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Abstract
Many machine learning problems involve Monte
Carlo gradient estimators. As a prominent ex-
ample, we focus on Monte Carlo variational in-
ference (mcvi) in this paper. The performance
of mcvi crucially depends on the variance of its
stochastic gradients. We propose variance reduc-
tion by means of Quasi-Monte Carlo (qmc) sam-
pling. qmc replaces N i.i.d. samples from a uni-
form probability distribution by a deterministic
sequence of samples of length N. This sequence
covers the underlying random variable space more
evenly than i.i.d. draws, reducing the variance of
the gradient estimator. With our novel approach,
both the score function and the reparameteriza-
tion gradient estimators lead to much faster con-
vergence. We also propose a new algorithm for
Monte Carlo objectives, where we operate with
a constant learning rate and increase the number
of qmc samples per iteration. We prove that this
way, our algorithm can converge asymptotically
at a faster rate than sgd. We furthermore provide
theoretical guarantees on qmc for Monte Carlo
objectives that go beyond mcvi, and support our
findings by several experiments on large-scale
data sets from various domains.

1. Introduction

In many situations in machine learning and statistics, we
encounter objective functions which are expectations over
continuous distributions. Among other examples, this sit-
uation occurs in reinforcement learning (Sutton and Barto,
1998) and variational inference (Jordan et al., 1999). If the
expectation cannot be computed in closed form, an approxi-
mation can often be obtained via Monte Carlo (mc) sampling
from the underlying distribution. As most optimization pro-
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cedures rely on the gradient of the objective, a mc gradient
estimator has to be built by sampling from this distribution.
The finite number of mc samples per gradient step intro-
duces noise. When averaging over multiple samples, the
error in approximating the gradient can be decreased, and
thus its variance reduced. This guarantees stability and fast
convergence of stochastic gradient descent (sgd).

Certain objective functions require a large number of mc
samples per stochastic gradient step. As a consequence, the
algorithm gets slow. It is therefore desirable to obtain the
same degree of variance reduction with fewer samples. This
paper proposes the idea of using Quasi-Monte Carlo (qmc)
samples instead of i.i.d. samples to achieve this goal.

A qmc sequence is a deterministic sequence which covers
a hypercube [0, 1]d more regularly than random samples.
When using a qmc sequence for Monte Carlo integration, the
mean squared error (MSE) decreases asymptotically with
the number of samples N as O(N−2(log N)2d−2) (Leobacher
and Pillichshammer, 2014). In contrast, the naive mc inte-
gration error decreases as O(N−1). Since the cost of generat-
ing N qmc samples is O(N log N), this implies that a much
smaller number of operations per gradient step is required in
order to achieve the same precision (provided that N is large
enough). Alternatively, we can achieve a larger variance
reduction with the same number of samples, allowing for
larger gradient steps and therefore also faster convergence.
This paper investigates the benefits of this approach both
experimentally and theoretically.

Our ideas apply in the context of Monte Carlo variational
inference (mcvi), a set of methods which make approxi-
mate Bayesian inference scalable and easy to use. Variance
reduction is an active area of research in this field. Our
algorithm has the advantage of being very general; it can
be easily implemented in existing software packages such
as STAN and Edward (Carpenter et al., 2017; Tran et al.,
2016). In Appendix D we show how our approach can be
easily implemented in your existing code.

The main contributions are as follows:

• We investigate the idea of using qmc sequences for
Monte Carlo variational inference. While the usage
of qmc for vi has been suggested in the outlook sec-
tion of Ranganath et al. (2014), to our knowledge, we
are the first to actually investigate this approach both
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theoretically and experimentally.

• We show that when using a randomized version of qmc
(rqmc), the resulting stochastic gradient is unbiased
and its variance is asymptotically reduced. We also
show that when operating sgd with a constant learning
rate, the stationary variance of the iterates is reduced by
a factor of N, allowing us to get closer to the optimum.

• We propose an algorithm which operates at a constant
learning rate, but increases the number of rqmc sam-
ples over iterations. We prove that this algorithm has a
better asymptotic convergence rate than sgd.

• Based on three different experiments and for two pop-
ular types of gradient estimators we illustrate that our
method allows us to train complex models several or-
ders of magnitude faster than with standard mcvi.

