-continual outperforms the other methods in
almost all of the tasks.2

Another interesting trend shown in Figures 3 is the fact
that SF&GPI performs well on test tasks with negative
rewards—in some cases considerably better than the alter-
native methods—, even though the agent only experienced
positive rewards in the base tasks. This is an indication that
the transferred GPI policy is combining the policies πi for
the base tasks in a non-trivial way (line 7 of Algorithm 1).

In this paper we argue that SF&GPI can be applied even
if assumption (2) is not strictly satisfied. In order to il-
lustrate this point, we reran the experiments with SF&
GPI-transfer using a set of linearly-depend base tasks,
M̂′ ≡ {1000, 0100, 0011, 1100}. Clearly, M̂′ can only
represent tasks in which the rewards associated with the
third and fourth object types are the same. We thus fixed
the rewards associated with the first two object types and
compared the results of SF&GPI-transfer using M̂ and M̂′
on several tasks where this is not the case. The comparison
is shown in Figure 4. As shown in the figure, although using
a linearly-dependent set of base tasks does hinder transfer
in some cases, in general it does not have a strong impact
on the results. This smooth degradation of the performance
is in accordance with Proposition 1.

The result above also illustrates an interesting distinction
between the space of reward functions and the associated
space of policies. Although we want to be able to represent
the reward functions of all tasks of interest, this does not
guarantee that the resulting GPI policy will perform well.
To see this, suppose we replace the positive rewards in M̂
with negative ones. Clearly, in this case we would still have
a basis spanning the same space of rewards; however, since
now a policy that stands still is optimal in all tasks Mi,
we should not expect GPI to give rise to good policies in
tasks with positive rewards. One can ask how to define a
“behavioural basis” that leads to good policies acrossM
through GPI. We leave this as an interesting open question.

6. Related work
Recently, there has been a resurgence of the subject of trans-
fer in the deep RL literature. Teh et al. (2017) propose an

2A video of SF&GPI-transfer is included as a supplement, and
can also be found on this link: https://youtu.be/-dTnqfwTRMI.

https://youtu.be/-dTnqfwTRMI


Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement

0 50 100 150 200 250

Environment step (millions)

0

5

10

15

20

25

E
p
is

o
d
e
 r

e
w

a
rd

Task
1000

0100

0010

0001

(a) Base tasks

0 20 40 60 80 100

Environment step (millions)

0

5

10

15

20

25

30

35

40

E
p
is

o
d
e
 r

e
w

a
rd

Q(¸)

DQ(¸) fine-tuned

DQ(¸) from scratch

SF & GPI transfer

SF & GPI continual

(b) Task 1100

0 20 40 60 80 100

Environment step (millions)

−6

−5

−4

−3

−2

−1

0

E
p
is

o
d
e
 r

e
w

a
rd

(c) Task -1-100

0 20 40 60 80 100

Environment step (millions)

−5

0

5

10

15

20

25

E
p
is

o
d
e
 r

e
w

a
rd

(d) Task -11-10
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Figure 3. Average reward per episode on the base tasks and a selection of test tasks. The x axes have different scales because the amount
of reward available changes across tasks. Shaded regions are one standard deviation over 10 runs.
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Figure 4. Performance of SF&GPI-transfer using base tasks M̂
and M̂′. The box plots summarise the distribution of the rewards
received per episode between 50 and 100 million steps of learning.

approach for the multi-task problem—which in our case is
the learning of base tasks—that uses a shared policy as a reg-
ulariser for specialised policies. Finn et al. (2017) propose
to achieve fast transfer, which is akin to SF&GPI-transfer,
by focusing on adaptability, rather than performance, during
learning. Rusu et al. (2016) and Kirkpatrick et al. (2016)
introduce neural-network architectures well-suited for con-
tinual learning. There have also been previous attempts to
combine SFs and deep learning for transfer, but none of
them used GPI (Kulkarni et al., 2016; Zhang et al., 2016).

Many works on the combination of deep RL and transfer
propose modular network architectures that naturally induce
a decomposition of the problem (Devin et al., 2016; Heess
et al., 2017; Clavera et al., 2017). Among these, a recurrent
theme is the existence of sub-networks specialised in differ-

ent skills that are managed by another network (Heess et al.,
2016; Frans et al., 2017; Oh et al., 2017). This highlights an
interesting connection between transfer learning and hierar-
chical RL, which has also recently re-emerged in the deep
RL literature (Vezhnevets et al., 2017; Bacon et al., 2017).

7. Conclusion
In this paper we extended the SF&GPI transfer framework
in two ways. First, we showed that the theoretical guaran-
tees supporting the framework can be extended to any set of
MDPs that only differ in the reward function, regardless of
whether their rewards can be computed as a linear combi-
nation of a set of features or not. In order to use SF&GPI
in practice we still need the reward features, though; our
second contribution is to show that these features can be the
reward functions of a set of MDPs. This reinterpretation
of the problem makes it possible to combine SF&GPI with
deep learning in a stable way. We empirically verified this
claim on a complex 3D environment that requires hundreds
of millions of transitions to be solved. We showed that, by
turning an RL task into a supervised learning problem, SF
&GPI-transfer is able to provide skilful, non-trivial, poli-
cies almost instantaneously. We also showed how these
policies can be used by SF&GPI-continual to learn spe-
cialised policies, which can then be added to the agent’s set
of skills. Together, these concepts can help endow an agent
with the ability to build, refine, and use a set of skills while
interacting with the environment.
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