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Abstract

Generative adversarial networks (GANs) aim to
generate realistic data from some prior distribu-
tion (e.g., Gaussian noises). However, such prior
distribution is often independent of real data and
thus may lose semantic information (e.g., geo-
metric structure or content in images) of data.
In practice, the semantic information might be
represented by some latent distribution learned
from data, which, however, is hard to be used
for sampling in GANs. In this paper, rather than
sampling from the pre-defined prior distribution,
we propose a Local Coordinate Coding (LCC)
based sampling method to improve GANs. We
derive a generalization bound for LCC based
GANs and prove that a small dimensional in-
put is sufficient to achieve good generalization
performance. Extensive experiments on various
real-world datasets demonstrate the effectiveness
of the proposed method.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been successfully applied to many tasks,
such as video prediction (Ranzato et al., 2014; Mathieu
et al., 2016), image translation (Isola et al., 2017; Kim
et al., 2017), etc. Specifically, GANs learn to generate data
by playing a two-player game: a generator tries to produce
samples from a simple latent distribution, and a discrimina-
tor distinguishes between the generated data and real data.

Recently, many attempts have been made to improve GANs
(Radford et al., 2015; Arjovsky et al., 2017; Karras et al.,
2018). However, existing studies suffer from two limita-
tions. First, many studies employ some simple prior distri-
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bution, such as Gaussian distributions (Goodfellow et al.,
2014) and uniform distributions (Radford et al., 2015).
However, such pre-defined prior distributions are often in-
dependent of the data distributions and these methods may
produce images with distorted structures without sufficient
semantic information. Although such semantic informa-
tion can be represented by some latent distribution, e.g.,
extracting embeddings using an AutoEncoder (Hinton &
Salakhutdinov, 2006), how to conduct sampling from this
distribution still remains an open question in GANs.

Second, the generalization ability of GANs w.r.t. the di-
mension of the latent distribution is unknown. In practice,
we observe that the performance of GANs is sensitive to
the dimension of the latent distribution. Unfortunately, it is
difficult to analyze the dimensionality of the latent distribu-
tion, since the specified prior distribution is independent of
the real data. Therefore, it is very necessary and important
to explore a new method to study the dimension of latent
distribution and its impacts on the generalization ability.

In this paper, relying on the manifold assumption on im-
ages (Tenenbaum et al., 2000; Roweis & Saul, 2000), we
propose a novel generative model using Local Coordinate
Coding (LCC) (Yu et al., 2009) to improve GANs in gener-
ating perceptually convincing images. First, we employ an
AutoEncoder to learn embeddings lying on the latent man-
ifold to capture the semantic information in data. Then, we
develop a new LCC sampling method for training GANs
by exploiting the local information on the latent manifold.

The contributions of this paper are summarized as follows.

First, we propose an LCC sampling method for GANs to
capture the local information of data. With the LCC sam-
pling, the proposed scheme, called LCC-GANs, is able to
sample meaningful points from the latent manifold to gen-
erate new data.

Second, we study the generalization bound of LCC-GANs
based on the Rademacher complexity of the discrimina-
tor set and the error w.r.t. the intrinsic dimensionality of
the manifold. In particular, we prove that a small dimen-
sional input is sufficient to achieve good generalization per-
formance. Extensive experiments on real-world datasets
demonstrate the superiority of the proposed method over
several state-of-the-arts.
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2. Related Studies
Recently, Generative Adversarial Networks have shown
promising performance for generating images, such as DC-
GANs (Radford et al., 2015), WGANs (Arjovsky et al.,
2017) and Progressive GANs (Karras et al., 2018). Most
existing generative models seek to learn from some simple
prior distribution, such as Gaussian distributions and uni-
form distributions, to generate samples (Goodfellow et al.,
2014; Arjovsky et al., 2017; Radford et al., 2015; Karras
et al., 2018). However, such prior distributions are inde-
pendent of the data distributions, which may lose semantic
information and lead to difficulties in analyzing the dimen-
sion of latent space.

Besides, some generative models do sampling via some
learned posterior distribution. For example, Variational
AutoEncoder (VAE) (Kingma & Welling, 2014), Wasser-
stein AutoEncoder (WAE) (Tolstikhin et al., 2018) and Ad-
versarial AutoEncoder (AAE) (Makhzani et al., 2015) en-
force the posterior distribution to match the prior distribu-
tion. However, it is difficult for these methods to conduct
sampling directly on the posterior distribution. Moreover,
although these methods help to make inference, overly sim-
plified distributions would also lose semantic information.

3. Preliminaries
3.1. Local Coordinate Coding

We first introduce some definitions about local coordinate
coding which will be used to develop our proposed method.

Definition 1 (Lipschitz Smoothness (Yu et al., 2009))
A function fθ(x) in Rd is (Lx, Lf )-Lipschitz smooth if
‖f(x′) − f(x)‖2 ≤ Lx‖x − x′‖2 and ‖f(x′) − f(x) −
∇f(x)T(x′ − x)‖2 ≤ Lf‖x− x′‖22, where Lx, Lf > 0.

