
Quasi-Monte Carlo Variational Inference

A. Additional Information on QMC
We provide some background on qmc sequences that we estimate
necessary for the understanding of our algorithm and our theoreti-
cal results.

Quasi-Monte Carlo (QMC) Low discrepancy sequences
(also called Quasi Monte Carlo sequences), are used to approxi-
mate integrals over the [0, 1]d hyper-cube: Eψ(U) =

∫
[0,1]d ψ(u)du,

that is the expectation of the random variable ψ(U), where U ∼
U[0, 1]d, is a uniform distribution on [0, 1]d. The basic Monte
Carlo approximation of the integral is ÎN := 1

N

∑N
n=1 ψ(un), where

each un ∼ U[0, 1]d, independently. The error of this approxima-
tion is O(N−1), since Var[ÎN] = Var[ψ(U)]/N.

This basic approximation may be improved by replacing the ran-
dom variables un by a low-discrepancy sequence; that is, infor-
mally, a deterministic sequence that covers [0, 1]d more regularly.
The error of this approximation is assessed by the Koksma-Hlawka
inequality (Hickernell, 2006):∣∣∣∣∣∣∣

∫
[0,1]d

ψ(u)du −
1
N

N∑
n=1

ψ(un)

∣∣∣∣∣∣∣ ≤ V(ψ)D∗(u1:N), (8)

where V(ψ) is the total variation in the sense of Hardy and Krause
(Hardy, 1905). This quantity is closely linked to the smoothness
of the function ψ. D∗(u1:N) is called the star discrepancy, that
measures how well the sequence covers the target space.

The general notion of discrepancy of a given sequence u1, · · · , uN
is defined as follows:

D(u1:N ,A) := sup
A∈A

∣∣∣∣∣∣∣ 1
N

N∑
n=1

1 {un ∈ A} − λd(A)

∣∣∣∣∣∣∣ ,
where λd(A) is the volume (Lebesgue measure on Rd) of A and
A is a set of measurable sets. When we fix the sets A = [0,b] =∏d

i=1[0, bi] with 0 ≤ bi ≤ 1 as a products set of intervals anchored
at 0, the star discrepancy is then defined as follows

D∗(u1:N) := sup
[0,b]

∣∣∣∣∣∣∣ 1
N

N∑
n=1

1 {un ∈ [0,b]} − λd([0,b])

∣∣∣∣∣∣∣ .
It is possible to construct sequences such that D∗(u1:N) =
O((log N)2d−2/N2). See also Kuipers and Niederreiter (2012) and
Leobacher and Pillichshammer (2014) for more details.

Thus, qmc integration schemes are asymptotically more efficient
than mc schemes. However, if the dimension d gets too large, the
number of necessary samples N in order to reach the asymptotic
regime becomes prohibitive. As the upper bound is rather pes-
simistic, in practice qmc integration outperforms mc integration
even for small N in most applications, see e.g. the examples in
Chapter 5 of Glasserman (2013). Popular qmc sequences are for
example the Halton sequence or the Sobol sequence. See e.g. Dick
et al. (2013) for details on the construction. A drawback of qmc
is that it is difficult to assess the error and that the deterministic
approximation is inherently biased.

Ramdomized Quasi Monte Carlo (RQMC). The rein-
troduction of randomness in a low discrepancy sequence while
preserving the low discrepancy properties enables the construc-
tion of confidence intervals by repeated simulation. Moreover,

MC QMC RQMC
N−1 N−2(log N)2d−2 N−2

Table 1: Best achievable rates for mc, qmc and rqmc in
terms of the MSE of the approximation.

the randomization makes the approximation unbiased. The sim-
plest method for this purpose is a randomly shifted sequence. Let
v ∼ U[0, 1]d. Then the sequence based on ûn := un + v mod 1
preserves the properties of the qmc sequence with probability 1
and is marginally uniformly distributed.

