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Lemma 2 Let (,C) be an arbitrary coordinate coding on R?2. Given an (Ly, Lg)-Lipschitz smooth generator G, (h)
and an Ly-Lipschitz discriminator D, for allh € R?5:

< LyLu|h —r(h)|l2 + Ly L Y Iy (h)|[[v — r(h)]j3.
vel

|D11(Gu(h)) - DU (Z ’Yv(h)Gu(V)>

Proof Given an (Ly, L¢)-Lipschitz smooth generator G, (h), an Ly-Lipschitz discriminator D, and let 7, = vy, (h)
andh’ =r(h) =" .7 Vv. We have

SLx ||Gu(h) - Gu(h/)HQ + Lx

Z Y (h)Gu(v) — Gu(h/)

2

SLx ||Gu(h) - Gu(h/)H2 + Lx

S () (Gu(v) = Gu(l') — AG,(W)T (v — )

<Ly |Gy(h) — G, (h")]|, + Lx Z el |Gu(v) = Gu(B) — AG, ()T (v — 1),

vec
<LxLn|b—1's + LLa Y [wllv — 013
vel
=LyLn|[h —r(h)|s + LxLc Y [wlllv —r(h)|3,
vel

where D, (-) = 1—-D,/(+). In the above derivation, the first inequality holds by the triangle inequality. The second inequality
uses an assumption that D, is Lipschitz smooth w.r.t. the input. The third inequality uses the facts that 3 .7 (x) = 1
andh’ =} .7, V. The last inequality uses the (Ly, L¢)-Lipschitz smooth generator G, that is

[Gu(v) = Gu(b') = AG,(W)T (v = W), < Lellv = 1[5
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8. Proof of Lemma 1

Lemma 1 (Generator Approximation) Let (v, C) be an arbitrary coordinate coding on R?2. Given a Lipschitz smooth
generator G, (h), for allh € Rz

G. (Z ’YV(h)V) - Z'YV(h)Gu(V)

vel veC

<2Ly|h—r(h)l2+ La Y [w(h)[[v = r(h)]3.
2 vel

Proof From Lemma 2, when the discriminator is identity function: D, (t) = ¢, that is

Gu(h) — Z’Yv (h)Gu(v)

2

< Lu|h—r()|s+ La Y hwllv — ()3,
vel

then, we have

Gu <Z 'Vv(h)v> - Z Vv(h)Gu<v)

= HGu (Z ’Vv(h)v> - Gu (h) + Gu (h) - Z’Yv(h)Gu(V)
2

vel vel vel vel 2
< ||Gu (Z ’YV(h)V> =Gy (h)|| +||Gu(h)— Z Y (h)Gu(v)
vel 2 vel 2
< 2Ln[lh —r(h)ll2 + L Y [ (b)|[[v —r(h)]3,
vel
where r(h) = 3" . v (h)v. O

9. Proof of Theorem 1

In order to provide a generalization bound w.r.t. the neural net distance, we first give some relevant lemmas and theorems.
When the latent points lie on a latent manifold and the generator is Lipschitz smooth, Q1. .. (7, C) has a bound as follows.

Lemma 3 (Manifold Coding (Yu et al., 2009)) If the latent points lie on a compact smooth manifold M, given an
(Ln, Le)-Lipschitz smooth generator G,,(h) and any € > 0, then there exist anchor points C C M and coding ~y such that

QLy.c(7,C) < [Lth + (1 +Vdp + 4@) LG} 2.

Lemma 3 shows that the complexity of local coordinate coding depends on the intrinsic dimension of the manifold instead
of the dimension of the basis.

Theorem 1 Suppose measuring function ¢(-) is Lipschitz smooth: |¢'(-)| < Ly, and bounded in [—A, A]. Consider
coordinate coding (v, C), an example set H in latent space and the empirical distribution D, ..., if the generator is Lipschitz
smooth , then the expected generalization error satisfies the inequality:

Ey [df,qﬁ (ﬁG@(ﬁ(h))yﬁreal)} < infEx [df,qs (DGu(h)zﬁreal>:| + e(dm),

where €(dp) = LyQr,, 1o (77, C) + 24, and generative quality Qr,,, 1. (7Y,C) has an upper bound w.r.t. dq in Lemma 3
of supplementary material.