Our paper is structured as follows. Section 2 reviews re-
lated work. Section 3 explains our method and exhibits
our theoretical results. In Section 4 we describe our experi-
ments and show comparisons to other existing approaches.
Finally, Section 5 concludes and lays out future research
directions.

2. Related Work

Monte Carlo Variational Inference (MCVI) Since the
introduction of the score function (or REINFORCE) gradi-
ent estimator for variational inference (Paisley et al., 2012;
Ranganath et al., 2014), Monte Carlo variational inference
has received an ever-growing attention, see Zhang et al.
(2017a) for a recent review. The introduction of the gradient
estimator made vi applicable to non-conjugate models but
highly depends on the variance of the gradient estimator.
Therefore various variance reduction techniques have been
introduced; for example Rao-Blackwellization and control
variates, see Ranganath et al. (2014) and importance sam-
pling, see Ruiz et al. (2016a); Burda et al. (2016).

At the same time the work of Kingma and Welling (2014);
Rezende et al. (2014) introduced reparameterization gradi-
ents for mcvi, which typically exhibits lower variance but
are restricted to models where the variational family can be
reparametrized via a differentiable mapping. In this sense
mcvi based on score function gradient estimators is more
general but training the algorithm is more difficult. A uni-
fying view is provided by Ruiz et al. (2016b). Miller et al.
(2017) introduce a modification of the reparametrized ver-
sion, but relies itself on assumptions on the underlying varia-
tional family. Roeder et al. (2017) propose a lower variance
gradient estimator by omitting a term of the elbo. The idea
of using qmc in order to reduce the variance has been sug-
gested by Ranganath et al. (2014) and Ruiz et al. (2016a) and
used for a specific model by Tran et al. (2017), but without

a focus on analyzing or benchmarking the method.

Quasi-Monte Carlo and Stochastic Optimization Be-
sides the generation of random samples for approximating
posterior distributions (Robert and Casella, 2013), Monte
Carlo methods are used for calculating expectations of in-
tractable integrals via the law of large numbers. The error
of the integration with random samples goes to zero at a
rate of O(N−1) in terms of the MSE. For practical applica-
tion this rate can be too slow. Faster rates of convergence
in reasonable dimensions can be obtained by replacing the
randomness by a deterministic sequence, also called Quasi-
Monte Carlo.

Compared to Monte Carlo and for sufficiently regular func-
tions, qmc reaches a faster rate of convergence of the approx-
imation error of an integral. Niederreiter (1992); L’Ecuyer
and Lemieux (2005); Leobacher and Pillichshammer (2014);
Dick et al. (2013) provide excellent reviews on this topic.
From a theoretical point of view, the benefits of qmc vanish
in very high dimensions. Nevertheless, the error bounds are
often too pessimistic and in practice, gains are observed up
to dimension 150, see Glasserman (2013).

qmc has frequently been used in financial applications
(Glasserman, 2013; Joy et al., 1996; Lemieux and L’Ecuyer,
2001). In statistics, some applications include particle fil-
tering (Gerber and Chopin, 2015), approximate Bayesian
computation (Buchholz and Chopin, 2017), control func-
tionals (Oates and Girolami, 2016) and Bayesian optimal
design (Drovandi and Tran, 2018). Yang et al. (2014) used
qmc in the context of large scale kernel methods.

Stochastic optimization has been pioneered by the work
of Robbins and Monro (1951). As stochastic gradient de-
scent suffers from noisy gradients, various approaches for
reducing the variance and adapting the step size have been
introduced (Johnson and Zhang, 2013; Kingma and Ba,
2015; Defazio et al., 2014; Duchi et al., 2011; Zhang et al.,
2017b). Extensive theoretical results on the convergence of
stochastic gradients algorithms are provided by Moulines
and Bach (2011). Mandt et al. (2017) interpreted stochastic
gradient descent with constant learning rates as approximate
Bayesian inference. Some recent reviews are for example
Bottou et al. (2016); Nesterov (2013). Naturally, concepts
from qmc can be beneficial to stochastic optimization. Con-
tributions on exploiting this idea are e.g. Gerber and Bornn
(2017) and Drew and Homem-de Mello (2006).