Scrambled nets (Owen, 1997) represent a more sophisticated ap-
proach. Assuming smoothness of the derivatives of the function,
Gerber (2015) showed recently, that rates of O(N−2) are achievable.
We summarize the best rates in table 1.

Transforming qmc and rqmc sequences A generic recipe
for using qmc / rqmc for integration is given by transforming
a sequence with the inverse Rosenblatt transformation Γ : u ∈
[0, 1]d 7→ z ∈ Rd, see Rosenblatt (1952) and Gerber and Chopin
(2015), such that∫

ψ(Γ(u))du =

∫
ψ(z)p(z)dz,

where p(z) is the respective measure of integration. The inverse
Rosenblatt transformation can be understood as the multivariate ex-
tension of the inverse cdf transform. For the procedure to be correct
we have to make sure that ψ ◦ Γ is sufficiently regular.

Theoretical Results on RQMC In our analysis we mainly
use the following result.

Theorem 4 (Owen et al., 2008) Let ψ : [0, 1]d → R be a function
such that its cross partial derivatives up to order d exist and are
continuous, and let (un)n∈1:N be a relaxed scrambled (α, s,m, d)-net
in base b with dimension d with uniformly bounded gain coeffi-
cients. Then,

Var

 1
N

N∑
n=1

ψ(un)

 = O
(
N−3 log(N)(d−1)

)
,

where N = αbm.

In words, ∀τ > 0 the rqmc error rate is O(N−3+τ) when a scram-
bled (α, s,m, d)-net is used. However, a more general result has
recently been shown by Gerber (2015)[Corollary 1], where if ψ
is square integrable and (un)n∈1:N is a scrambled (s, d)-sequence,
then

Var

 1
N

N∑
n=1

ψ(un)

 = o
(
N−1

)
.

This result shows that rqmc integration is always better than MC
integration. Moreover, Gerber (2015)[Proposition 1] shows that
rates O(N−2) can be obtained when the function ψ is regular in the
sense of Theorem 4 . In particular one gets

Var

 1
N

N∑
n=1

ψ(un)

 = O
(
N−2

)
.

Quasi-Monte Carlo Variational Inference

B. Proofs
Our proof are deduced from standard results in the stochastic ap-
proximation literature, e.g. Bottou et al. (2016), when the variance
of the gradient estimator is reduced due to rqmc sampling. Our
proofs rely on scrambled (s, d)-sequences in order to use the result
of Gerber (2015). The scrambled Sobol sequence, that we use in
our simulations satisfies the required properties. We denote by E
the total expectation and by EUN,t the expectation with respect to
the rqmc sequence UN generated at time t. Note, that λt is not
a random variable w.r.t. UN,t as it only depends on all the previ-
ous UN,1, · · · ,UN,t−1 due to the update equation in (6). However,
F̂N(λt) is a random variable depending on UN,t.

B.1. Proof of Theorem 1

Let us first prove that tr Var
[
ĝN(λ)

]
≤ MV × r(N) for all λ. By

assumption we have that gz(λ) with z = Γ(u) is a function G : u 7→
gΓ(u)(λ) with continuous mixed partial derivatives of up to order
d for all λ. Therefore, if u1, · · · ,uN is a rqmc sequence, then the
trace of the variance of the estimator ĝN(λ) is upper bounded by
Theorem 4 and its extension by Gerber (2015)[Proposition 1] by a
uniform bound MV and the quantity r(N) = O(N−2), that goes to 0
faster than the Monte Carlo rate 1/N.

By the Lipschitz assumption we have that F(λ) ≤ F(λ) +

∇F(λ)T (λ − λ) + 1
2 L‖λ − λ‖22, ∀λ, λ, see for example Bottou et al.

(2016). By using the fact that λt+1 − λt = −αĝN(λt) we ob-
tain

F(λt+1) − F(λt)

≤ ∇F(λt)T (λt+1 − λt) +
1
2

L‖λt+1 − λt‖
2
2,

= −α∇F(λt)T ĝN(λt) +
α2L

2
‖ĝN(λt)‖22.