Definition 2 (Coordinate Coding (Yu et al., 2009)) A
coordinate coding is a pair (γ, C), where C ⊂ Rd is
a set of anchor points (bases), and γ is a map of x ∈
Rd to [γv(x)]v∈C ∈ R|C| such that

∑
v γv(x) = 1.

Then, the physical approximation of x ∈ Rd is r(x) =∑
v∈C γv(x)v.

Definition 2 indicates that any point in Rd can be repre-
sented by a linear combination of a set of anchor points.

3.2. Latent Manifold

High dimensional data often lie on some low dimensional
manifold (Tenenbaum et al., 2000; Roweis & Saul, 2000).
Based on this manifold assumption, we can learn a mani-
foldM embedded in the latent space RdB by some mani-
fold learning method, such as an AutoEncoder (AE) (Hin-
ton & Salakhutdinov, 2006), to capture the semantic infor-
mation of data. Given N training data {xi}Ni=1, we can

(a) Local function approxima-
tion based on LCC

(b) Global function approxima-
tion based on LCC

Figure 1. A geometric view of Local Coordinate Coding. Given a
set of local bases, if data lie on a manifold, a nonlinear function
f(x) can be locally approximated by a linear function w.r.t. the
coding. Given all bases, f(x) can be globally approximated.

use an Encoder to extract the embeddings {hi}Ni=1, where
hi = Encoder(xi). Formally, the latent manifold can be
defined as follows.

Definition 3 (Latent Manifold (Yu et al., 2009)) A subset
M embedded in the latent space RdB is called a smooth
manifold with a intrinsic dimension d := dM, if there ex-
ists a constant cM, such that given any h ∈ M, there are
d bases v1(h), . . . ,vd(h) ∈ RdB so that ∀ h′ ∈M :

infγ∈Rd

∥∥∥h′ − h−
∑d
j=1 γjvj(h)

∥∥∥
2
≤ cM‖h′ − h‖22.

where γ = [γ1, . . . , γd]
T is the local coding of a latent

point h using the corresponding bases.

3.3. Generative Adversarial Networks

We apply the neural network distance (Arora et al., 2017)
to measure the similarity between two distributions.

Definition 4 (Neural Network Distance (Arora et al.,
2017)) Let F be a set of neural networks from Rd to [0, 1]
and φ be a concave measure function, then for D ∈ F , the
neural network distance w.r.t. φ between two distributions
µ and ν can be defined as

dF,φ(µ, ν)= sup
D∈F

∣∣∣∣ Ex∼µ [φ(D(x))
]
+ E

x∼ν

[
φ(D̃(x))

]∣∣∣∣−φc,
where φc=2φ( 1

2 ) is a constant with the given φ and
D̃(x)=1−D(x). For simplicity, we omit the constant φc.

Objective function of general GANs. Given a Generator
Gu and a Discriminator Dv parameterized by u ∈ U and
v ∈ V , where U and V are parameter spaces. Let Dreal be
the real distribution of training samples x ∈ Rd and DGu

be the distribution generated byGu. The objective function
of GANs can be defined as:

min
u∈U

max
v∈V

E
x∼Dreal

[φ(Dv(x))] + E
x∼DGu

[φ(1−Dv(x))] ,

where φ : [0, 1]→ R is any monotone function.
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Figure 2. The scheme of the proposed LCC-GANs. We use an AutoEncoder to learn the embeddings on the latent manifold from real
data. Relying on LCC, we learn a set of bases such that the LCC sampling can be conducted. As a result, the proposed method is able
to take the constructed LCC codings to generate new data.

4. Adversarial Learning with LCC
In this section, we seek to improve GANs by exploiting
LCC. The overall structure of the proposed method, called
LCC-GANs, is illustrated in Figure 2.

As shown in Figure 2, instead of sampling from some pre-
defined prior distribution, we seek to sample points from
a learned latent manifold for training GANs. Specifically,
we use an AutoEncoder (AE) to learn embeddings over a
latent manifold of real data and then employ LCC to learn
a set of bases to form local coordinate systems on the la-
tent manifold. After that, we introduce LCC into GANs by
approximating the generator using a linear function w.r.t. a
set of codings (see Section 4.1). Relying on such approx-
imation, we then propose an LCC based sampling method
to exploit the local information of data on the latent mani-
fold (see Section 4.3). The details of the proposed method
are illustrated in following subsections.

4.1. Generator Approximation Based on LCC

According to Definition 3, any point on the latent manifold
can be approximated by a linear combination of a set of
local bases. Inspired by this, if the bases are sufficiently
localized, the generator of GANs can also be approximated
by a linear function w.r.t. a set of codings.