Proof Let H(¥) = {hgk), hgk), . ,hﬁ,’“)} be a set of r latent samples which lie on the latent distribution. Consider

n + 1 independent experiments over the latent distribution, we have H, 41 = {HM, H® .. H"FD} Recall the
optimization problem, we consider an empirical version of the expected loss:

n+1
~ |1 ~
[’U}} = arg min |f7, E d]:7¢, (fDGw,H(i)('Y(h))’DTEGl)‘| . (5)

[w0] i=1
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Let & be an integer randomly drawn from {1,2,...,n + 1}. Let [@(’“)] be the solution of

n+1

{@(k)} = arg[; n]ﬂin n Z dr.s ( () (Y1) ﬁra‘”) ’ ©
w z;ék

with the k-th example left-out.

Recall the definition of the neural net distance, we have

)

E [6(D,()] + E [#(Du(x))]

X~ X~V

dF,¢(p,v) = sup
f

where F = {D,,v € V}. Given the k-th sample experiment, the same real distribution ﬁrwl over the training sam-
ples X1, X2, ..., Xy, and two different distributions generated by G ;) 3, (7(h)) and Gz 3 (v(h)), respectively, the
difference value of the neural net distance between these two generated distributions is:

dr.¢ (ﬁaﬁmﬂ(k) (’)’(h))aﬁreal) dr.¢ (DG~ () (’Y(h))vDreal)
—sup|Eyes,.., [9(Du())] + Eneno [¢ (Do (G oo (v(0))) )] |
Exep,.., [0(Du(x))] + Enepon |0 { ( s ( (h))))”

§ sup Ehe?—t(k> [¢ ( (G@(k) H(k) )} Ehey(k) [ ( (G~ H(K) ('Y(h)))ﬂ ‘

— sup

yw)\ > [2(Dy (Gawauw (7<h>>))—¢>(Dv (Ganor (Y(0)) )] | < 24,

heH (k)

=sup

where l~)v(-) =1— D,(-). In the above derivation, the first equality uses the definition of the neural net distance. The last
inequality holds by the assumption that ¢(-) is L,-Lipschitz and bounded in [-A, A].

By summing over k, and consider any fixed G,, € G, we obtain:

n+1 n+1

Z d]_-7¢ (DG@(k)ﬁ’){(k) (Y(h))> Dreal) < Z d]: b (DG~ 20 () (Y(h))» Dreal) + 2(71 + 1)A
_ k=1
n+1 =R N
< > dre (DZVGC wv(h)Gu(v)’DTml) +2(n+1)A
heH ) k=1
n+1 . n+1
€ 3 drg(Doutm: Drear) + 3 LoQunio(.0) + 2n+ DA
heH ) k=1

where Q1,1 (7,C) = En [Lu|lh — r(h)|2 + La Y-y cc v lllv — r(h)[[3]. In the above derivation, the second inequal-
ity holds since w is the minimizer of Problem (5). The third inequality follows from the concavity of ¢(:) and Lemma
1:

o

(3 (5 e W)
(Do (Gulm) + Qryio(1.0)) |
(Do (Gum) ]| + LoQuusrc(v:0)

dr,¢ (Dzvec,hew Mh)Gu(v),Dreaz) =sup

<sup
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where Q1,,16(7,€) = Lnllh = r(0)2 + Lo Xyec bivllIv = r(h) |3 and By [Qr,.10(%,€)] = Quyio(3.€). Tn

the above derivation, the firth equality holds by the definition of the neural net distance. The first inequality because of
Lemma 1 and the fact that ¢(+) is a concave measuring function in Definition 4. Here, we suppose ¢(-) is a monotonically
increasing function. The second inequality holds by the following derivation:

6 (Do (Gu®) + Quya(1.€)) = 6 (Do (Gu(m) )|
¢ (D (Gum)) [(Do (Gull) + Qa6 (7,€)) = Do (Gulb))]|
=0 (D0 (Gu@)) | Qra2s(7:0)

<L¢QLh7LG ('7,6);

In the above derivation, the first inequality uses the concavity of measuring function ¢(-). The last inequality follows from
that |¢’| < L,. Now by taking expectation w.r.t. H,. ,,41, we obtain

<

ExcH, i [d}',dn (chﬁﬂ('y(h)),Dmaz)}

S]EHQHT,WH [d}-mﬁ (ﬁGu,heH(h)7 ﬁr@al)} + L¢QLh7LG (7) C) +2A.

