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Lemma 2 Let (γ, C) be an arbitrary coordinate coding on RdB . Given an (Lh, LG)-Lipschitz smooth generator Gu(h)
and an Lx-Lipschitz discriminator Dv , for all h ∈ RdB :∣∣∣∣∣Dv(Gu(h))−Dv

(∑
v

γv(h)Gu(v)

)∣∣∣∣∣ ≤ LxLh‖h− r(h)‖2 + LxLG
∑
v∈C
|γv(h)|‖v − r(h)‖22.

Proof Given an (Lh, LG)-Lipschitz smooth generator Gu(h), an Lx-Lipschitz discriminator Dv , and let γv = γv(h)
and h′ = r(h) =

∑
v∈C γvv. We have∣∣∣∣∣D̃v(Gu(h))− D̃v

(∑
v

γv(h)Gu(v)

)∣∣∣∣∣
=

∣∣∣∣∣Dv(Gu(h))−Dv

(∑
v

γv(h)Gu(v)

)∣∣∣∣∣
=

∣∣∣∣∣Dv(Gu(h))−Dv(Gu(h′))−

(
Dv

(∑
v

γv(h)Gu(v)

)
−Dv(Gu(h′))

)∣∣∣∣∣
≤ |Dv (Gu(h))−Dv (Gu(h′))|+

∣∣∣∣∣Dv

(∑
v

γv(h)Gu(v)

)
−Dv (Gu(h′))

∣∣∣∣∣
≤Lx ‖Gu(h)−Gu(h′)‖2 + Lx

∥∥∥∥∥∑
v

γv(h)Gu(v)−Gu(h′)

∥∥∥∥∥
2

≤Lx ‖Gu(h)−Gu(h′)‖2 + Lx

∥∥∥∥∥∑
v

γv(h)
(
Gu(v)−Gu(h′)−∆Gu(h′)T (v − h′)

)∥∥∥∥∥
2

≤Lx ‖Gu(h)−Gu(h′)‖2 + Lx

∑
v∈C
|γv|

∥∥Gu(v)−Gu(h′)−∆Gu(h′)T(v − h′)
∥∥

2

≤LxLh‖h− h′‖2 + LxLG
∑
v∈C
|γv|‖v − h′‖22

=LxLh‖h− r(h)‖2 + LxLG
∑
v∈C
|γv|‖v − r(h)‖22,

where D̃v(·) = 1−Dv(·). In the above derivation, the first inequality holds by the triangle inequality. The second inequality
uses an assumption that Dv is Lipschitz smooth w.r.t. the input. The third inequality uses the facts that

∑
v∈C γv(x) = 1

and h′ =
∑

v∈C γvv. The last inequality uses the (Lh, LG)-Lipschitz smooth generator Gu, that is∥∥Gu(v)−Gu(h′)−∆Gu(h′)T(v − h′)
∥∥

2
≤ LG‖v − h′‖22.
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8. Proof of Lemma 1
Lemma 1 (Generator Approximation) Let (γ, C) be an arbitrary coordinate coding on RdB . Given a Lipschitz smooth
generator Gu(h), for all h ∈ RdB :∥∥∥∥∥Gu

(∑
v∈C

γv(h)v

)
−
∑
v∈C

γv(h)Gu(v)

∥∥∥∥∥
2

≤ 2Lh‖h− r(h)‖2 + LG
∑
v∈C
|γv(h)|‖v − r(h)‖22.

Proof From Lemma 2, when the discriminator is identity function: Dv(t) = t, that is∣∣∣∣∣Dv(Gu(h))−Dv

(∑
v

γv(h)Gu(v)

)∣∣∣∣∣ =

∥∥∥∥∥Gu(h)−
∑
v

γv(h)Gu(v)

∥∥∥∥∥
2

≤ Lh‖h− r(h)‖2 + LG
∑
v∈C
|γv|‖v − r(h)‖22,

then, we have∥∥∥∥∥Gu
(∑

v∈C
γv(h)v

)
−
∑
v∈C

γv(h)Gu(v)

∥∥∥∥∥
2

=

∥∥∥∥∥Gu
(∑

v∈C
γv(h)v

)
−Gu (h) +Gu (h)−

∑
v∈C

γv(h)Gu(v)

∥∥∥∥∥
2

≤

∥∥∥∥∥Gu
(∑

v∈C
γv(h)v

)
−Gu (h)

∥∥∥∥∥
2

+

∥∥∥∥∥Gu (h)−
∑
v∈C

γv(h)Gu(v)

∥∥∥∥∥
2

≤ 2Lh‖h− r(h)‖2 + LG
∑
v∈C
|γv(h)|‖v − r(h)‖22,

where r(h) =
∑

v∈C γv(h)v. �

9. Proof of Theorem 1
In order to provide a generalization bound w.r.t. the neural net distance, we first give some relevant lemmas and theorems.
When the latent points lie on a latent manifold and the generator is Lipschitz smooth,QLh,LG

(γ, C) has a bound as follows.

