Supplementary Materials for "Adversarial Learning with Local Coordinate Coding"

Lemma 2 Let (γ, \mathcal{C}) be an arbitrary coordinate coding on $\mathbb{R}^{d_{B}}$. Given an $\left(L_{\mathbf{h}}, L_{G}\right)$-Lipschitz smooth generator $G_{u}(\mathbf{h})$ and an $L_{\mathbf{x}}$-Lipschitz discriminator D_{v}, for all $\mathbf{h} \in \mathbb{R}^{d_{B}}$:

$$
\left|D_{v}\left(G_{u}(\mathbf{h})\right)-D_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)\right| \leq L_{\mathbf{x}} L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{\mathbf{x}} L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}(\mathbf{h})\right|\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2}
$$

Proof Given an $\left(L_{\mathbf{h}}, L_{G}\right)$-Lipschitz smooth generator $G_{u}(\mathbf{h})$, an $L_{\mathbf{x}}$-Lipschitz discriminator D_{v}, and let $\gamma_{\mathbf{v}}=\gamma_{\mathbf{v}}(\mathbf{h})$ and $\mathbf{h}^{\prime}=\mathbf{r}(\mathbf{h})=\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}} \mathbf{v}$. We have

$$
\begin{aligned}
&\left|\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)-\widetilde{D}_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)\right| \\
&=\left|D_{v}\left(G_{u}(\mathbf{h})\right)-D_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)\right| \\
&=\left|D_{v}\left(G_{u}(\mathbf{h})\right)-D_{v}\left(G_{u}\left(\mathbf{h}^{\prime}\right)\right)-\left(D_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)-D_{v}\left(G_{u}\left(\mathbf{h}^{\prime}\right)\right)\right)\right| \\
& \leq\left|D_{v}\left(G_{u}(\mathbf{h})\right)-D_{v}\left(G_{u}\left(\mathbf{h}^{\prime}\right)\right)\right|+\left|D_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)-D_{v}\left(G_{u}\left(\mathbf{h}^{\prime}\right)\right)\right| \\
& \leq L_{\mathbf{x}}\left\|G_{u}(\mathbf{h})-G_{u}\left(\mathbf{h}^{\prime}\right)\right\|_{2}+L_{\mathbf{x}}\left\|\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})-G_{u}\left(\mathbf{h}^{\prime}\right)\right\|_{2} \\
& \leq L_{\mathbf{x}}\left\|G_{u}(\mathbf{h})-G_{u}\left(\mathbf{h}^{\prime}\right)\right\|_{2}+L_{\mathbf{x}}\left\|\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h})\left(G_{u}(\mathbf{v})-G_{u}\left(\mathbf{h}^{\prime}\right)-\Delta G_{u}\left(\mathbf{h}^{\prime}\right)^{\top}\left(\mathbf{v}-\mathbf{h}^{\prime}\right)\right)\right\|_{2} \\
& \leq L_{\mathbf{x}}\left\|G_{u}(\mathbf{h})-G_{u}\left(\mathbf{h}^{\prime}\right)\right\|_{2}+L_{\mathbf{x}} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\left\|G_{u}(\mathbf{v})-G_{u}\left(\mathbf{h}^{\prime}\right)-\Delta G_{u}\left(\mathbf{h}^{\prime}\right)^{\top}\left(\mathbf{v}-\mathbf{h}^{\prime}\right)\right\|_{2} \\
& \leq L_{\mathbf{x}} L_{\mathbf{h}}\left\|\mathbf{h}-\mathbf{h}^{\prime}\right\|_{2}+L_{\mathbf{x}} L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\left\|\mathbf{v}-\mathbf{h}^{\prime}\right\|_{2}^{2} \\
&= L_{\mathbf{x}} L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{\mathbf{x}} L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2},
\end{aligned}
$$