10. Proof of Theorem 2

Theorem 2 Under the condition of Theorem 1, and given an empirical distribution 5T€al drawn from D,.cq, then the
Sfollowing holds with probability at least 1 — 6,

N . 2 1
’EH {dw (DG@,DMGZ)} —inf By [dr,6 (De,, Drear)]| < 2Rac(F) + 28/ - 108(5) + 2¢(d ),

N

where Ry(F) = E [sup 2 ai¢(Dv(xi))] and o; € {-1,1},i = 1,2,...,m are independent uniform random
oX | F i=1

variables.

Proof For the real distribution D,..4;, we are interested in the generalization error in term of the following neural net
distance:

Ey d]-',¢ } - irglf Ey [d]-j(z; ('DGuy,Dreal)]‘

IN

( )
Ey :dm (ﬁgmpml)] —Ey {igf dr.s (DGU,DW)H
( )

=|Ey |dF,e :’SGmDreal —dr,e (ﬁG@aﬁreal) +dr.e (730@,737-@@1) - igf dr.¢ (IDGU;IDreal):| ‘

IN
=
X

d]-_,¢ ({jG@ ) Dreal) d]-' o) (DGw ) Dreal) + Hglf d]:,¢ (DGu ) ﬁ7‘eal) - lgf d]:7¢ (DGu ) Dreal) + €(d./\/l):| ‘

S2E7—l Slglp ‘d]:,d) (DGu y Dreal) - d]—',d) (DGuu ﬁreal) ‘ + e(d/\/l):|

=2Ey sup | sup_| E_ (¢ (Dy(x))] +xelgcu [@b (f%(x))]‘ - S XG%EM (¢ (Dy(x))] +X£Gu {¢> (ﬁv(x))} +6(dM)1
<2swp | E [p(Dux)]— E [¢(Do(x)]]+ 2e(dp)- @)
Dy,eF |XEDrear XEDear

In the above derivation, the first inequality holds by by Jensen’s inequality and the concavity of the infimum function.
The second inequality holds by Theorem 1. The third inequality satisfies when we take supremum w.r.t. G,, € G. The
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last inequality uses the definition of the neural net distance and holds by triangle inequality. This reduces the problem to
bounding the distance

d}-‘ (DT'euhﬁ'real) ‘= Ssup EXEDWQZ [dj (DU(X))] - Exeﬁreal [¢ (DU(X))} ’

D,eF

between the true distribution and its empirical distribution. This can be achieved by the uniform concentration bounds
developed in statistical learning theory, and thus the distance d’z (D,.eal, D,.wl> can be achieved by the Rademacher
complexity. Let x1,X2,...,Xxy € X be aset of NV independent random samples in data space. We introduce a function

h(x1,%X2,...,XN) = DSUGPF ExeD,eu [¢ (Dy(x))] — Exeﬁreal (@ (Dy(x))]] -

Since measuring function ¢ is Lipschitz and bounded in [—-A, A], changing x; to another independent sample x; can
change the function / by no more than %, that is,

4A
h(X1yeeoyXiee oy XN) — R (Xgy ey Xy ooy Xy) < N
for all ¢ € [1, N] and any points X3, ..., Xy, X; € X. McDiarmid’s inequality implies that with probability at least 1 — ¢,

the following inequality holds:

sup
D,eF

ExeD,.n [0 (Do) ~ Eyep,,,, [6 (D (0)]

2log (%)

N ®)

<E { sup
D,eF

Brct, o [ (D,)] ~ Bres, ., [0 (0, (0] + 28

From the bound on Rademacher complexity, we have

E [ sup
D,eF

Brct, o [0 (D) ~ Bye, ., [0 (0, 0)]|

<2Eqx =2Rx(F). (€))

N
sup % Z 019 (Dy(x;))
i=1

D,eF

Combining the inequalities (7), (8) and (9), we have

210g(%)

Eyy [dm (ﬁgm,pml)] ~ inf By [d7.4 (Da,, Dyear)] < 2Rx(F) + 24 + 2e(dpg).



