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Abstract
We argue that the estimation of mutual informa-
tion between high dimensional continuous ran-
dom variables can be achieved by gradient descent
over neural networks. We present a Mutual Infor-
mation Neural Estimator (MINE) that is linearly
scalable in dimensionality as well as in sample
size, trainable through back-prop, and strongly
consistent. We present a handful of applications
on which MINE can be used to minimize or max-
imize mutual information. We apply MINE to im-
prove adversarially trained generative models. We
also use MINE to implement the Information Bot-
tleneck, applying it to supervised classification;
our results demonstrate substantial improvement
in flexibility and performance in these settings.

1. Introduction
Mutual information is a fundamental quantity for measuring
the relationship between random variables. In data science
it has found applications in a wide range of domains and
tasks, including biomedical sciences (Maes et al., 1997),
blind source separation (BSS, e.g., independent component
analysis, Hyvärinen et al., 2004), information bottleneck (IB,
Tishby et al., 2000), feature selection (Kwak & Choi, 2002;
Peng et al., 2005), and causality (Butte & Kohane, 2000).

Put simply, mutual information quantifies the dependence
of two random variables X and Z. It has the form,

I(X;Z) =

∫
X×Z

log
dPXZ

dPX ⊗ PZ
dPXZ , (1)

where PXZ is the joint probability distribution, and PX =∫
Z dPXZ and PZ =

∫
X dPXZ are the marginals. In con-
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trast to correlation, mutual information captures non-linear
statistical dependencies between variables, and thus can act
as a measure of true dependence (Kinney & Atwal, 2014).

Despite being a pivotal quantity across data science, mutual
information has historically been difficult to compute (Panin-
ski, 2003). Exact computation is only tractable for discrete
variables (as the sum can be computed exactly), or for a
limited family of problems where the probability distribu-
tions are known. For more general problems, this is not
possible. Common approaches are non-parametric (e.g.,
binning, likelihood-ratio estimators based on support vector
machines, non-parametric kernel-density estimators; see,
Fraser & Swinney, 1986; Darbellay & Vajda, 1999; Suzuki
et al., 2008; Kwak & Choi, 2002; Moon et al., 1995; Kraskov
et al., 2004), or rely on approximate gaussianity of data
distribution (e.g., Edgeworth expansion, Van Hulle, 2005).
Unfortunately, these estimators typically do not scale well
with sample size or dimension (Gao et al., 2014), and thus
cannot be said to be general-purpose. Other recent works
include Kandasamy et al. (2017); Singh & Pczos (2016);
Moon et al. (2017).

In order to achieve a general-purpose estimator, we rely
on the well-known characterization of the mutual informa-
tion as the Kullback-Leibler (KL-) divergence (Kullback,
1997) between the joint distribution and the product of the
marginals (i.e., I(X;Z) = DKL(PXZ || PX ⊗ PZ)). Re-
cent work uses a dual formulation to cast the estimation of
f -divergences (including the KL-divergence, see Nguyen
et al., 2010) as part of an adversarial game between com-
peting deep neural networks (Nowozin et al., 2016). This
approach is at the cornerstone of generative adversarial net-
works (GANs, Goodfellow et al., 2014), which train a
generative model without any explicit assumptions about
the underlying distribution of the data.

In this paper we demonstrate that exploiting dual optimiza-
tion to estimate divergences goes beyond the minimax ob-
jective as formalized in GANs. We leverage this strategy
to offer a general-purpose parametric neural estimator of
mutual information based on dual representations of the
KL-divergence (Ruderman et al., 2012), which we show
is valuable in settings that do not necessarily involve an
adversarial game. Our estimator is scalable, flexible, and
completely trainable via back-propagation. The contribu-
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tions of this paper are as follows:

• We introduce the Mutual Information Neural Estimator
(MINE), which is scalable, flexible, and completely
trainable via back-prop, as well as provide a thorough
theoretical analysis.

• We show that the utility of this estimator transcends
the minimax objective as formalized in GANs, such
that it can be used in mutual information estimation,
maximization, and minimization.

• We apply MINE to palliate mode-dropping in GANs
and to improve reconstructions and inference in Ad-
versarially Learned Inference (ALI, Dumoulin et al.,
2016) on large scale datasets.