where $\widetilde{D}_{v}(\cdot)=1-D_{v}(\cdot)$. In the above derivation, the first inequality holds by the triangle inequality. The second inequality uses an assumption that D_{v} is Lipschitz smooth w.r.t. the input. The third inequality uses the facts that $\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{x})=1$ and $\mathbf{h}^{\prime}=\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}} \mathbf{v}$. The last inequality uses the $\left(L_{\mathbf{h}}, L_{G}\right)$-Lipschitz smooth generator G_{u}, that is

$$
\left\|G_{u}(\mathbf{v})-G_{u}\left(\mathbf{h}^{\prime}\right)-\Delta G_{u}\left(\mathbf{h}^{\prime}\right)^{\top}\left(\mathbf{v}-\mathbf{h}^{\prime}\right)\right\|_{2} \leq L_{G}\left\|\mathbf{v}-\mathbf{h}^{\prime}\right\|_{2}^{2}
$$

8. Proof of Lemma 1

Lemma 1 (Generator Approximation) Let (γ, \mathcal{C}) be an arbitrary coordinate coding on $\mathbb{R}^{d_{B}}$. Given a Lipschitz smooth generator $G_{u}(\mathbf{h})$, for all $\mathbf{h} \in \mathbb{R}^{d_{B}}$:

$$
\left\|G_{u}\left(\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) \mathbf{v}\right)-\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right\|_{2} \leq 2 L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{G} \sum_{\mathbf{v} \in \mathcal{C}} \mid \gamma_{\mathbf{v}}(\mathbf{h})\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2} .
$$

Proof From Lemma 2, when the discriminator is identity function: $D_{v}(t)=t$, that is

$$
\begin{aligned}
\left|D_{v}\left(G_{u}(\mathbf{h})\right)-D_{v}\left(\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)\right| & =\left\|G_{u}(\mathbf{h})-\sum_{\mathbf{v}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right\|_{2} \\
& \leq L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2}
\end{aligned}
$$

then, we have

$$
\begin{aligned}
\left\|G_{u}\left(\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) \mathbf{v}\right)-\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right\|_{2} & =\left\|G_{u}\left(\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) \mathbf{v}\right)-G_{u}(\mathbf{h})+G_{u}(\mathbf{h})-\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right\|_{2} \\
& \leq\left\|G_{u}\left(\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) \mathbf{v}\right)-G_{u}(\mathbf{h})\right\|_{2}+\left\|G_{u}(\mathbf{h})-\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right\|_{2} \\
& \leq 2 L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{G} \sum_{\mathbf{v} \in \mathcal{C}} \mid \gamma_{\mathbf{v}}(\mathbf{h})\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2},
\end{aligned}
$$

where $\mathbf{r}(\mathbf{h})=\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) \mathbf{v}$.

9. Proof of Theorem 1

In order to provide a generalization bound w.r.t. the neural net distance, we first give some relevant lemmas and theorems. When the latent points lie on a latent manifold and the generator is Lipschitz smooth, $Q_{L_{\mathrm{h}}, L_{G}}(\gamma, \mathcal{C})$ has a bound as follows.
Lemma 3 (Manifold Coding (Yu et al., 2009)) If the latent points lie on a compact smooth manifold \mathcal{M}, given an $\left(L_{\mathbf{h}}, L_{G}\right)$-Lipschitz smooth generator $G_{u}(\mathbf{h})$ and any $\epsilon>0$, then there exist anchor points $\mathcal{C} \subset \mathcal{M}$ and coding γ such that

$$
Q_{L_{\mathrm{h}}, L_{G}}(\boldsymbol{\gamma}, \mathcal{C}) \leq\left[L_{\mathbf{h}} c_{\mathcal{M}}+\left(1+\sqrt{d_{\mathcal{M}}}+4 \sqrt{d_{\mathcal{M}}}\right) L_{G}\right] \epsilon^{2}
$$