3. Quasi-Monte Carlo Variational
Inference

In this Section, we introduce Quasi-Monte Carlo Variational
Inference (qmcvi), using randomized qmc (rqmc) for vari-
ational inference. We review mcvi in Section 3.1. rqmc
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and the details of our algorithm are exposed in Section 3.2.
Theoretical results are given in Section 3.3.

3.1. Background: Monte Carlo Variational
Inference

Variational inference (vi) is key to modern probabilistic
modeling and Bayesian deep learning (Jordan et al., 1999;
Blei et al., 2017; Zhang et al., 2017a). In Bayesian inference,
the object of interest is a posterior distribution of latent
variables z given observations x. vi approximates Bayesian
inference by an optimization problem which we can solve
by (stochastic) gradient ascent (Jordan et al., 1999; Hoffman
et al., 2013).

In more detail, vi builds a tractable approximation of the
posterior p(z|x) by minimizing the KL-divergence between
a variational family q(z|λ), parametrized by free parameters
λ ∈ Rd, and p(z|x). This is equivalent to maximizing the
so-called evidence lower bound (elbo):

L(λ) = Eq(z|λ)[log p(x, z) − log q(z|λ)]. (1)

In classical variational inference, the expectations involved
in (1) are carried out analytically (Jordan et al., 1999). How-
ever, this is only possible for the fairly restricted class of
so-called conditionally conjugate exponential family mod-
els (Hoffman et al., 2013). More recently, black-box vari-
ational methods have gained momentum, which make the
analytical evaluation of these expectation redundant, and
which shall be considered in this paper.

Maximizing the objective (1) is often based on a gradient
ascent scheme. However, a direct differentiation of the
objective (1) with respect to λ is not possible, as the measure
of the expectation depends on this parameter. The two major
approaches for overcoming this issue are the score function
estimator and the reparameterization estimator.

Score Function Gradient The score function gradient
(also called REINFORCE gradient) (Ranganath et al., 2014)
expresses the gradient as expectation with respect to q(z|λ)
and is given by

∇λL(λ)
= Eq(z|λ)[∇λ log q(z|λ)

(
log p(x, z) − log q(z|λ)

)
]. (2)

The gradient estimator is obtained by approximating the
expectation with independent samples from the variational
distribution q(z|λ). This estimator applies to continuous and
discrete variational distributions.

Reparameterization Gradient The second approach is
based on the reparametrization trick (Kingma and Welling,
2014), where the distribution over z is expressed as a deter-
ministic transformation of another distribution over a noise

variable ε, hence z = gλ(ε) where ε ∼ p(ε). Using the repa-
rameterization trick, the elbo is expressed as expectation
with respect to p(ε) and the derivative is moved inside the
expectation:

∇λL(λ)
= Ep(ε)[∇λ log p(x, gλ(ε)) − ∇λ log q(gλ(ε)|λ)]. (3)

The expectation is approximated using a mc sum of indepen-
dent samples from p(ε). In its basic form, the estimator is
restricted to distributions over continuous variables.

MCVI In the general setup of mcvi considered here, the
gradient of the elbo is represented as an expectation ∇λL(λ)
= E[gz̃(λ)] over a random variable z̃. For the score function
estimator we choose g according to Equation (2) with z̃ = z
and for the reparameterization gradient according to Equa-
tion (3) with z̃ = ε, respectively. This allows us to obtain a
stochastic estimator of the gradient by an average over a fi-
nite sample {z̃1, · · · , z̃N} as ĝN(λt) = (1/N)

∑N
i=1 gz̃i (λt).This

way, the elbo can be optimized by stochastic optimization.
This is achieved by iterating the sgd updates with decreasing
step sizes αt:

λt+1 = λt + αtĝN(λt). (4)

The convergence of the gradient ascent scheme in (4) tends
to be slow when gradient estimators have a high variance.
Therefore, various approaches for reducing the variance of
both gradient estimators exist; e.g. control variates (cv),
Rao-Blackwellization and importance sampling. However
these variance reduction techniques do not improve the
O(N−1) rate of the MSE of the estimator, except under some
restrictive conditions (Oates et al., 2017). Moreover, the
variance reduction schemes must often be tailored to the
problem at hand.