Lemma 3 (Manifold Coding (Yu et al., 2009)) If the latent points lie on a compact smooth manifold M, given an
(Lh, LG)-Lipschitz smooth generator Gu(h) and any ε > 0, then there exist anchor points C ⊂ M and coding γ such that

QLh,LG
(γ, C) ≤

[
LhcM +

(
1 +

√
dM + 4

√
dM

)
LG

]
ε2.

Lemma 3 shows that the complexity of local coordinate coding depends on the intrinsic dimension of the manifold instead
of the dimension of the basis.

Theorem 1 Suppose measuring function φ(·) is Lipschitz smooth: |φ′(·)| ≤ Lφ, and bounded in [−∆,∆]. Consider
coordinate coding (γ, C), an example setH in latent space and the empirical distribution D̂real, if the generator is Lipschitz
smooth , then the expected generalization error satisfies the inequality:

EH
[
dF,φ

(
D̂Gŵ(γ(h)), D̂real

)]
≤ inf
G

EH
[
dF,φ

(
DGu(h), D̂real

)]
+ ε(dM),

where ε(dM) = LφQLh,LG
(γ, C) + 2∆, and generative quality QLh,LG

(γ, C) has an upper bound w.r.t. dM in Lemma 3
of supplementary material.

Proof Let H(k) =
{
h

(k)
1 ,h

(k)
2 , . . . ,h

(k)
r

}
be a set of r latent samples which lie on the latent distribution. Consider

n + 1 independent experiments over the latent distribution, we have Hr,n+1 =
{
H(1),H(2), . . . ,H(n+1)

}
. Recall the

optimization problem, we consider an empirical version of the expected loss:

[w̃] = arg min
[w]

[
1

n

n+1∑
i=1

dF,φ

(
DG

w,H(i) (γ(h)), D̂real
)]

. (5)
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Let k be an integer randomly drawn from {1, 2, . . . , n+ 1}. Let
[
ŵ(k)

]
be the solution of

[
ŵ(k)

]
= arg min

[w]

 1

n

n+1∑
i 6=k

dF,φ

(
DG

w,H(i) (γ(h)), D̂real
) , (6)

with the k-th example left-out.

Recall the definition of the neural net distance, we have

dF,φ(µ, ν) = sup
F

∣∣∣∣ Ex∼µ [φ(Dv(x))] + E
x∼ν

[
φ(D̃v(x))

]∣∣∣∣ ,
where F = {Dv, v ∈ V}. Given the k-th sample experiment, the same real distribution D̂real over the training sam-
ples x1,x2, . . . ,xm, and two different distributions generated by Gŵ(k),H(k) (γ(h)) and Gw̃,H(k) (γ(h)), respectively, the
difference value of the neural net distance between these two generated distributions is:

dF,φ

(
D̂G

ŵ(k),H(k) (γ(h)), D̂real
)
− dF,φ

(
D̂G

w̃,H(k) (γ(h)), D̂real
)

= sup
∣∣∣Ex∈D̂real

[φ(Dv(x))] + Eh∈H(k)

[
φ
(
D̃v

(
Gŵ(k),H(k) (γ(h))

))]∣∣∣
− sup

∣∣∣Ex∈D̂real
[φ(Dv(x))] + Eh∈H(k)

[
φ
(
D̃v

(
Gw̃,H(k) (γ(h))

))]∣∣∣
≤ sup

∣∣∣Eh∈H(k)

[
φ
(
D̃v

(
Gŵ(k),H(k) (γ(h))

))]
− Eh∈H(k)

[
φ
(
D̃v

(
Gw̃,H(k) (γ(h))

))]∣∣∣
= sup

∣∣∣∣∣∣ 1∣∣H(k)
∣∣ ∑
h∈H(k)

[
φ
(
D̃v

(
Gŵ(k),H(k) (γ(h))

))
− φ

(
D̃v

(
Gw̃,H(k) (γ(h))

))]∣∣∣∣∣∣ ≤ 2∆,

where D̃v(·) = 1−Dv(·). In the above derivation, the first equality uses the definition of the neural net distance. The last
inequality holds by the assumption that φ(·) is Lφ-Lipschitz and bounded in [−∆,∆].