Lemma 3 shows that the complexity of local coordinate coding depends on the intrinsic dimension of the manifold instead of the dimension of the basis.
Theorem 1 Suppose measuring function $\phi(\cdot)$ is Lipschitz smooth: $\left|\phi^{\prime}(\cdot)\right| \leq L_{\phi}$, and bounded in $[-\Delta, \Delta]$. Consider coordinate coding (γ, \mathcal{C}), an example set \mathcal{H} in latent space and the empirical distribution $\widehat{\mathcal{D}}_{\text {real }}$, if the generator is Lipschitz smooth, then the expected generalization error satisfies the inequality:

$$
\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\hat{\mathcal{w}}}(\gamma(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right)\right] \leq \inf _{\mathcal{G}} \mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}(\mathbf{h})}, \widehat{\mathcal{D}}_{\text {real }}\right)\right]+\epsilon\left(d_{\mathcal{M}}\right),
$$

where $\epsilon\left(d_{\mathcal{M}}\right)=L_{\phi} Q_{L_{\mathrm{h}}, L_{G}}(\gamma, \mathcal{C})+2 \Delta$, and generative quality $Q_{L_{\mathrm{h}}, L_{G}}(\gamma, \mathcal{C})$ has an upper bound w.r.t. $d_{\mathcal{M}}$ in Lemma 3 of supplementary material.

Proof Let $\mathcal{H}^{(k)}=\left\{\mathbf{h}_{1}^{(k)}, \mathbf{h}_{2}^{(k)}, \ldots, \mathbf{h}_{r}^{(k)}\right\}$ be a set of r latent samples which lie on the latent distribution. Consider $n+1$ independent experiments over the latent distribution, we have $\mathcal{H}_{r, n+1}=\left\{\mathcal{H}^{(1)}, \mathcal{H}^{(2)}, \ldots, \mathcal{H}^{(n+1)}\right\}$. Recall the optimization problem, we consider an empirical version of the expected loss:

$$
\begin{equation*}
[\widetilde{w}]=\underset{[w]}{\arg \min }\left[\frac{1}{n} \sum_{i=1}^{n+1} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{w, \mathcal{H}}(i)}(\gamma(\mathbf{h})), \widehat{\mathcal{D}}_{\text {real }}\right)\right] . \tag{5}
\end{equation*}
$$

Let k be an integer randomly drawn from $\{1,2, \ldots, n+1\}$. Let $\left[\widehat{w}^{(k)}\right]$ be the solution of

$$
\begin{equation*}
\left[\widehat{w}^{(k)}\right]=\underset{[w]}{\arg \min }\left[\frac{1}{n} \sum_{i \neq k}^{n+1} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{w, \mathcal{H}^{(i)}}(\boldsymbol{\gamma}(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right)\right] \tag{6}
\end{equation*}
$$

with the k-th example left-out.
Recall the definition of the neural net distance, we have

$$
d_{\mathcal{F}, \phi}(\mu, \nu)=\sup _{\mathcal{F}}\left|\underset{\mathbf{x} \sim \mu}{\mathbb{E}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\underset{\mathbf{x} \sim \nu}{\mathbb{E}}\left[\phi\left(\widetilde{D}_{v}(\mathbf{x})\right)\right]\right|
$$

where $\mathcal{F}=\left\{D_{v}, v \in \mathcal{V}\right\}$. Given the k-th sample experiment, the same real distribution $\widehat{\mathcal{D}}_{\text {real }}$ over the training samples $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$, and two different distributions generated by $G_{\widehat{w}^{(k)}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))$ and $G_{\widetilde{w}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))$, respectively, the difference value of the neural net distance between these two generated distributions is:

$$
\begin{aligned}
& d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}^{(k)}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right)-d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widetilde{w}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right) \\
= & \sup \left|\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{\widehat{w}^{(k)}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)\right]\right| \\
& -\sup \left|\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{\widetilde{w}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)\right]\right| \\
\leq & \sup \left|\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{\widehat{w}^{(k)}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)\right]-\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{\widetilde{w}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)\right]\right| \\
= & \sup \left\lvert\, \frac{1}{\left|\mathcal{H}^{(k)}\right|} \sum_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{\widehat{w}^{(k)}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)-\phi\left(\widetilde{D}_{v}\left(G_{\widetilde{w}, \mathcal{H}^{(k)}}(\gamma(\mathbf{h}))\right)\right)\right] \leq 2 \Delta\right.,
\end{aligned}
$$