3.2. Quasi-Monte Carlo Variational Inference

Quasi Monte Carlo Low discrepancy sequences, also
called qmc sequences, are used for integrating a function
ψ over the [0, 1]d hypercube. When using standard i.i.d.
samples on [0, 1]d, the error of the approximation is O(N−1).
qmc achieves a rate of convergence in terms of the MSE
of O

(
N−2(log N)2d−2

)
if ψ is sufficiently regular (Leobacher

and Pillichshammer, 2014). This is achieved by a determin-
istic sequence that covers [0, 1]d more evenly.

On a high level, qmc sequences are constructed such that
the number of points that fall in a rectangular volume is
proportional to the volume. This idea is closely linked
to stratification. Halton sequences e.g. are constructed
using coprime numbers (Halton, 1964). Sobol sequences
are based on the reflected binary code (Antonov and Saleev,
1979). The exact construction of qmc sequences is quite
involved and we refer to Niederreiter (1992); Leobacher
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Uniform sequence Halton sequence Scrambled Sobol sequence

Figure 1: mc (left), qmc (center) and rqmc (right) se-
quences of length N = 256 on [0, 1]2. qmc and rqmc
tend to cover the target space more evenly.

and Pillichshammer (2014); Dick et al. (2013) for more
details.

The approximation error of qmc increases with the dimen-
sion, and it is difficult to quantify. Carefully reintroducing
randomness while preserving the structure of the sequence
leads to randomized qmc. rqmc sequences are unbiased and
the error can be assessed by repeated simulation. Moreover,
under slightly stronger regularity conditions on F we can
achieve rates of convergence of O(N−2) (Gerber, 2015). For
illustration purposes, we show different sequences in Figure
1. In Appendix A we provide more technical details.

qmc or rqmc can be used for integration with respect to
arbitrary distributions by transforming the initial sequence
on [0, 1]d via a transformation Γ to the distribution of inter-
est. Constructing the sequence typically costs O(N log N)
(Gerber and Chopin, 2015).

QMC and VI We suggest to replace N independent mc
samples for computing ĝN(λt) by an rqmc sequence of the
same length. With our approach, the variance of the gradient
estimators becomes O(N−2), and the costs for creating the
sequence is O(N log N). The incorporation of rqmc in vi is
straightforward: instead of sampling z̃ as independent mc
samples, we generate a uniform rqmc sequence u1, · · · , uN

and transform this sequence via a mapping Γ to the original
random variable z̃ = Γ(u). Using this transformation we
obtain the rqmc gradient estimator

ĝN(λt) = (1/N)
N∑

i=1

gΓ(ui)(λ). (5)

From a theoretical perspective, the function u 7→ gΓ(u)(λ)
has to be sufficiently smooth for all λ. For commonly used
variational families this transformation is readily available.
Although evaluating these transforms adds computational
overhead, we found this cost negligible in practice. For
example, in order to sample from a multivariate Gaussian
zn ∼ N(µ,Σ), we generate an rqmc squence un and apply
the transformation zn = Φ−1(un)Σ1/2 + µ, where Σ1/2 is the
Cholesky decomposition of Σ and Φ−1 is the component-
wise inverse cdf of a standard normal distribution. Similar

procedures are easily obtained for exponential, Gamma, and
other distributions that belong to the exponential family.
Algorithm 1 summarizes the procedure.

Algorithm 1: Quasi-Monte Carlo Variational Inference
Input: Data x, model p(x, z), variational family q(z|λ)
Result: Variational parameters λ∗

1 while not converged do
2 Generate uniform rqmc sequence u1:N
3 Transform the sequence via Γ

4 Estimate the gradient ĝN(λt) = 1
N

∑N
i=1 gΓ(ui)(λt)

5 Update λt+1 = λt + αt ĝN(λt)

rqmc samples can be generated via standard packages such
as randtoolbox (Christophe and Petr, 2015), available in
R. Existing mcvi algorithms are adapted by replacing the
random variable sampler by an rqmc version. Our approach
reduces the variance in mcvi and applies in particular to the
reparametrization gradient estimator and the score function
estimator. rqmc can in principle be combined with addi-
tional variance reduction techniques such as cv, but care
must be taken as the optimal cv for rqmc are not the same
as for mc (Hickernell et al., 2005).