After taking expectations with respect to UN,t we obtain

EUN,t F(λt+1) − F(λt)

≤ −α∇F(λt)EUN,t ĝN(λt) +
α2L

2
EUN,t ‖ĝN(λt)‖22.

We now use the fact that EUN,t ‖ĝN(λt)‖22 = tr VarUN,t

[
ĝN(λt)

]
+

‖EUN,t ĝN(λt)‖22 and after exploiting the fact that EUN,t ĝN(λt) =
∇F(λt) we obtain

EUN,t F(λt+1) − F(λt)

≤ −α‖∇F(λt)‖22 +
α2L

2

[
tr VarUN,t

[
ĝN(λt)

]
+ ‖∇F(λt)‖22

]
,

=
α2L

2
tr VarUN,t

[
ĝN(λt)

]
+

(
α2L

2
− α

)
‖∇F(λt)‖22.

The inequality is now summed for t = 1, · · · ,T and we take the
total expectation:

EF(λT) − F(λ1)

≤
α2L

2

T∑
t=1

E tr VarUN,t

[
ĝN(λt)

]
+

(
α2L

2
− α

) T∑
t=1

E‖∇F(λt)‖22.

We use the fact that F(λ?) − F(λ1) ≤ EF(λT) − F(λ1), where
λ1 is deterministic and λ? is the true minimizer, and divide the
inequality by T :

1
T

[
F(λ?) − F(λ1)

]
≤

α2L
2

1
T

T∑
t=1

E tr VarUN,t

[
ĝN(λt)

]
+

(
α2L

2
− α

)
1
T

T∑
t=1

E‖∇F(λt)‖22.

By rearranging and using α < 2/L and µ = 1 − αL/2 we ob-
tain

1
T

T∑
t=1

E‖∇F(λt)‖22

≤
1

Tαµ
[
F(λ1) − F(λ?)

]
+
αL
2µ

1
T

T∑
t=1

E tr VarUN,t

[
ĝN(λt)

]
.

We now use tr VarUN,t

[
ĝN(λt)

]
≤ MV r(N) for all t. Equation (7) is

obtained as T → ∞.

B.2. Proof of Theorem 2

A direct consequence of strong convexity is the fact that the op-
timality gap can be upper bounded by the gradient in the current
point λ, e.g. 2c(F(λ) − F(λ?)) ≤ ‖∇F(λ)‖22,∀λ. The following
proof uses this result. Based on the previous proof we get

EUN,t F(λt+1) − F(λt)

≤
α2L

2
tr VarUN,t

[
ĝN(λt)

]
+

(
α2L

2
− α

)
‖∇F(λt)‖22

≤
α2L

2
tr VarUN,t

[
ĝN(λt)

]
+

(
α2L

2
− α

)
2c

(
F(λt) − F(λ?)

)
,

where we have used that
(
αL
2 − 1

)
≤ 0. By subtracting F(λ?)

from both sides, taking total expectations and rearranging we
obtain:

EF(λt+1) − F(λ?)

≤
α2L

2
E tr VarUN,t

[
ĝN(λt)

]
+

[(
α2L

2
− α

)
2c + 1

] (
EF(λt) − F(λ?)

)
.

Define β =
[(

α2L
2 − α

)
2c + 1

]
. We add

α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)

to both sides of the equation. This yields

Quasi-Monte Carlo Variational Inference

EF(λt+1) − F(λ?) +
α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)

≤
α2L

2
E tr VarUN,t

[
ĝN(λt)

]
+β

(
EF(λt) − F(λ?)

)
+
α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)

≤ β

EF(λt) − F(λ?) +
α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)

 .
Let us now show that β < 1:

β ≤

[(
αL
2
− 1

)
2αc + 1

]
And as αL

2 < 1 we get β < 1 − 2αc. Using α < 1/2c we obtain
β < 1 and thus get a contracting equation when iterating over
t:

EF(λt+1) − F(λ?)