where $\widetilde{D}_{v}(\cdot)=1-D_{v}(\cdot)$. In the above derivation, the first equality uses the definition of the neural net distance. The last inequality holds by the assumption that $\phi(\cdot)$ is L_{ϕ}-Lipschitz and bounded in $[-\Delta, \Delta]$.
By summing over k, and consider any fixed $G_{u} \in \mathcal{G}$, we obtain:

$$
\left.\begin{array}{rl}
\sum_{k=1}^{n+1} d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}^{(k), \mathcal{H}}}(k)}(\boldsymbol{\gamma}(\mathbf{h}))\right.
\end{array}, \widehat{\mathcal{D}}_{\text {real }}\right) \leq \sum_{k=1}^{n+1} d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widetilde{\boldsymbol{w}}, \mathcal{H}^{(k)}}(\boldsymbol{\gamma}(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right)+2(n+1) \Delta .
$$

where $Q_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})=\mathbb{E}_{\mathbf{h}}\left[L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2}\right]$. In the above derivation, the second inequality holds since \widetilde{w} is the minimizer of Problem (5). The third inequality follows from the concavity of $\phi(\cdot)$ and Lemma 1:

$$
\begin{aligned}
& d_{\mathcal{F}, \phi}\left(\mathcal{D}_{\sum_{\mathbf{v} \in \mathcal{C}, \mathbf{h} \in \mathcal{H}}(k)} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v}), \widehat{\mathcal{D}}_{\text {real }}\right)=\sup \left|\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(\sum_{\mathbf{v} \in \mathcal{C}} \gamma_{\mathbf{v}}(\mathbf{h}) G_{u}(\mathbf{v})\right)\right)\right]\right| \\
& \leq \sup \left|\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)+\widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})\right)\right]\right| \\
& \leq \sup \left|\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\mathbb{E}_{\mathbf{h} \in \mathcal{H}^{(k)}}\left[\phi\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)\right)\right]\right|+L_{\phi} Q_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C}) \\
& =d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}(\mathbf{h})}, \widehat{\mathcal{D}}_{\text {real }}\right)+L_{\phi} Q_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C}),
\end{aligned}
$$

where $\widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})=L_{\mathbf{h}}\|\mathbf{h}-\mathbf{r}(\mathbf{h})\|_{2}+L_{G} \sum_{\mathbf{v} \in \mathcal{C}}\left|\gamma_{\mathbf{v}}\right|\|\mathbf{v}-\mathbf{r}(\mathbf{h})\|_{2}^{2}$ and $\mathbb{E}_{\mathbf{h}}\left[\widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})\right]=Q_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})$. In the above derivation, the firth equality holds by the definition of the neural net distance. The first inequality because of Lemma 1 and the fact that $\phi(\cdot)$ is a concave measuring function in Definition 4. Here, we suppose $\phi(\cdot)$ is a monotonically increasing function. The second inequality holds by the following derivation:

$$
\begin{aligned}
& \left|\phi\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)+\widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})\right)-\phi\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)\right)\right| \\
\leq & \left|\phi^{\prime}\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)\right)\left[\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)+\widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\boldsymbol{\gamma}, \mathcal{C})\right)-\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)\right]\right| \\
= & \left|\phi^{\prime}\left(\widetilde{D}_{v}\left(G_{u}(\mathbf{h})\right)\right)\right| \widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\boldsymbol{\gamma}, \mathcal{C}) \\
\leq & L_{\phi} \widehat{Q}_{L_{\mathbf{h}}, L_{G}}(\gamma, \mathcal{C})
\end{aligned}
$$

In the above derivation, the first inequality uses the concavity of measuring function $\phi(\cdot)$. The last inequality follows from that $\left|\phi^{\prime}\right| \leq L_{\phi}$. Now by taking expectation w.r.t. $\mathcal{H}_{r, n+1}$, we obtain