• We use MINE to apply the Information Bottleneck
method (Tishby et al., 2000) in a continuous setting,
and show that this approach outperforms variational
bottleneck methods (Alemi et al., 2016).

2. Background
2.1. Mutual Information

Mutual information is a Shannon entropy-based measure of
dependence between random variables. The mutual infor-
mation between X and Z can be understood as the decrease
of the uncertainty in X given Z:

I(X;Z) := H(X)−H(X | Z), (2)

where H is the Shannon entropy, and H(X |Z) is the con-
ditional entropy of Z given X . As stated in Eqn. 1 and the
discussion above, the mutual information is equivalent to
the Kullback-Leibler (KL-) divergence between the joint,
PXZ , and the product of the marginals PX ⊗ PZ :

I(X,Z) = DKL(PXZ || PX ⊗ PZ), (3)

where DKL is defined as1,

DKL(P || Q) := EP

[
log

dP
dQ

]
. (4)

whenever P is absolutely continuous with respect to Q2.

The intuitive meaning of Eqn. 3 is clear: the larger the di-
vergence between the joint and the product of the marginals,
the stronger the dependence between X and Z. This di-
vergence, hence the mutual information, vanishes for fully
independent variables.

1Although the discussion is more general, we can think of P
and Q as being distributions on some compact domain Ω ⊂ Rd,
with density p and q respect the Lebesgue measure λ, so that
DKL =

∫
p log p

q
dλ.

2and infinity otherwise.

2.2. Dual representations of the KL-divergence.

A key technical ingredient of MINE are dual representa-
tions of the KL-divergence. We will primarily work with
the Donsker-Varadhan representation (Donsker & Varadhan,
1983), which results in a tighter estimator; but will also con-
sider the dual f -divergence representation (Keziou, 2003;
Nguyen et al., 2010; Nowozin et al., 2016).

The Donsker-Varadhan representation. The following
theorem gives a representation of the KL-divergence
(Donsker & Varadhan, 1983):

Theorem 1 (Donsker-Varadhan representation). The KL
divergence admits the following dual representation:

DKL(P || Q) = sup
T :Ω→R

EP[T ]− log(EQ[eT ]), (5)

where the supremum is taken over all functions T such that
the two expectations are finite.

Proof. See the Supplementary Material.

A straightforward consequence of Theorem 1 is as follows.
Let F be any class of functions T : Ω → R satisfying the
integrability constraints of the theorem. We then have the
lower-bound3:

DKL(P || Q) ≥ sup
T∈F

EP[T ]− log(EQ[eT ]). (6)

Note also that the bound is tight for optimal functions T ∗

that relate the distributions to the Gibbs density as,

dP =
1

Z
eT

∗
dQ, where Z = EQ[eT

∗
]. (7)

The f -divergence representation. It is worthwhile to
compare the Donsker-Varadhan representation to the f -
divergence representation proposed in Nguyen et al. (2010);
Nowozin et al. (2016), which leads to the following bound:

DKL(P || Q) ≥ sup
T∈F

EP[T ]− EQ[eT−1]. (8)

Although the bounds in Eqns. 6 and 8 are tight for suffi-
ciently large families F , the Donsker-Varadhan bound is
stronger in the sense that, for any fixed T , the right hand side
of Eqn. 6 is larger4 than the right hand side of Eqn. 8. We
refer to the work by Ruderman et al. (2012) for a derivation
of both representations in Eqns. 6 and 8 from the unifying
perspective of Fenchel duality. In Section 3 we discuss
versions of MINE based on these two representations, and
numerical comparisons are performed in Section 4.

3The bound in Eqn. 6 is known as the compression lemma in
the PAC-Bayes literature (Banerjee, 2006).

4To see this, just apply the identity x ≥ e log x with x =
EQ[eT ].
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3. The Mutual Information Neural Estimator
In this section we formulate the framework of the Mutual
Information Neural Estimator (MINE). We define MINE
and present a theoretical analysis of its consistency and
convergence properties.