≤ βt

F(λ1) − F(λ?) +
α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)


−
α2LE tr VarUN,t

[
ĝN(λt)

]
2(β − 1)

,

≤ βt

(
F(λ1) − F(λ?) +

α2LMV r(N)
2(β − 1)

)
+
α2LMV r(N)

2(1 − β)
.

After simplification we get

EF(λt+1) − F(λ?)

≤ βt
(
F(λ1) − F(λ?) +

αL
2αLc − 4c

MV r(N)
)

+
αL

4c − 2αLc
MV r(N),

where the first term of the r.h.s. goes to 0 as t → ∞.

B.3. Proof of Theorem 3

We require N ≥ bs+d, due to a remark of Gerber (2015), where d
is the dimension and b, s are integer parameters of the rqmc se-
quence. As u 7→ gΓ(u)(λ) has continuous mixed partial derivatives
of order d for all λ, tr Var

[
ĝNt (λ)

]
= O(1/N2

t) and consequently
tr Var

[
ĝNt (λ)

]
≤ M̂V × (1/N2

t), where M̂V is an universal upper
bound on the variance. We recall that Nt = N + dτte. Conse-
quently

tr Var
[
ĝNt (λ)

]
≤ M̂V ×

1
(N + dτte)2 ≤ M̂V ×

1
τ2t .

Now we take an intermediate result from the previous
proof:

EUN,t F(λt+1) − F(λt)

≤
α2L

2
tr VarUN,t

[
ĝNt (λt)

]
+

(
α2L

2
− α

)
‖∇F(λt)‖22

≤
α2L

2
tr VarUN,t

[
ĝNt (λt)

]
−
α

2
‖∇F(λt)‖22

≤
α2L

2
tr VarUN,t

[
ĝNt (λt)

]
− αc

(
F(λt) − F(λ?)

)
,

where we have used α ≤ min{1/c, 1/L} as well as strong con-
vexity. Adding F(λ?), rearranging and taking total expectations
yields

EF(λt+1) − F(λ?)

≤
α2L

2
E tr VarUN,t

[
ĝNt (λt)

]
+[1 − αc]

(
EF(λt) − F(λ?)

)
.

We now use tr VarUN,t

[
ĝNt (λt)

]
≤ M̂Vξ

2t and get

EF(λt+1) − F(λ?)

≤
α2L

2
M̂Vξ

2t + [1 − αc]
(
EF(λt) − F(λ?)

)
.

We now use induction to prove the main result. The initialization
for t = 0 holds true by the definition of ω. Then, for all t ≥
1,

EF(λt+1) − F(λ?)

≤ [1 − αc]ωξ2t +
α2L

2
M̂Vξ

2t,

≤ ωξ2t

(
1 − αc +

α2LM̂V

2ω

)
,

≤ ωξ2t
(
1 − αc +

αc
2

)
,

≤ ωξ2t
(
1 −

αc
2

)
≤ ωξ2(t+1),

where we have used the definition of ω and that
(
1 − αc

2

)
≤

ξ2.

C. Details for the Models Considered in the
Experiments

C.1. Hierarchical Linear Regression

The generative process of the hierarchical linear regression model
is as follows.

µβ ∼ N(0, 102) intercept hyper prior
σβ ∼ LogNormal(0.5) intercept hyper prior
ε ∼ LogNormal(0.5) noise
bi ∼ N(µβ, σβ) intercepts

yi ∼ N(x>i bi, ε) output

Quasi-Monte Carlo Variational Inference

The dimension of the parameter space is d = I × k + k + 2, where
k denotes the dimension of the data points xi and I their number.
We set I = 100 and k = 10. The dimension hence equals d =
1012.