3.3. Theoretical Properties of QMCVI

In what follows we give a theoretical analysis of using rqmc
in stochastic optimization. Our results apply in particular to
vi but are more general.

qmcvi leads to faster convergence in combination with
Adam (Kingma and Ba, 2015) or Adagrad (Duchi et al.,
2011), as we will show empirically in Section 4. Our analy-
sis, presented in this section, underlines this statement for
the simple case of sgd with fixed step size in the Lipschitz
continuous (Theorem 1) and strongly convex case (Theorem
2). We show that for N sufficiently large, sgd with rqmc
samples reaches regions closer to the true optimizer of the
elbo. Moreover, we obtain a faster convergence rate than
sgd when using a fixed step size and increasing the sample
size over iterations (Theorem 3).

RQMC for Optimizing Monte Carlo Objectives We
step back from black box variational inference and consider
the more general setup of optimizing Monte Carlo objec-
tives. Our goal is to minimize a function F(λ), where the
optimizer has only access to a noisy, unbiased version F̂N(λ),
with E[F̂N(λ)] = F(λ) and access to an unbiased noisy esti-
mator of the gradients ĝN(λ), with E[ĝN(λ)] = ∇F(λ). The
optimum of F(λ) is λ?.

We furthermore assume that the gradient estimator ĝN(λ)
has the form as in Eq. 5, where Γ is a reparameterization
function that converts uniform samples from the hypercube
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into samples from the target distribution. In this paper,
u1, · · · ,uN is an rqmc sequence.

In the following theoretical analysis, we focus on sgd with
a constant learning rate α. The optimal value λ? is approxi-
mated by sgd using the update rule

λt+1 = λt − αĝN(λt). (6)

Starting from λ1 the procedure is iterated until |F̂N(λt) −
F̂N(λt+1)| ≤ ε, for a small threshold ε. The quality of the
approximation λT ≈ λ

? crucially depends on the variance
of the estimator ĝN (Johnson and Zhang, 2013).

Intuitively, the variance of ĝN(λ) based on an rqmc sequence
will be O(N−2) and thus for N large enough, the variance
will be smaller than for the mc counterpart, that is O(N−1).
This will be beneficial to the optimization procedure defined
in (6). Our following theoretical results are based on stan-
dard proof techniques for stochastic approximation, see e.g.
Bottou et al. (2016).

Stochastic Gradient Descent with Fixed Step Size In
the case of functions with Lipschitz continuous derivatives,
we obtain the following upper bound on the norm of the
gradients.

Theorem 1 Let F be a function with Lipschitz continuous
derivatives, i.e. there exists L > 0 s.t. ∀λ, λ ‖∇F(λ) −
∇F(λ)‖22 ≤ L‖λ − λ‖22, let UN = {u1, · · · ,uN} be an rqmc
sequence and let ∀λ, G : u 7→ gΓ(u)(λ) has cross partial
derivatives of up to order d. Let the constant learning rate
α < 2/L and let µ = 1 − αL/2. Then ∀λ, tr VarUN [ĝN(λ)] ≤
MV × r(N), where MV < ∞ and r(N) = O

(
N−2

)
and

∑T
t=1 E‖∇F(λt)‖22

T

≤
1

2µ
αLMVr(N) +

F(λ1) − F(λ?)
αµT

,

where λt is iteratively defined in (6). Consequently,

lim
T→∞

∑T
t=1 E‖∇F(λt)‖22

T
≤

1
2µ
αLMVr(N). (7)

Equation (7) underlines the dependence of the sum of the
norm of the gradients on the variance of the gradients. The
better the gradients are estimated, the closer one gets to the
optimum where the gradient vanishes. As the dependence
on the sample size becomes O

(
N−2

)
for an rqmc sequence

instead of 1/N for a mc sequence, the gradient is more
precisely estimated for N large enough.

We now study the impact of a reduced variance on sgd with
a fixed step size and strongly convex functions. We obtain
an improved upper bound on the optimality gap.

Theorem 2 Let F have Lipschitz continuous derivatives
and be a strongly convex function, i.e. there exists a constant
c > 0 s.t. ∀λ, λ F(λ) ≥ F(λ) + ∇F(λ)T (λ − λ) + 1

2 c‖λ − λ‖22,
let UN = {u1, · · · , uN} be an rqmc sequence and let ∀λ,G :
u 7→ gΓ(u)(λ) be as in Theorem 1. Let the constant learning
rate α < 1

2c and α < 2
L . Then the expected optimality gap

satisfies, ∀t ≥ 0,

E[F(λt+1) − F(λ?)]