3.1. Method

Using both Eqn. 3 for the mutual information and the dual
representation of the KL-divergence, the idea is to choose F
to be the family of functions Tθ : X ×Z → R parametrized
by a deep neural network with parameters θ ∈ Θ. We call
this network the statistics network. We exploit the bound:

I(X;Z) ≥ IΘ(X,Z), (9)

where IΘ(X,Z) is the neural information measure defined
as

IΘ(X,Z) = sup
θ∈Θ

EPXZ [Tθ]− log(EPX⊗PZ [eTθ ]). (10)

The expectations in Eqn. 10 are estimated using empirical
samples5 from PXZ and PX ⊗ PZ or by shuffling the sam-
ples from the joint distribution along the batch axis. The
objective can be maximized by gradient ascent.

It should be noted that Eqn. 10 actually defines a new class
information measures, The expressive power of neural net-
work insures that they can approximate the mutual informa-
tion with arbitrary accuracy.

In what follows, given a distribution P, we denote by P̂(n)

as the empirical distribution associated to n i.i.d. samples.

Definition 3.1 (Mutual Information Neural Estimator
(MINE)). Let F = {Tθ}θ∈Θ be the set of functions
parametrized by a neural network. MINE is defined as,

̂I(X;Z)n = sup
θ∈Θ

EP(n)
XZ

[Tθ]− log(EP(n)
X ⊗P̂

(n)
Z

[eTθ ]). (11)

Details on the implementation of MINE are provided in
Algorithm 1. An analogous definition and algorithm also
hold for the f -divergence formulation in Eqn. 8, which we
refer to as MINE-f . Since Eqn. 8 lower-bounds Eqn. 6, it
generally leads to a looser estimator of the mutual informa-
tion, and numerical comparisons of MINE with MINE-f
can be found in Section 4. However, in a mini-batch setting,
the SGD gradients of MINE are biased. We address this in
the next section.

5Note that samples x̄ ∼ PX and z̄ ∼ PZ from the marginals
are obtained by simply dropping x, z from samples (x̄, z) and
(x, z̄) ∼ PXZ .

Algorithm 1 MINE
θ ← initialize network parameters
repeat

Draw b minibatch samples from the joint distribution:
(x(1), z(1)), . . . , (x(b), z(b)) ∼ PXZ
Draw n samples from the Z marginal distribution:
z̄(1), . . . , z̄(b) ∼ PZ
Evaluate the lower-bound:
V(θ)← 1

b

∑b
i=1 Tθ(x

(i),z(i))− log( 1
b

∑b
i=1 e

Tθ(x(i),z̄(i)))

Evaluate bias corrected gradients (e.g., moving aver-
age):
Ĝ(θ)← ∇̃θV(θ)
Update the statistics network parameters:
θ ← θ + Ĝ(θ)

until convergence

3.2. Correcting the bias from the stochastic gradients

A naive application of stochastic gradient estimation leads
to the gradient estimate:

ĜB = EB [∇θTθ]−
EB [∇θTθ eTθ ]

EB [eTθ ]
. (12)

where, in the second term, the expectations are over the
samples of a minibatch B, leads to a biased estimate of the
full batch gradient6.

Fortunately, the bias can be reduced by replacing the esti-
mate in the denominator by an exponential moving average.
For small learning rates, this improved MINE gradient esti-
mator can be made to have arbitrarily small bias.
We found in our experiments that this improves all-around
performance of MINE.

3.3. Theoretical properties

In this section we analyze the consistency and convergence
properties of MINE. All the proofs can be found in the
Supplementary Material.

3.3.1. CONSISTENCY

MINE relies on a choice of (i) a statistics network and (ii)
n samples from the data distribution PXZ .

Definition 3.2 (Strong consistency). The estimator
̂I(X;Z)n is strongly consistent if for all ε > 0, there exists

a positive integer N and a choice of statistics network such
that:

∀n ≥ N, |I(X,Z)− ̂I(X;Z)n| ≤ ε, a.e.
where the probability is over a set of samples.

6From the optimization point of view, the f -divergence formu-
lation has the advantage of making the use of SGD with unbiased
gradients straightforward.
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In a nutshell, the question of consistency is divided into two
problems: an approximation problem related to the size of
the family, F , and an estimation problem related to the use
of empirical measures. The first problem is addressed by uni-
versal approximation theorems for neural networks (Hornik,
1989). For the second problem, classical consistency theo-
rems for extremum estimators apply (Van de Geer, 2000)
under mild conditions on the parameter space.