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{H} \subseteq \mathcal{H}_{r, n+1}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}, \mathcal{H}}(\boldsymbol{\gamma}(\mathbf{h}))}, \widehat{\mathcal{D}}_{\text {real }}\right)\right] \\
\leq & \mathbb{E}_{\mathcal{H} \subseteq \mathcal{H}_{r, n+1}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{u, \mathbf{h} \in \mathcal{H}}(\mathbf{h})}, \widehat{\mathcal{D}}_{\text {real }}\right)\right]+L_{\phi} Q_{L_{\mathbf{h}}, L_{G}}(\boldsymbol{\gamma}, \mathcal{C})+2 \Delta .
\end{aligned}
$$

10. Proof of Theorem 2

Theorem 2 Under the condition of Theorem 1, and given an empirical distribution $\widehat{\mathcal{D}}_{\text {real }}$ drawn from $\mathcal{D}_{\text {real }}$, then the following holds with probability at least $1-\delta$,

$$
\left|\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)\right]-\inf _{\mathcal{G}} \mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)\right]\right| \leq 2 R_{\mathcal{X}}(\mathcal{F})+2 \Delta \sqrt{\frac{2}{N} \log \left(\frac{1}{\delta}\right)}+2 \epsilon\left(d_{\mathcal{M}}\right)
$$

where $R_{\mathcal{X}}(\mathcal{F})=\underset{\sigma, \mathcal{X}}{\mathbb{E}}\left[\sup _{\mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \phi\left(D_{v}\left(\mathbf{x}_{i}\right)\right)\right]$ and $\sigma_{i} \in\{-1,1\}, i=1,2, \ldots, m$ are independent uniform random variables.

Proof For the real distribution $\mathcal{D}_{\text {real }}$, we are interested in the generalization error in term of the following neural net distance:

$$
\begin{align*}
& \left|\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)\right]-\inf _{\mathcal{G}} \mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)\right]\right| \\
\leq & \left|\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)\right]-\mathbb{E}_{\mathcal{H}}\left[\inf _{\mathcal{G}} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)\right]\right| \\
= & \left|\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)-d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \widehat{\mathcal{D}}_{\text {real }}\right)+d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \widehat{\mathcal{D}}_{\text {real }}\right)-\inf _{\mathcal{G}} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)\right]\right| \\
\leq & \left|\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)-d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \widehat{\mathcal{D}}_{\text {real }}\right)+\inf _{\mathcal{G}} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \widehat{\mathcal{D}}_{\text {real }}\right)-\inf _{\mathcal{G}} d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)+\epsilon\left(d_{\mathcal{M}}\right)\right]\right| \\
\leq & 2 \mathbb{E}_{\mathcal{H}}\left[\sup _{\mathcal{G}}\left|d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)-d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \widehat{\mathcal{D}}_{\text {real }}\right)\right|+\epsilon\left(d_{\mathcal{M}}\right)\right] \\
= & 2 \mathbb{E}_{\mathcal{H}}\left[\sup _{\mathcal{G}}\left|\underset{\sup _{v} \in \mathcal{F}}{ }\right| \underset{\mathbf{x} \in \mathcal{D}_{\text {real }}}{\mathbb{E}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\underset{\left.\mathbf{x} \in \underset{\mathcal{D}_{G_{u}}}{\mathbb{E}}\left[\phi\left(\widetilde{D}_{v}(\mathbf{x})\right)\right]\left|-\sup _{D_{v} \in \mathcal{F}}\right| \underset{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}{\mathbb{E}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]+\underset{\mathbf{x} \in \mathcal{D}_{G_{u}}}{\mathbb{E}}\left[\phi\left(\widetilde{D}_{v}(\mathbf{x})\right)\right]| |+\epsilon\left(d_{\mathcal{M}}\right)\right]}{\leq} \begin{array}{l}
\sup _{D_{v} \in \mathcal{F}}\left|\underset{\mathbf{x} \in \mathcal{D}_{\text {real }}}{\mathbb{E}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\underset{\widehat{\mathcal{D}}_{\text {real }}}{\mathbb{E}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right|+2 \epsilon\left(d_{\mathcal{M}}\right) .
\end{array}\right.
\end{align*}
$$