≤

[(
α2L

2
− α

)
2c + 1

]
× E[FN(λt) − F(λ?)]

+
1
2

Lα2 [MVr(N)] .

Consequently,

lim
T→∞

E[F(λT ) − F(λ?)] ≤
αL

4c − αLc
[MVr(N)] .

The previous result has the following interpretation. The
expected optimality gap between the last iteration λT and
the true minimizer λ? is upper bounded by the magnitude of
the variance. The smaller this variance, the closer we get to
λ?. Using rqmc we gain a factor 1/N in the bound.

Increasing Sample Size Over Iterations While sgd with
a fixed step size and a fixed number of samples per gradient
step does not converge, convergence can be achieved when
increasing the number of samples used for estimating the
gradient over iterations. As an extension of Theorem 2, we
show that a linear convergence is obtained while increasing
the sample size at a slower rate than for mc sampling.

Theorem 3 Assume the conditions of Theorem 2 with the
modification α ≤ min{1/c, 1/L}. Let 1−αc/2 < ξ2 = 1

τ2 < 1.
Use an increasing sample size Nt = N + dτte, where N < ∞
is defined in Appendix B.3. Then ∀t ∈ N,∃M̂V < ∞,

tr VarUN [ĝNt (λ)] ≤ M̂V ×
1
τ2t

and
E[F(λt+1) − F(λ?)] ≤ ωξ2t,

where ω = max{αLM̂V/c, F(λ1) − F(λ?)}.

This result compares favorably with a standard result on the
linear convergence of sgd with fixed step size and strongly
convex functions (Bottou et al., 2016). For mc sampling
one obtains a different constant ω̃ and an upper bound with
ξt and not ξ2t. Thus, besides the constant factor, rqmc
samples allow us to close the optimality gap faster for the
same geometric increase in the sample size τt or to use τt/2

to obtain the same linear rate of convergence as mc based
estimators.
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Other Remarks The reduced variance in the estimation
of the gradients should allow us to make larger moves in
the parameter space. This is for example achieved by us-
ing adaptive step size algorithms as Adam (Kingma and
Ba, 2015), or Adagrad (Duchi et al., 2011). However, the
theoretical analysis of these algorithms is beyond the scope
of this paper.

Also, note that it is possible to relax the smoothness as-
sumptions on G while supposing only square integrability.
Then one obtains rates in o(N−1). Thus, rqmc yields always
a faster rate than mc, regardless of the smoothness. See
Appendix A for more details.

In the previous analysis, we have assumed that the entire
randomness in the gradient estimator comes from the sam-
pling of the variational distribution. In practice, additional
randomness is introduced in the gradient via mini batch
sampling. This leads to a dominating term in the variance of
O(K−1) for mini batches of size K. Still, the part of the vari-
ance related to the variational family itself is reduced and so
is the variance of the gradient estimator as a whole.

4. Experiments

We study the effectiveness of our method in three different
settings: a hierarchical linear regression, a multi-level Pois-
son generalized linear model (GLM) and a Bayesian neural
network (BNN). Finally, we confirm the result of Theorem 3,
which proposes to increase the sample size over iterations
in qmcvi for faster asymptotic convergence.

Setup In the first three experiments we optimize the
elbo using the Adam optimizer (Kingma and Ba, 2015)
with the initial step size set to 0.1, unless otherwise stated.
The rqmc sequences are generated through a python inter-
face to the R package randtoolbox (Christophe and Petr,
2015). In particular we use scrambled Sobol sequences. The
gradients are calculated using an automatic differentiation
toolbox. The elbo values are computed by using 10, 000 mc
samples, the variance of the gradient estimators is estimated
by resampling the gradient 1000 times in each optimization
step and computing the empirical variance.

Benchmarks The first benchmark is the vanilla mcvi al-
gorithm based on ordinary mc sampling. Our method qmcvi
replaces the mc samples by rqmc sequences and comes at
almost no computational overhead (Section 3).

Our second benchmark in the second and third experiment
is the control variate (cv) approach of Miller et al. (2017),
where we use the code provided with the publication. In
the first experiment, this comparison is omitted since the
method of Miller et al. (2017) does not apply in this setting
due to the non-Gaussian variational distribution.