This leads to the two lemmas below. The first lemma states
that the neural information measures IΘ(X,Z), defined
in Eqn. 10, can approximate the mutual information with
arbitrary accuracy:

Lemma 1 (approximation). Let ε > 0. There exists a neural
network parametrizing functions Tθ with parameters θ in
some compact domain Θ ⊂ Rk, such that

|I(X,Z)− IΘ(X,Z)| ≤ ε, a.e.

The second lemma states the almost sure convergence of
MINE to a neural information measure as the number of
samples goes to infinity:

Lemma 2 (estimation). Let ε > 0. Given a family of neural
network functions Tθ with parameters θ in some bounded
domain Θ ⊂ Rk, there exists an N ∈ N, such that

∀n ≥ N, | ̂I(X;Z)n − IΘ(X,Z) |≤ ε, a.e. (13)

Combining the two lemmas with the triangular inequality,
we have,

Theorem 2. MINE is strongly consistent.

3.3.2. SAMPLE COMPLEXITY

In this section we discuss the sample complexity of our esti-
mator. Since the focus here is on the empirical estimation
problem, we assume that the mutual information is well
enough approximated by the neural information measure
IΘ(X,Z). The theorem below is a refinement of Lemma 2:
it gives how many samples we need for an empirical estima-
tion of the neural information measure at a given accuracy
and with high confidence.

We make the following assumptions: the functions Tθ are
M -bounded (i.e., |Tθ| ≤M ) and L-Lipschitz with respect
to the parameters θ. The domain Θ ⊂ Rd is bounded, so
that ‖θ‖ ≤ K for some constant K. The theorem below
shows a sample complexity of Õ

(
d log d
ε2

)
, where d is the

dimension of the parameter space.

Theorem 3. Given any values ε, δ of the desired accuracy
and confidence parameters, we have,

Pr
(
| ̂I(X;Z)n − IΘ(X,Z)| ≤ ε

)
≥ 1− δ, (14)

whenever the number n of samples satisfies

n ≥ 2M2(d log(16KL
√
d/ε) + 2dM + log(2/δ))

ε2
.

(15)

4. Empirical comparisons
Before diving into applications, we perform some simple
empirical evaluation and comparisons of MINE. The ob-
jective is to show that MINE is effectively able to estimate
mutual information and account for non-linear dependence.

4.1. Comparing MINE to non-parametric estimation

We compare MINE and MINE-f to the k-NN-based non-
parametric estimator found in Kraskov et al. (2004). In
our experiment, we consider multivariate Gaussian ran-
dom variables, Xa and Xb, with componentwise correla-
tion, corr(Xi

a, X
j
b ) = δij ρ, where ρ ∈ (−1, 1) and δij is

Kronecker’s delta. As the mutual information is invariant
to continuous bijective transformations of the considered
variables, it is enough to consider standardized Gaussians
marginals. We also compare MINE (using the Donsker-
Varadhan representation in Eqn. 6) and MINE-f (based on
the f -divergence representation in Eqn. 8).

Our results are presented in Figs. 1. We observe that both
MINE and Kraskov’s estimation are virtually indistinguish-
able from the ground truth when estimating the mutual infor-
mation between bivariate Gaussians. MINE shows marked
improvement over Krakov’s when estimating the mutual
information between twenty dimensional random variables.
We also remark that MINE provides a tighter estimate of
the mutual information than MINE-f .

Figure 1. Mutual information between two multivariate Gaussians
with component-wise correlation ρ ∈ (−1, 1).

4.2. Capturing non-linear dependencies

An important property of mutual information between ran-
dom variables with relationship Y = f(X)+σ�ε, where f
is a deterministic non-linear transformation and ε is random
noise, is that it is invariant to the deterministic nonlinear
transformation, but should only depend on the amount of
noise, σ � ε. This important property, that guarantees the
quantification dependence without bias for the relationship,
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is called equitability (Kinney & Atwal, 2014). Our results
(Fig. 2) show that MINE captures this important property.

Figure 2. MINE is invariant to choice of deterministic nonlinear
transformation. The heatmap depicts mutual information estimated
by MINE between 2-dimensional random variablesX ∼ U(−1, 1)
and Y = f(X) + σ � ε, where f(x) ∈ {x, x3, sin(x)} and
ε ∼ N (0, I).