By summing over k, and consider any fixed Gu ∈ G, we obtain:

n+1∑
k=1

dF,φ

(
D̂G

ŵ(k),H(k) (γ(h)), D̂real
)
≤
n+1∑
k=1

dF,φ

(
D̂G

w̃,H(k) (γ(h)), D̂real
)

+ 2(n+ 1)∆

≤
n+1∑

h∈H(k),k=1

dF,φ

(
D̂∑

v∈C γv(h)Gu(v), D̂real
)

+ 2(n+ 1)∆

≤
n+1∑

h∈H(k),k=1

dF,φ

(
D̂Gu(h), D̂real

)
+
n+1∑
k=1

LφQLh,LG
(γ, C) + 2(n+ 1)∆,

where QLh,LG
(γ, C) = Eh

[
Lh‖h− r(h)‖2 + LG

∑
v∈C |γv|‖v − r(h)‖22

]
. In the above derivation, the second inequal-

ity holds since w̃ is the minimizer of Problem (5). The third inequality follows from the concavity of φ(·) and Lemma
1:

dF,φ

(
D∑

v∈C,h∈H(k) γv(h)Gu(v), D̂real
)

= sup
∣∣∣Ex∈D̂real

[φ(Dv(x))] + Eh∈H(k)

[
φ
(
D̃v

(∑
v∈C

γv (h)Gu(v)
))]∣∣∣

≤ sup
∣∣∣Ex∈D̂real

[φ(Dv(x))] + Eh∈H(k)

[
φ
(
D̃v (Gu(h)) + Q̂Lh,LG

(γ, C)
)]∣∣∣

≤ sup
∣∣∣Ex∈D̂real

[φ(Dv(x))] + Eh∈H(k)

[
φ
(
D̃v (Gu(h))

)]∣∣∣+ LφQLh,LG
(γ, C)

=dF,φ

(
DGu(h), D̂real

)
+ LφQLh,LG

(γ, C),
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where Q̂Lh,LG
(γ, C) = Lh‖h − r(h)‖2 + LG

∑
v∈C |γv|‖v − r(h)‖22 and Eh

[
Q̂Lh,LG

(γ, C)
]

= QLh,LG
(γ, C). In

the above derivation, the firth equality holds by the definition of the neural net distance. The first inequality because of
Lemma 1 and the fact that φ(·) is a concave measuring function in Definition 4. Here, we suppose φ(·) is a monotonically
increasing function. The second inequality holds by the following derivation:∣∣∣φ(D̃v (Gu(h)) + Q̂Lh,LG

(γ, C)
)
− φ

(
D̃v (Gu(h))

)∣∣∣
≤
∣∣∣φ′ (D̃v (Gu(h))

) [(
D̃v (Gu(h)) + Q̂Lh,LG

(γ, C)
)
− D̃v (Gu(h))

]∣∣∣
=
∣∣∣φ′ (D̃v (Gu(h))

)∣∣∣ Q̂Lh,LG
(γ, C)

≤LφQ̂Lh,LG
(γ, C),

In the above derivation, the first inequality uses the concavity of measuring function φ(·). The last inequality follows from
that |φ′| ≤ Lφ. Now by taking expectation w.r.t. Hr,n+1, we obtain

EH⊆Hr,n+1

[
dF,φ

(
D̂Gŵ,H(γ(h)), D̂real

)]
≤EH⊆Hr,n+1

[
dF,φ

(
D̂Gu,h∈H(h), D̂real

)]
+ LφQLh,LG

(γ, C) + 2∆.

�

10. Proof of Theorem 2
Theorem 2 Under the condition of Theorem 1, and given an empirical distribution D̂real drawn from Dreal, then the
following holds with probability at least 1− δ,∣∣∣∣EH [dF,φ (D̂Gŵ

,Dreal
)]
− inf
G

EH [dF,φ (DGu
,Dreal)]

∣∣∣∣ ≤ 2RX (F) + 2∆

√
2

N
log(

1

δ
) + 2ε(dM),

where RX (F) = E
σ,X

[
sup
F

1
N

N∑
i=1

σiφ (Dv(xi))

]
and σi ∈ {−1, 1}, i = 1, 2, . . . ,m are independent uniform random

variables.

