
Path-Level Network Transformation for Efficient Architecture Search

A. Architecture Search Starting from Scratch
Beside utilizing state-of-the-art human-designed architec-
tures, we also perform architecture search starting from
scratch (i.e. a chain of identity mappings) to learn how
much we can benefit from reusing existing well-designed
architectures. The structure of the start point is provided in
Table 3, where the identity mappings are later replaced by
sampled cells to get new architectures and all other configu-
rations keep the same as the ones used in Section 4.

The progress of the architecture search process is reported
in Figure 8, where we can observe similar trends as the ones
in Figure 7. Moreover, we find that the advantage of RL
over RS is larger in this case (RL achieves 1.54% better
validation accuracy than RS). After 300 epochs training on
CIFAR-10, the best RL identified cell reaches 3.93% test
error with 11.5M parameters, which is better than 4.44%
given by the best random cell with 10.0M parameters, but
is far worse than 3.14% given by TreeCell-A with 5.7M
parameters.

Table 3. Start point network with identity mappings on CIFAR-10.

Model architecture Feature map size Output channels
3× 3 Conv 32× 32 48

[identity mapping] ×4 32× 32 48
1× 1 Conv 32× 32 96

3× 3 average pooling, stride 2 16× 16 96
[identity mapping] ×4 16× 16 96

1× 1 Conv 16× 16 192
3× 3 average pooling, stride 2 8× 8 192

[identity mapping] ×4 8× 8 192
8× 8 global average pooling 1× 1 192

10-dim fully-connected, softmax

Figure 8. Progress of the architecture search process starting from
scratch (a chain of identity maps) on CIFAR-10.

B. Details of Architecture Space
We find the following 2 tricks effective for reaching good
performances with the tree-structured architecture space in
our experiments.

B.1. Group Convolution

The base networks (i.e. DenseNets and PyramidNets) in our
experiments use standard 3× 3 group convolution instead
of normal 3 × 3 convolution and the number of groups
G is chosen from {1, 2, 4} according to the sampled tree-
structured cell. Specifically, if the merge scheme of the
root node is concatenation, G is set to be 1; if the merge
scheme is add and the number of branches is 2,G is set to be
2; if the merge scheme is add and the number of branches is
3, G is set to be 4. As such, we can make different sampled
cells have a similar number of parameters as the normal
3× 3 convolution layer.

B.2. Skip Node Connection and BN layer

Inspired by PyramidNets (Han et al., 2017) that add an ad-
ditional batch normalization (BN) (Ioffe & Szegedy, 2015)
layer at the end of each residual unit, which can enable the
network to determine whether the corresponding residual
unit is useful and has shown to improve the capacity of the
network architecture. Analogously, in a tree-structured cell,
we insert a skip connection for each child (denoted asN c

i (·))
of the root node, and merge the outputs of the child node
and its corresponding skip connection via add. Additional,
the output of the child node goes through a BN layer before
it is merged. As such the output of the child node N c

i (·)
with input feature map x is given as:

Oi = add(x, BN(N c
i (x))). (4)

In this way, intuitively, each unit with tree-structured cell
can at least go back to the original unit if the cell is not
helpful here.

C. Detailed Structure of TreeCell-B

x

Replication
Add

Replication
Add

Replication
Add

Replication
Add

GroupConv
3x3

GroupConv
3x3

Conv
1x1

Sep
7x7

Avg
3x3

Sep
7x7

Sep
5x5

Avg
3x3

Sep
7x7

Conv
1x1

Avg
3x3

Leaf

Figure 9. Detailed structure of TreeCell-B.



Path-Level Network Transformation for Efficient Architecture Search

D. Meta-Controller Training Procedure

Algorithm 1 Path-Level Efficient Architecture Search
Input: base network baseNet, training set trainSet, validation

set valSet, batch size B, maximum number of networks M
1: trained = 0 // Number of trained networks
2: Pnets = [] // Store results of trained networks
3: randomly initialize the meta-controller C
4: Gc = [] // Store gradients to be applied to C
5: while trained < M do
6: meta-controller C samples a tree-structured cell
7: if cell in Pnets then
8: get the validation accuracy accv of cell from Pnets

9: else
10: model = train(trans(baseNet, cell), trainSet)
11: accv = evel(model, valSet)
12: add (cell, accv) to Pnets

13: trained = trained+ 1
14: end if
15: compute gradients according to (cell, accv) and add to Gc

16: if len(Gc) == B then
17: update C according to Gc

18: Gc = []
19: end if
20: end while