5. Applications
In this section, we use MINE to present applications of
mutual information and compare to competing methods de-
signed to achieve the same goals. Specifically, by using
MINE to maximize the mutual information, we are able to
improve mode representation and reconstruction of genera-
tive models. Finally, by minimizing mutual information, we
are able to effectively implement the information bottleneck
in a continuous setting.

5.1. Maximizing mutual information to improve GANs

Mode collapse (Che et al., 2016; Dumoulin et al., 2016;
Donahue et al., 2016; Salimans et al., 2016; Metz et al.,
2017; Saatchi & Wilson, 2017; Nguyen et al., 2017; Lin
et al., 2017; Ghosh et al., 2017) is a common pathology of
generative adversarial networks (GANs, Goodfellow et al.,
2014), where the generator fails to produces samples with
sufficient diversity (i.e., poorly represent some modes).

GANs as formulated in Goodfellow et al. (2014) consist
of two components: a discriminator, D : X → [0, 1] and
a generator, G : Z → X , where X is a domain such as
a compact subspace of Rn. Given Z ∈ Z follows some
simple prior distribution (e.g., a spherical Gaussian with
density, PZ ), the goal of the generator is to match its output
distribution to a target distribution, PX (specified by the data
samples). The discriminator and generator are optimized
through the value function,

min
G

max
D

V (D,G) :=

EPX [D(X)] + EPZ [log (1−D(G(Z))]. (16)

A natural approach to diminish mode collapse would be
regularizing the generator’s loss with the neg-entropy of the
samples. As the sample entropy is intractable, we propose
to use the mutual information as a proxy.

Following Chen et al. (2016), we write the prior as the
concatenation of noise and code variables, Z = [ε, c].

We propose to palliate mode collapse by maximizing the
mutual information between the samples and the code.
I(G([ε, c]); c) = H(G([ε, c])) − H(G([ε, c]) | c). The
generator objective then becomes,

arg max
G

E[log(D(G([ε, c])))] + βI(G([ε, c]); c). (17)

As the samples G([ε, c]) are differentiable w.r.t. the param-
eters of G, and the statistics network being a differentiable
function, we can maximize the mutual information using
back-propagation and gradient ascent by only specifying
this additional loss term. Since the mutual information is
theoretically unbounded, we use adaptive gradient clipping
(see the Supplementary Material) to ensure that the genera-
tor receives learning signals similar in magnitude from the
discriminator and the statistics network.

Related works on mode-dropping Methods to address
mode dropping in GANs can readily be found in the litera-
ture. Salimans et al. (2016) use mini-batch discrimination.
In the same spirit, Lin et al. (2017) successfully mitigates
mode dropping in GANs by modifying the discriminator
to make decisions on multiple real or generated samples.
Ghosh et al. (2017) uses multiple generators that are encour-
aged to generate different parts of the target distribution.
Nguyen et al. (2017) uses two discriminators to minimize
the KL and reverse KL divergences between the target and
generated distributions. Che et al. (2016) learns a reconstruc-
tion distribution, then teach the generator to sample from
it, the intuition being that the reconstruction distribution is
a de-noised or smoothed version of the data distribution,
and thus easier to learn. Srivastava et al. (2017) minimizes
the reconstruction error in the latent space of bi-directional
GANs (Dumoulin et al., 2016; Donahue et al., 2016). Metz
et al. (2017) includes many steps of the discriminator’s opti-
mization as part of the generator’s objective. While Chen
et al. (2016) maximizes the mutual information between the
code and the samples, it does so by minimizing a variational
upper bound on the conditional entropy (Barber & Agakov,
2003) therefore ignoring the entropy of the samples. Chen
et al. (2016) makes no claim about mode-dropping.

Experiments: Spiral, 25-Gaussians datasets We apply
MINE to improve mode coverage when training a genera-
tive adversarial network (GAN, Goodfellow et al., 2014).
We demonstrate using Eqn. 17 on the spiral and the 25-
Gaussians datasets, comparing two models, one with β = 0
(which corresponds to the orthodox GAN as in Goodfellow
et al. (2014)) and one with β = 1.0, which corresponds to
mutual information maximization.

Our results on the spiral (Fig. 3) and the 25-Gaussians
(Fig. 4) experiments both show improved mode coverage
over the baseline with no mutual information objective. This
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(a) GAN (b) GAN+MINE

Figure 3. The generator of the GAN model without mutual in-
formation maximization after 5000 iterations suffers from mode
collapse (has poor coverage of the target dataset) compared to
GAN+MINE on the spiral experiment.

(a) Original data (b) GAN (c) GAN+MINE

Figure 4. Kernel density estimate (KDE) plots for GAN+MINE
samples and GAN samples on 25 Gaussians dataset.

confirms our hypothesis that maximizing mutual informa-
tion helps against mode-dropping in this simple setting.

Experiment: Stacked MNIST Following Che et al.
(2016); Metz et al. (2017); Srivastava et al. (2017); Lin
et al. (2017), we quantitatively assess MINE’s ability to
diminish mode dropping on the stacked MNIST dataset
which is constructed by stacking three randomly sampled
MNIST digits. As a consequence, stacked MNIST offers
1000 modes. Using the same architecture and training pro-
tocol as in Srivastava et al. (2017); Lin et al. (2017), we
train a GAN on the constructed dataset and use a pre-trained
classifier on 26,000 samples to count the number of modes
in the samples, as well as to compute the KL divergence
between the sample and expected data distributions. Our
results in Table 1 demonstrate the effectiveness of MINE in
preventing mode collapse on Stacked MNIST.

5.2. Maximizing mutual information to improve
inference in bi-directional adversarial models

Adversarial bi-directional models were introduced in Ad-
versarially Learned Inference (ALI, Dumoulin et al., 2016)
and BiGAN (Donahue et al., 2016) and are an extension
of GANs which incorporate a reverse model, F : X → Z
jointly trained with the generator. These models formulate
the problem in terms of the value function in Eqn. 16 be-
tween two joint distributions, p(x, z) = p(z | x)p(x) and
q(x, z) = q(x | z)p(z) induced by the forward (encoder)

Stacked MNIST
Modes

(Max 1000) KL

DCGAN 99.0 3.40
ALI 16.0 5.40
Unrolled GAN 48.7 4.32
VEEGAN 150.0 2.95
PacGAN 1000.0± 0.0 0.06± 1.0e−2

GAN+MINE (Ours) 1000.0± 0.0 0.05± 6.9e−3

Table 1. Number of captured modes and Kullblack-Leibler diver-
gence between the training and samples distributions for DC-
GAN (Radford et al., 2015), ALI (Dumoulin et al., 2016), Un-
rolled GAN (Metz et al., 2017), VeeGAN (Srivastava et al., 2017),
PacGAN (Lin et al., 2017).

and reverse (decoder) models, respectively7.

One goal of bi-directional models is to do inference as well
as to learn a good generative model. Reconstructions are
one desirable property of a model that does both inference
and generation, but in practice ALI can lack fidelity (i.e.,
reconstructs less faithfully than desired, see Li et al., 2017;
Ulyanov et al., 2017; Belghazi et al., 2018). To demonstrate
the connection to mutual information, it can be shown (see
the Supplementary Material for details) that the reconstruc-
tion error,R, is bounded by,

R ≤ DKL(q(x, z) || p(x, z))− Iq(x, z) +Hq(z) (18)

If the joint distributions are matched,Hq(z) tends toHp(z),
which is fixed as long as the prior, p(z), is itself fixed. Sub-
sequently, maximizing the mutual information minimizes
the expected reconstruction error.

Assuming that the generator is the same as with GANs in the
previous section, the objectives for training a bi-directional
adversarial model then become:

arg max
D

Eq(x,z)[logD(x, z)] + Ep(x,z)[log (1−D(x, z))]

arg max
F,G

Eq(x,z)[log (1−D(x, z))] + Ep(x,z)[logD(x, z)]

+ βIq(x, z). (19)

Related works Ulyanov et al. (2017) improves re-
constructions quality by forgoing the discriminator and
expressing the adversarial game between the encoder and
decoder. Kumar et al. (2017) augments the bi-directional
objective by considering the reconstruction and the corre-
sponding encodings as an additional fake pair. Belghazi
et al. (2018) shows that a Markovian hierarchical generator
in a bi-directional adversarial model provide a hierarchy of

7We switch to density notations for convenience throughout
this section.
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(a) Training set (b) DCGAN (c) DCGAN+MINE

Figure 5. Samples from the Stacked MNIST dataset along with generated samples from DCGAN and DCGAN with MINE. While
DCGAN only shows a very limited number of modes, the inclusion of MINE generates a much better representative set of samples.

reconstructions with increasing levels of fidelity (increasing
reconstruction quality). Li et al. (2017) shows that the
expected reconstruction error can be diminished by
minimizing the conditional entropy of the observables given
the latent representations. The conditional entropy being
intractable for general posterior, Li et al. (2017) proposes
to augment the generator’s loss with an adversarial cycle
consistency loss (Zhu et al., 2017) between the observables
and their reconstructions.
Experiment: ALI+MINE In this section we compare
MINE to existing bi-directional adversarial models. As the
decoder’s density is generally intractable, we use three dif-
ferent metrics to measure the fidelity of the reconstructions
with respect to the samples; (i) the euclidean reconstruction
error, (ii) reconstruction accuracy, which is the proportion
of labels preserved by the reconstruction as identified by a
pre-trained classifier; (iii) the Multi-scale structural sim-
ilarity metric (MS-SSIM, Wang et al., 2004) between the
observables and their reconstructions.

We train MINE on datasets of increasing order of complex-
ity: a toy dataset composed of 25-Gaussians, MNIST (Le-
Cun, 1998), and the CelebA dataset (Liu et al., 2015). Fig. 6
shows the reconstruction ability of MINE compared to ALI.
Although ALICE does perfect reconstruction (which is in its
explicit formulation), we observe significant mode-dropping
in the sample space. MINE does a balanced job of recon-
structing along with capturing all the modes of the underly-
ing data distribution.

Next, we measure the fidelity of the reconstructions over
ALI, ALICE, and MINE. Tbl. 2 compares MINE to the
existing baselines in terms of euclidean reconstruction er-
rors, reconstruction accuracy, and MS-SSIM. On MNIST,
MINE outperforms ALI in terms of reconstruction errors by
a good margin and is competitive to ALICE with respect to
reconstruction accuracy and MS-SSIM. Our results show
that MINE’s effect on reconstructions is even more dramatic
when compared to ALI and ALICE on the CelebA dataset.

5.3. Information Bottleneck

The Information Bottleneck (IB, Tishby et al., 2000) is an
information theoretic method for extracting relevant infor-

Model Recons.
Error

Recons.
Acc.(%) MS-SSIM

MNIST

ALI 14.24 45.95 0.97
ALICE(l2) 3.20 99.03 0.97
ALICE(Adv.) 5.20 98.17 0.98
MINE 9.73 96.10 0.99

CelebA

ALI 53.75 57.49 0.81
ALICE(l2) 8.01 32.22 0.93
ALICE(Adv.) 92.56 48.95 0.51
MINE 36.11 76.08 0.99

Table 2. Comparison of MINE with other bi-directional adversar-
ial models in terms of euclidean reconstruction error, reconstruc-
tion accuracy, and MS-SSIM on the MNIST and CelebA datasets.
MINE does a good job compared to ALI in terms of reconstruc-
tions. Though the explicit reconstruction based baselines (ALICE)
can sometimes do better than MINE in terms of reconstructions
related tasks, they consistently lag behind in MS-SSIM scores and
reconstruction accuracy on CelebA.

mation, or yielding a representation, that an input X ∈ X
contains about an output Y ∈ Y . An optimal representation
of X would capture the relevant factors and compress X
by diminishing the irrelevant parts which do not contribute
to the prediction of Y . IB was recently covered in the con-
text of deep learning (Tishby & Zaslavsky, 2015), and as
such can be seen as a process to construct an approxima-
tion of the minimally sufficient statistics of the data. IB
seeks an encoder, q(Z | X), that induces the Markovian
structure X → Z → Y . This is done by minimizing the IB
Lagrangian,

L[q(Z | X)] = H(Y |Z) + βI(X,Z), (20)

which appears as a standard cross-entropy loss augmented
with a regularizer promoting minimality of the representa-
tion (Achille & Soatto, 2017). Here we propose to estimate
the regularizer with MINE.

