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(a) Results of LCC-GANs with d = 10.

(b) Results of Vanilla GANs with d = 10.

(c) Results of Vanilla GANs with d = 100.

Figure 6. Results of LCC-GANSs with Vanilla GANs for different
dimensions of the latent distribution on LSUN.

From Table 2, LCC-GANSs consistently outperform other
methods with various d in both measures. These results
show the effectiveness of the proposed LCC-GANS in pro-
ducing perceptually promising images with higher quality
and larger diversity than the considered baselines.

6.3. Results on LSUN

In this experiment, we evaluate the proposed LCC-GANs
on LSUN which is a collection of natural images of indoor
scenes. We train the generative models to produce images
of different categories, including bedroom, classroom, con-
ference room, etc. In this experiment, we also adopt Vanilla
GANSs as the baseline models to implement LCC-GANSs.
We show the visual comparison results in Figure 6.

From Figure 6, when we train the models using an input
with a small dimension d = 10, Vanilla GANs often fail to
generate clear and meaningful images. In contrast, LCC-
GANSs significantly outperform their GAN counterparts
and produce images with sharp structure and rich details.
Moreover, when generating images of different scenes,
LCC-GAN:Ss consistently outperform Vanilla GANs. Note
that the scene images in LSUN are much more complex
than the images of MNIST and Oxford-102. Therefore,
training a generative model can be more difficult. How-
ever, with the help of LCC, the proposed LCC-GANs are

(a) Results of LCC-GANs with d = 30.

(b) Results of Progressive GANs with d = 30.

(c) Results of Progressive GANs with d = 100.

Figure 7. Performance comparisons of LCC-GANs with Progres-
sive GANs.

able to effectively capture the local common features and
produce visually convincing images.

In this experiment, we also present the generated samples
of Vanilla GANs with a high dimensional input d = 100.
Compared to this method, LCC-GANSs only require an in-
put with d = 10 to produce even better images. In other
words, this LCC sampled input effectively preserves the
local information of real images on the latent manifold and
thus helps the training of GANs. With the help of LCC
sampling, most of the generated images show sharper struc-
ture and contain more meaningful details.

6.4. Results on CelebA

In this experiment, we evaluate the proposed method on
the large-scale dataset CelebA, which is composed of a set
of celebrity faces. Here, Progressive GANs (Karras et al.,
2018) are adopted to implement LCC-GANs. We conduct
comparisons and show the results in Figure 7.

Since face images often share a common face outline and
only differ in detailed attributes, e.g., hair, eyes, mouth,
skin features, it requires an input with a larger dimension to
capture the local information. In this way, we adopt the in-
put with a larger dimension for both Progressive GANs and
the proposed LCC-GAN:S in the training. From Figure 7,
the performance of Progressive GANs degrades severely
given an input with a small dimension d = 30, compared
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Table 3. Generated images from LCC sampling on MNIST,
Oxford-102 and CelebA. The last column shows the most simi-
lar images in training set to the generated samples on the left.

Datasets Generated Samples Nearest Real data
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to d = 100. However, with the help of LCC, the proposed
LCC-GANSs with the input of d = 30 are able to produce
images of better quality than Progressive GANs with high
dimensional inputs of d = 100. According to these re-
sults, LCC-GANSs greatly benefit from the LCC sampling
and make the training much easier than directly matching
the standard Gaussian distribution.
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6.5. Demonstration of LCC Sampling

In this experiment, we investigate the effectiveness of the
proposed LCC sampling method. To achieve this, we can
simply fix a specific set of bases and only change the corre-
sponding weights to produce images. Ideally, these images
should be located in a local area of the latent manifold and
share some common features.

We conduct experiments on LCC sampling and show the
results in Table 3. The second column of Table 3 shows
the generated images sampled by LCC sampling method
on different datasets. The last column is the real image
with the largest similarity to the generated images. From
Table 3, LCC-GANSs produce digits with sharp shapes and
different orientations or styles (see the top row in Table 3).
Each generated image contains a digit “5” but with obvious
individual differences. In other words, the proposed LCC
sampling method is able to generate new data by effectively
exploiting the local information on the latent manifold.

When synthesizing flowers and faces, we draw a simi-
lar conclusion that verifies the effectiveness of the pro-
posed LCC sampling method. Specifically, LCC-GANs
produce flowers with similar shapes but with different col-
ors. Similarly, LCC-GANSs also produce varying face im-
ages of promising quality which share some common fea-
tures. These results demonstrate that the proposed LCC-
GANs generalize well to unseen data rather than simply
memorizing the training samples.

Table 4. MS-SSIM on different datasets. Here, d = 100 is for all
baselines and d = 30 for LCC-GANS.

Methods MNIST Oxford-102 LSUN CelebA
Vanilla GANs 0.242 0.160 0224  0.337
WGANs 0.251 0.157 0.237  0.324
Progressive GANs | 0.239 0.151 0.213  0.308
LCC-GANs 0.224 0.153 0.203  0.305

6.6. More Quantitative Results

In this experiment, we adopt MS-SSIM as the evaluation
measure and compare the proposed LCC-GANs with sev-
eral GAN methods on four benchmark datasets. We use
Vanilla GANs to implement LCC-GANs. To show the su-
periority of the proposed method, we set d = 30 for LCC-
GANs and d = 100 for the other baselines. Here, we
can only report MS-SSIM because Inception Score is no
longer a valid measure and may give misleading results on
CelebA (Barratt & Sharma, 2018). The quantitative results
are shown in Table 4.

From Table 4, with a low dimensional input, the proposed
method is able to produce images with larger or compara-
ble diversity (smaller MS-SSIM score) than the considered
baselines with high dimensional inputs on most datasets.
These results show the effectiveness of the proposed LCC-
GANSs in generating images with large diversity.

7. Conclusions

In this paper, we have proposed a novel generative model
by exploiting the local information on the latent manifold
of real data to improve GANs using Local Coordinate Cod-
ing (LCC). Unlike existing methods, based on a genera-
tor approximation, we have developed an LCC based sam-
pling method to train GANs. In this way, we are able
to conduct analysis on the generalization ability of GANs
and theoretically prove that a small dimensional input will
help to achieve good generalization. Extensive experiments
on several benchmark datasets demonstrate the superior-
ity of the proposed method over the state-of-the-art meth-
ods. Specifically, with the proposed LCC sampling, the
proposed method outperforms the considered baselines by
producing sharper images with higher diversity.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (NSFC) 61502177 and 61602185,
and Recruitment Program for Young Professionals, and
Guangdong Provincial Scientific and Technological funds
2017B090901008, 2017A010101011, 2017B090910005,
and Fundamental Research Funds for the Central Univer-
sities D2172500, D2172480, and Pearl River S&T Nova
Program of Guangzhou 201806010081 and CCF-Tencent
Open Research Fund RAGR20170105.



Adversarial Learning with Local Coordinate Coding

References

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
generative adversarial networks. In International Con-
ference on Machine Learning, pp. 214-223, 2017.

Arora, S., Ge, R., Liang, Y., Ma, T, and Zhang, Y.
Generalization and equilibrium in generative adversarial
nets (GANSs). In International Conference on Machine
Learning, volume 70, pp. 224-232, 2017.

Barratt, S. and Sharma, R. A note on the inception score.
arXiv preprint arXiv:1801.01973, 2018.

Bartlett, P. L. and Mendelson, S. Rademacher and gaus-
sian complexities: Risk bounds and structural results.
Journal of Machine Learning Research, 3(Nov):463—
482, 2002.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672-2680, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In International Conference on
Computer Vision, pp. 10261034, 2015.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the di-
mensionality of data with neural networks. science, 313
(5786):504-507, 2006.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In International Conference on Computer Vision, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. In International Conference on Learning Rep-
resentations, 2018.

Kim, T., Cha, M., Kim, H., Lee, J., and Kim, J. Learning to
discover cross-domain relations with generative adver-
sarial networks. In International Conference on Machine
Learning, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278-2324, 1998.

Liu, Z., Luo, P, Wang, X., and Tang, X. Deep learning
face attributes in the wild. In International Conference
on Computer Vision, pp. 3730-3738, 2015.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, 1., and
Frey, B. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

Mathieu, M., Couprie, C., and LeCun, Y. Deep Multi-scale
Video Prediction beyond Mean Square Error. In Interna-
tional Conference on Learning Representations, 2016.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-

ference on Computer Vision, Graphics and Image Pro-
cessing, pp. 722-729, 2008.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert,
R., and Chopra, S. Video (language) Modeling: a Base-
line for Generative Models of Natural Videos. arXiv
preprint arXiv:1412.6604, 2014.

Roweis, S. T. and Saul, L. K. Nonlinear dimensional-
ity reduction by locally linear embedding. science, 290
(5500):2323-2326, 2000.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. In Advances in Neural Information Pro-
cessing Systems, pp. 2234-2242, 2016.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A
global geometric framework for nonlinear dimensional-
ity reduction. science, 290(5500):2319-2323, 2000.

Tolstikhin, 1., Olivier, B., Gelly, S., and Schoelkopf, B.
Wasserstein auto-encoders. In International Conference
on Learning Representations, 2018.

Yu, F, Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
Xiao, J. Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Yu, K., Zhang, T., and Gong, Y. Nonlinear learning using
local coordinate coding. In Advances in Neural Informa-
tion Processing Systems, pp. 2223-2231, 2009.

Zhang, P., Liu, Q., Zhou, D., Xu, T., and He, X. On
the discrimination-generalization tradeoff in GANs. In
International Conference on Learning Representations,
2018.