Proof For the real distribution Dreal, we are interested in the generalization error in term of the following neural net
distance:∣∣∣∣EH [dF,φ (D̂Gŵ

,Dreal
)]
− inf
G

EH [dF,φ (DGu
,Dreal)]

∣∣∣∣
≤
∣∣∣∣EH [dF,φ (D̂Gŵ

,Dreal
)]
− EH

[
inf
G
dF,φ (DGu

,Dreal)
]∣∣∣∣

=

∣∣∣∣EH [dF,φ (D̂Gŵ
,Dreal

)
− dF,φ

(
D̂Gŵ

, D̂real
)

+ dF,φ

(
D̂Gŵ

, D̂real
)
− inf
G
dF,φ (DGu ,Dreal)

]∣∣∣∣
≤
∣∣∣∣EH [dF,φ (D̂Gŵ

,Dreal
)
− dF,φ

(
D̂Gŵ

, D̂real
)

+ inf
G
dF,φ

(
DGu

, D̂real
)
− inf
G
dF,φ (DGu

,Dreal) + ε(dM)

]∣∣∣∣
≤2EH

[
sup
G

∣∣∣dF,φ (DGu
,Dreal)− dF,φ

(
DGu

, D̂real
)∣∣∣+ ε(dM)

]
=2EH

[
sup
G

∣∣∣∣∣ sup
Dv∈F

∣∣∣∣ E
x∈Dreal

[φ (Dv(x))] + E
x∈DGu

[
φ
(
D̃v(x)

)]∣∣∣∣− sup
Dv∈F

∣∣∣∣∣ E
x∈D̂real

[φ (Dv(x))] + E
x∈DGu

[
φ
(
D̃v(x)

)]∣∣∣∣∣
∣∣∣∣∣+ ε(dM)

]

≤2 sup
Dv∈F

∣∣∣∣∣ E
x∈Dreal

[φ (Dv(x))]− E
x∈D̂real

[φ (Dv(x))]

∣∣∣∣∣+ 2ε(dM). (7)

In the above derivation, the first inequality holds by by Jensen’s inequality and the concavity of the infimum function.
The second inequality holds by Theorem 1. The third inequality satisfies when we take supremum w.r.t. Gu ∈ G. The
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last inequality uses the definition of the neural net distance and holds by triangle inequality. This reduces the problem to
bounding the distance

d′F

(
Dreal, D̂real

)
:= sup

Dv∈F

∣∣∣Ex∈Dreal
[φ (Dv(x))]− Ex∈D̂real

[φ (Dv(x))]
∣∣∣ ,

between the true distribution and its empirical distribution. This can be achieved by the uniform concentration bounds
developed in statistical learning theory, and thus the distance d′F

(
Dreal, D̂real

)
can be achieved by the Rademacher

complexity. Let x1,x2, . . . ,xN ∈ X be a set of N independent random samples in data space. We introduce a function

h (x1,x2, . . . ,xN ) = sup
Dv∈F

∣∣∣Ex∈Dreal
[φ (Dv(x))]− Ex∈D̂real

[φ (Dv(x))]
∣∣∣ .

Since measuring function φ is Lipschitz and bounded in [−∆,∆], changing xi to another independent sample x′i can
change the function h by no more than 4∆

N , that is,

h (x1, . . . ,xi . . . ,xN )− h (x1, . . . ,x
′
i, . . . ,xN ) ≤ 4∆

N
,

for all i ∈ [1, N ] and any points x1, . . . ,xN ,x
′
i ∈ X . McDiarmid’s inequality implies that with probability at least 1− δ,

the following inequality holds:

sup
Dv∈F

∣∣∣Ex∈Dreal
[φ (Dv(x))]− Ex∈D̂real

[φ (Dv(x))]
∣∣∣

≤E
[

sup
Dv∈F

∣∣∣Ex∈Dreal
[φ (Dv(x))]− Ex∈D̂real

[φ (Dv(x))]
∣∣∣]+ 2∆

√
2 log

(
1
δ

)
N

. (8)

From the bound on Rademacher complexity, we have

E
[

sup
Dv∈F

∣∣∣Ex∈Dreal
[φ (Dv(x))]− Ex∈D̂real

[φ (Dv(x))]
∣∣∣]

≤2Eσ,X

[
sup
Dv∈F

1

N

N∑
i=1

σiφ (Dv(xi))

]
= 2RX (F). (9)

Combining the inequalities (7), (8) and (9), we have

EH
[
dF,φ

(
D̂Gŵ

,Dreal
)]
− inf

Gu

EH [dF,φ (DGu
,Dreal)] ≤ 2RX (F) + 2∆

√
2 log(1

δ )

N
+ 2ε(dM).

�


