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1. Sampled Softmax is biased
Theorem 1.1. The gradient of sample softmax is an unbi-
ased estimator of the full softmax gradient iff qi = pi ∝
exp(oi)

Proof. Note that the random variable in eq. (6) is the sample
s. Remember that the sample consists of one positive label
that is chosen with probability 1 and m negatives that are
sampled from q. Our proof analyzes both parts separately.
For notational convenience and without loss of generality,
we assume that the positive class has index 1, y1 = 1, and
that the positive is at the first position in the sample, i.e.,
s1 = 1.

Case 1: First we analyze the output oi of the positive label,
i.e., yi = 1. Under our notational assumptions i = 1.
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Step (A) is Jensen’s inequality. This turns into an equality
if and only if

∑m+1
k=2 exp(o′sk) is constant which means

exp(o′l) = exp(osl−lnmqsl) =
exp(osl )

mqsl
has to be constant.

This is true iff qsl ∝ exp(osl). In other words, for a positive
label, the softmax distribution is the only choice to create
an unbiased sampled softmax.

Case 2: Let i be a negative class such that yi = 0. Under
our notational assumptions, i > 1. For the second case,
we only show that softmax is unbiased, i.e., the sufficient
condition of the theorem. We don’t show that softmax is the
only distribution that is unbiased. This necessary condition
is already covered by case 1. Let the negative sampling
distribution be the softmax qi :=

exp(oi)∑n
l=2 exp(oj)

.
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This proof uses that for the softmax sampling distribution,
the sum of corrected sampled outputs is equal to the sum of
all outputs.
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This equality is related to eq. (12). While eq. (12) holds for
any sampling distribution but only in expectation, eq. (13)
holds only for softmax but for any sample.
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Penn Tree Bank: Unigram Sampler
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Penn Tree Bank: Quartic Sampler

Training Epoch

P
e

rp
le

x
it
y

●

●

● ●

●

10

20

40

80

160

320

640

1280

2560

5120

0 10 20 30 40

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

Penn Tree Bank: Softmax Sampler
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Figure 1. Convergence speed of different sampling distributions (uniform, unigram, bigram, quadratic, quartic, softmax) for a varying
sample size m ∈ {10, 20, 40, . . .} on the Penn Tree Bank dataset. Once enough samples are taken to remove the bias, adding more
samples does not increase convergence speed considerably.
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Figure 2. Convergence speed for three sampling distributions (uniform, quadratic, softmax) for a varying sample size m ∈
{10, 20, 40, . . .} on three datasets. Once enough samples are taken to remove the bias, adding more samples does not increase
convergence speed considerably.
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Figure 3. Convergence speed of different sampling distributions for a fixed sampling size. The convergence speed of all distributions is
similar only the bias is different.