In the above derivation, the first inequality holds by by Jensen's inequality and the concavity of the infimum function. The second inequality holds by Theorem 1 . The third inequality satisfies when we take supremum w.r.t. $G_{u} \in \mathcal{G}$. The
last inequality uses the definition of the neural net distance and holds by triangle inequality. This reduces the problem to bounding the distance

$$
d_{\mathcal{F}}^{\prime}\left(\mathcal{D}_{\text {real }}, \widehat{\mathcal{D}}_{\text {real }}\right):=\sup _{D_{v} \in \mathcal{F}}\left|\mathbb{E}_{\mathbf{x} \in \mathcal{D}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right|
$$

between the true distribution and its empirical distribution. This can be achieved by the uniform concentration bounds developed in statistical learning theory, and thus the distance $d_{\mathcal{F}}^{\prime}\left(\mathcal{D}_{\text {real }}, \widehat{\mathcal{D}}_{\text {real }}\right)$ can be achieved by the Rademacher complexity. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathcal{X}$ be a set of N independent random samples in data space. We introduce a function

$$
h\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\sup _{D_{v} \in \mathcal{F}}\left|\mathbb{E}_{\mathbf{x} \in \mathcal{D}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right|
$$

Since measuring function ϕ is Lipschitz and bounded in $[-\Delta, \Delta]$, changing \mathbf{x}_{i} to another independent sample \mathbf{x}_{i}^{\prime} can change the function h by no more than $\frac{4 \Delta}{N}$, that is,

$$
h\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i} \ldots, \mathbf{x}_{N}\right)-h\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{N}\right) \leq \frac{4 \Delta}{N}
$$

for all $i \in[1, N]$ and any points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{x}_{i}^{\prime} \in \mathcal{X}$. McDiarmid's inequality implies that with probability at least $1-\delta$, the following inequality holds:

$$
\begin{align*}
& \sup _{D_{v} \in \mathcal{F}}\left|\mathbb{E}_{\mathbf{x} \in \mathcal{D}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right| \\
\leq & \mathbb{E}\left[\sup _{D_{v} \in \mathcal{F}}\left|\mathbb{E}_{\mathbf{x} \in \mathcal{D}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right|\right]+2 \Delta \sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{N}} . \tag{8}
\end{align*}
$$

From the bound on Rademacher complexity, we have

$$
\begin{align*}
& \mathbb{E}\left[\sup _{D_{v} \in \mathcal{F}}\left|\mathbb{E}_{\mathbf{x} \in \mathcal{D}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]-\mathbb{E}_{\mathbf{x} \in \widehat{\mathcal{D}}_{\text {real }}}\left[\phi\left(D_{v}(\mathbf{x})\right)\right]\right|\right] \\
\leq & 2 \mathbb{E}_{\sigma, \mathcal{X}}\left[\sup _{D_{v} \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \phi\left(D_{v}\left(\mathbf{x}_{i}\right)\right)\right]=2 R_{\mathcal{X}}(\mathcal{F}) . \tag{9}
\end{align*}
$$

Combining the inequalities (7), (8) and (9), we have

$$
\mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\widehat{\mathcal{D}}_{G_{\widehat{w}}}, \mathcal{D}_{\text {real }}\right)\right]-\inf _{G_{u}} \mathbb{E}_{\mathcal{H}}\left[d_{\mathcal{F}, \phi}\left(\mathcal{D}_{G_{u}}, \mathcal{D}_{\text {real }}\right)\right] \leq 2 R_{\mathcal{X}}(\mathcal{F})+2 \Delta \sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{N}}+2 \epsilon\left(d_{\mathcal{M}}\right)
$$