C.2. Multi-level Poisson GLM

The generative process of the multi-level Poisson GLM is

µ ∼ N(0, 102) mean offset

logσ2
α, logσ2

β ∼ N(0, 102) group variances

αe ∼ N(0, σ2
α) ethnicity effect

βp ∼ N(0, σ2
β) precinct effect

log λep = µ + αe + βp + log Nep log rate
Yep ∼ Poisson(λep) stop-and-frisk events

Yep denotes the number of stop-and-frisk events within ethnicity
group e and precinct p over some fixed period. Nep represents
the total number of arrests of group e in precinct p over the same
period; αe and βp are the ethnicity and precinct effects.

C.3. Bayesian Neural Network

We study a Bayesian neural network which consists of a 50-unit
hidden layer with ReLU activations.

The generative process is

α ∼ InvGamma(1, 0.1) weight hyper prior
τ ∼ InvGamma(1, 0.1) noise hyper prior
wi ∼ N(0, 1/α) weights
y ∼ N(φ(x,w), 1/τ) output distribution

Above, w is the set of weights, and φ(x,w) is a multi-layer per-
ceptron that maps input x to output y as a function of parameters
w. We denote the set of parameters as θ := (w, α, τ). The model
exhibits a posterior of dimension d = 653.

D. Practical Advice for Implementing QMCVI
in Your Code

It is easy to implement rqmc based stochastic optimization in your
existing code. First, you have to look for all places where random
samples are used. Then replace the ordinary random number
generator by rqmc sampling. To replace an ordinarily sampled
random variable z by an rqmc sample we need a mapping Γ from
a uniformly distributed random variable u to z = Γ(u|λ), where λ
are the parameters of the distribution (e.g. mean and covariance
parameter for a Gaussian random variable). Fortunately, such a
mapping can often be found (see Appendix A).

In many recent machine learning models, such as variational auto
encoders (Kingma and Ba, 2015) or generative adversarial net-
works (Goodfellow et al., 2014), the application of rqmc sampling
is straightforward. In those models, all random variables are often
expressed as transformations of Gaussian random variables via
deep neural networks. To apply our proposed rqmc sampling ap-
proach we only have to replace the Gaussian random variables of
the base distributions by rqmc sampled random variables.

In the following Python code snippet we show how to apply our
proposed rqmc sampling approach in such settings.

import numpy.random as nr
import numpy as np
import rpy2.robjects.packages as rpackages
import rpy2.robjects as robjects
from scipy.stats import norm

randtoolbox = rpackages.importr(’randtoolbox’)

def random_sequence_rqmc(dim, i=0, n=1, random_seed=0):
"""
generate uniform RQMC random sequence
"""
dim = np.int(dim)
n = np.int(n)
u = np.array(randtoolbox.sobol(n=n, dim=dim, init=(
i==0), scrambling=1, seed=random_seed)).reshape((n,
dim))
randtoolbox for sobol sequence
return(u)

def random_sequence_mc(dim, n=1, random_seed=0):
"""
generate uniform MC random sequence
"""
dim = np.int(dim)
n = np.int(n)
np.random.seed(seed=random_seed)
u = np.asarray(nr.uniform(size=dim*n).reshape((n,
dim)))
return(u)

def transfrom_uniform_to_normal(u, mu, sigma):
"""
generat a multivariate normal based on
a unifrom sequence
"""
l_cholesky = np.linalg.cholesky(sigma)
epsilon = norm.ppf(u).transpose()
res = np.transpose(l_cholesky.dot(epsilon))+mu
return res

if __name__ == ’__main__’:
example in dimension 2
dim = 2
n = 100
mu = np.ones(dim)*2. # mean of the Gaussian
sigma = np.array([[2.,1.],[1.,2.]]) # variance of
the Gaussian

generate Gaussian random variables via RQMC
u_random = random_sequence_rqmc(dim, i=0, n=n,
random_seed=1)
x_normal = transfrom_uniform_to_normal(u_random, mu
, sigma)

here comes the existing code of your model
deep_bayesian_model(x_normal)

Code 1: Python code for rqmc sampling from a Gaussian
distribution.