Main Results We find that our approach generally leads
to a faster convergence compared to our baselines due to
a decreased gradient variance. For the multi-level Poisson
GLM experiment, we also find that our rqmc algorithm con-
verges to a better local optimum of the elbo. As proposed
in Theorem 3, we find that increasing the sample size over
iteration in qmcvi leads to a better asymptotic convergence
rate than in mcvi.
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Figure 2: Toy: experiment 4.1. elbo optimization path
using Adam and variance of the stochastic gradient using
the rqmc based gradient estimator using 10 samples (ours,
in red) and the mc based estimator using 10 samples (blue)
and 100 samples (black), respectively. The upper panel
corresponds to the reparameterization gradient and the lower
panel to the score function gradient estimator1. For both
versions of mcvi, using rqmc samples (proposed) leads to
variance reduction and faster convergence.

4.1. Hierarchical Linear Regression

We begin the experiments with a toy model of hierarchical
linear regression with simulated data. The sampling process
for the outputs yi is yi ∼ N(x>i bi, ε), bi ∼ N(µβ, σβ). We
place lognormal hyper priors on the variance of the inter-
cepts σβ and on the noise ε; and a Gaussian hyper prior on
µβ. Details on the model are provided in Appendix C.1. We
set the dimension of the data points to be 10 and simulated
100 data points from the model. This results in a 1012-

1Using only 10 samples for the mc based score function esti-
mator leads to divergence and the elbo values are out of the scope
of the plot.
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Figure 3: Frisk: experiment 4.2. Left, the optimization path of the elbo is shown using Adam with the rqmc, mc and cv
based reparameterization gradient estimator, respectively. Right, the gradient variances as function of time are reported. In
the case of using 10 samples (dashed lines) rqmc (ours) outperforms the baselines in terms of speed while the cv based
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converges closer to the optimum than the baselines while having lowest gradient variance.
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Figure 4: BNN: experiment 4.3. Left, the optimization path of the elbo is shown using Adam with the rqmc, mc and cv
based reparameterization gradient estimator, respectively. Right, the gradient variances as function of time are reported.
rqmc (ours) based on 10 samples outperforms the baselines in terms of speed. rqmc with 50 samples is bit slower but
converges closer to the optimum as its gradient variance is up to 3 orders of magnitude lower than for the baselines.

dimensional posterior, which we approximate by a varia-
tional distribution that mirrors the prior distributions.

We optimize the elbo using Adam (Kingma and Ba, 2015)
based on the score function as well as the reparameteriza-
tion gradient estimator. We compare the standard mc based
approach using 10 and 100 samples with our rqmc based
approach using 10 samples, respectively. The cv based esti-
mator cannot be used in this setting since it only supports
Gaussian variational distributions and the variational family
includes a lognormal distribution. For the score function es-
timator, we set the initial step size of Adam to 0.01.

The results are shown in Figure 2. We find that using rqmc
samples decreases the variance of the gradient estimator
substantially. This applies both to the score function and
the reparameterization gradient estimator. Our approach
substantially improves the standard score function estima-
tor in terms of convergence speed and leads to a decreased
gradient variance of up to three orders of magnitude. Our
approach is also beneficial in the case of the reparameteriza-
tion gradient estimator, as it allows for reducing the sample
size from 100 mc samples to 10 rqmc samples, yielding a
similar gradient variance and optimization speed.

4.2. Multi-level Poisson GLM

We use a multi-level Poisson generalized linear model
(GLM), as introduced in (Gelman and Hill, 2006) as an
example of multi-level modeling. This model has a 37-dim
posterior, resulting from its hierarchical structure.

As in (Miller et al., 2017), we apply this model to the frisk
data set (Gelman et al., 2006) that contains information on
the number of stop-and-frisk events within different ethnic-
ity groups. The generative process of the model is described
in Appendix C.2. We approximate the posterior by a diago-
nal Gaussian variational distribution.