Related works In the discrete setting, (Tishby et al., 2000)
uses the Blahut-Arimoto Algorithm (Arimoto, 1972), which
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(a) ALI (b) ALICE (l2) (c) ALICE (A) (d) ALI+MINE Figure 6. Reconstructions and model sam-
ples from adversarially learned inference
(ALI) and variations intended to increase
improve reconstructions. Shown left to
right are the baseline (ALI), ALICE with
the l2 loss to minimize the reconstruction
error, ALICE with an adversarial loss, and
ALI+MINE. Top to bottom are the recon-
structions and samples from the priors. AL-
ICE with the adversarial loss has the best
reconstruction, though at the expense of
poor sample quality, where as ALI+MINE
captures all the modes of the data in sample
space.

can be understood as cyclical coordinate ascent in function
spaces. While IB is successful and popular in a discrete
setting, its application to the continuous setting was stifled
by the intractability of the continuous mutual information.
Nonetheless, IB was applied in the case of jointly Gaussian
random variables in (Chechik et al., 2005).

In order to overcome the intractability of I(X;Z) in
the continuous setting, Alemi et al. (2016); Kolchinsky
et al. (2017); Chalk et al. (2016) exploit the variational
bound of Barber & Agakov (2003) to approximate the
conditional entropy in I(X;Z). These approaches differ
only on their treatment of the marginal distribution of
the bottleneck variable: Alemi et al. (2016) assumes a
standard multivariate normal marginal distribution, Chalk
et al. (2016) uses a Student-t distribution, and Kolchinsky
et al. (2017) uses non-parametric estimators. Due to their
reliance on a variational approximation, these methods
require a tractable density for the approximate posterior,
while MINE does not.
Experiment: Permutation-invariant MNIST classifica-
tion Here, we demonstrate an implementation of the IB
objective on permutation invariant MNIST using MINE. We
compare to the Deep Variational Bottleneck (DVB, Alemi
et al., 2016) and use the same empirical setup. As the DVB
relies on a variational bound on the conditional entropy, it
therefore requires a tractable density. Alemi et al. (2016)
opts for a conditional Gaussian encoder z = µ(x) + σ � ε,
where ε ∼ N (0, I). As MINE does not require a tractable
density, we consider three type of encoders: (i) a Gaussian
encoder as in Alemi et al. (2016); (ii) an additive noise
encoder, z = enc(x+ σ� ε); and (iii) a propagated noise
encoder, z = enc([x, ε]). Our results can be seen in Tbl. 3,
and this shows MINE as being superior in these settings.

6. Conclusion
We proposed a mutual information estimator, which we
called the mutual information neural estimator (MINE), that
is scalable in dimension and sample-size. We demonstrated

Model Misclass. rate(%)

Baseline 1.38%
Dropout 1.34%

Confidence penalty 1.36%
Label Smoothing 1.40%

DVB 1.13%
DVB + Additive noise 1.06%

MINE(Gaussian) (ours) 1.11%
MINE(Propagated) (ours) 1.10%

MINE(Additive) (ours) 1.01%

Table 3. Permutation Invariant MNIST misclassification rate using
Alemi et al. (2016) experimental setup for regularization by con-
fidence penalty (Pereyra et al., 2017), label smoothing (Pereyra
et al., 2017), Deep Variational Bottleneck(DVB) (Alemi et al.,
2016) and MINE. The misclassification rate is averaged over ten
runs. In order to control for the regularizing impact of the additive
Gaussian noise in the additive conditional, we also report the re-
sults for DVB with additional additive Gaussian noise at the input.
All non-MINE results are taken from Alemi et al. (2016).

the efficiency of this estimator by applying it in a num-
ber of settings. First, a term of mutual information can
be introduced alleviate mode-dropping issue in generative
adversarial networks (GANs, Goodfellow et al., 2014). Mu-
tual information can also be used to improve inference and
reconstructions in adversarially-learned inference (ALI, Du-
moulin et al., 2016). Finally, we showed that our estimator
allows for tractable application of Information bottleneck
methods (Tishby et al., 2000) in a continuous setting.
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