The results are shown in Figure 3. When using a small num-
ber of samples (N = 10), all three methods have comparable
convergence speed and attain a similar optimum. In this
setting, the cv based method has lowest gradient variance.
When increasing the sample size to 50, our proposed rqmc
approach leads to substantially decreased gradient variance
and allows Adam to convergence closer to the optimum than
the baselines. This agrees with the fact that rqmc improves
over mc for sufficiently large sample sizes.
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4.3. Bayesian Neural Network

As a third example, we study qmcvi and its baselines in
the context of a Bayesian neural network. The network
consists of a 50-unit hidden layer with ReLU activations.
We place a normal prior over each weight, and each weight
prior has an inverse Gamma hyper prior. We also place an
inverse Gamma prior over the observation variance. The
model exhibits a posterior of dimension d = 653 and is
applied to a 100-row subsample of the wine dataset from the
UCI repository2. The generative process is described in Ap-
pendix C.3. We approximate the posterior by a variational
diagonal Gaussian.

The results are shown in Figure 4. For N = 10, both the
rqmc and the cv version converge to a comparable value
of the elbo, whereas the ordinary mc approach converges
to a lower value. For N = 50, all three algorithms reach
approximately the same value of the elbo, but our rqmc
method converges much faster. In both settings, the variance
of the rqmc gradient estimator is one to three orders of
magnitude lower than the variance of the baselines.

4.4. Increasing the Sample Size Over Iterations

Along with our new Monte Carlo variational inference ap-
proach qmcvi, Theorem 3 gives rise to a new stochastic op-
timization algorithm for Monte Carlo objectives. Here, we
investigate this algorithm empirically, using a constant learn-
ing rate and an (exponentially) increasing sample size sched-
ule. We show that, for strongly convex objective functions
and some mild regularity assumptions, our rqmc based gra-
dient estimator leads to a faster asymptotic convergence rate
than using the ordinary mc based gradient estimator.

In our experiment, we consider a two-dimensional factoriz-
ing normal target distribution with zero mean and standard
deviation one. Our variational distribution is also a normal
distribution with fixed standard deviation of 1, and with a
variational mean parameter, i.e., we only optimize the mean
parameter. In this simple setting, the elbo is strongly convex
and the variational family includes the target distribution.
We optimize the elbo with an increasing sample size, using
the sgd algorithm described in Theorem 3. We initialize
the variational parameter to (0.1, 0.1). Results are shown in
Figure 5.

We considered both rqmc (red) and mc (blue) based gradi-
ent estimators. We plot the difference between the optimal
elbo value and the optimization trace in logarithmic scale.
The experiment confirms the theoretical result of Theorem 3
as our rqmc based method attains a faster asymptotic con-
vergence rate than the ordinary mc based approach. This
means that, in the absence of additional noise due to data

2https://archive.ics.uci.edu/ml/datasets/Wine+
Quality
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Figure 5: Constant SGD: experiment 4.4. We exemplify the
consequences of Theorem 3 and optimize a simple concave
elbo using sgd with fixed learning rate α = 0.001 while
the number of samples are iteratively increased. We use an
exponential sample size schedule (starting with one sample
and 50.000 samples in the final iteration). The logarithmic
difference of the elbo to the optimum is plotted. We empiri-
cally confirm the result of Theorem 3 and observe a faster
asymptotic convergence rate when using rqmc samples over
mc samples.

subsampling, optimizing Monte Carlo objectives with rqmc
can drastically outperform sgd.

5. Conclusion
We investigated randomized Quasi-Monte Carlo (rqmc)
for stochastic optimization of Monte Carlo objectives. We
termed our method Quasi-Monte Carlo Variational Inference
(qmcvi), currently focusing on variational inference appli-
cations. Using our method, we showed that we can achieve
faster convergence due to variance reduction.

qmcvi has strong theoretical guarantees and provably gets
us closer to the optimum of the stochastic objective. Further-
more, in absence of additional sources of noise such as data
subsampling noise, qmcvi converges at a faster rate than
sgd when increasing the sample size over iterations.

qmcvi can be easily integrated into automated inference
packages. All one needs to do is replace a sequence of
uniform random numbers over the hypercube by an rqmc
sequence, and perform the necessary reparameterizations to
sample from the target distributions.

An open question remains as to which degree qmcvi can
be combined with control variates, as rqmc may introduce
additional unwanted correlations between the gradient and
the cv. We will leave this aspect for future studies. We see
particular potential for qmcvi in the context of reinforcement
learning, which we consider to investigate.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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