Lemma 1 (Generator Approximation) Let (γ, C) be an
arbitrary coordinate coding on RdB . Given a (Lh, LG)-
Lipschitz smooth generator Gu(h), for all h ∈ RdB :∥∥∥Gu (∑

v∈C
γv(h)v

)
−
∑

v∈C
γv(h)Gu(v)

∥∥∥
2

≤2Lh‖h−r(h)‖2+LG
∑

v∈C
|γv(h)|·‖v−r(h)‖22,

(1)

where r(h) =
∑

v∈C γv(h)v.

Given the local bases and a Lipschitz smooth generator, the
generator w.r.t. the linear combination of the local bases

can be approximated by the linear combination of the gen-
erator w.r.t. local bases. Since two close latent points often
share the same local bases but with different weights (i.e.,
codings), we can change these weights for generator ap-
proximation. Therefore, the pieces of generated data can
cover an entire manifold seamlessly (see Figure 1(b)).

Objective function of LCC. We minimize the right-hand
term of the inequality in (1) to obtain a set of bases. Given
a set of the latent points {hi}Ni=1, by assuming h ≈ r(h)
(Yu et al., 2009), we address the following problem:

min
γ,C

∑
h

2Lh‖h− r(h)‖2+LG
∑
v∈C
|γv(h)|·‖v − h‖22,

s.t.
∑
v∈C

γv(h) = 1, ∀h,
(2)

where r(h) =
∑

v∈C γv(h)v. In practice, we update γ
and C by alternately optimizing a LASSO problem and a
least-square regression problem, respectively.

4.2. Objective Function of LCC-GANs

After solving Problem (2), every latent point h ∈ RdB is
close to its physical approximation r(h), i.e., h ≈ r(h),
then the generator can be approximated by

Gu(h) ≈ Gu(r(h)) , Gw(γ(h)),h ∈ H, (3)

where r(h) = Vγ(h), V = [v1,v2, . . . ,vM ] and γ(h) =

[γ1(h), γ2(h), . . . , γM (h)]
T with M = |C|. Here, H is

the latent distribution and w ∈ W is the parameters of the
generator w.r.t. u and fixed V learned from Problem (2).

Using the neural network distance, we consider the follow-
ing objective function of LCC-GANs between the gener-
ated distribution and the empirical distribution:

min
Gw∈G

dF,φ

(
D̂Gw(γ(h)), D̂real

)
,h ∈ H. (4)



Adversarial Learning with Local Coordinate Coding

Latent Space

Latent ManifoldReal Data Local Coordinate System Generated Data

: Embeddings: Bases : Sample Points

Figure 3. The geometric views on LCC Sampling. By learning embeddings (i.e., black points) which lie on the latent manifold, we use
LCC to learn a set of bases (i.e., gray points) to form a local coordinate system such that we can sample different latent points (i.e.,
coloured points) by LCC sampling. As a result, LCC-GANs can generate new data which have different attributes.

To be more specific, Problem (4) can be rewritten as:

min
w∈W

max
v∈V

E
x∼D̂real

[
φ(Dv(x))

]
+ E

h∼H

[
φ
(
D̃v (Gw (γ(h)))

)]
,

where φ(·) is a monotone function, and D̃v(·) = 1−Dv(·).
The detailed algorithm is shown in Algorithm 1.

4.3. LCC Sampling Method

To address Problem (4), one of the key issues is on how
to conduct sampling from the learned latent manifold. Al-
though the latent manifold can be learned by AutoEncoder,
it is very hard to sample valid points on it to train GANs. To
address this, we propose an LCC sampling method to cap-
ture the latent distribution on the learned latent manifold
(see Figure 3). The proposed sampling method contains
the following two steps.

Step 1: Given a local coordinate system, we randomly se-
lect a latent point (specifically, it can be a basis), and then
find its d-nearest neighbors B = {vj}dj=1.

Step 2: We construct an M -dimensional vector γ(h) =
[γ1(h), γ2(h), . . . , γM (h)]T as the LCC coding for sam-
pling. Here, each element of γ(h) is corresponding to the
weight of the basis. To conduct local sampling, we con-
struct the coding of the neighbors B as follows:

γj(h) =

{
zj , vj ∈ B
0 , vj /∈ B

,

where zj is the j-th element of z ∈ Rd from the prior distri-
bution p(z). Here, we set p(z) to be the standard Gaussian
distribution N (0, I). Finally, we obtain a new latent point
Vγ(h).

Based on Definition 3, the intrinsic dimensionality is deter-
mined by the number of bases in a local region. Thus, we
turn the determination of intrinsic dimension into an easier
problem of selecting sufficient number of local bases.

Algorithm 1 LCC-GANs Training Method.
Initialize: Training data {xi}Ni=1; a prior distribution p(z),

where z ∈ Rd; minibatch size n.
1: Learn the latent manifoldM using an AutoEncoder
2: Construct LCC bases {vi}Mi=1 onH by optimizing:

minγ,C
∑

h2Lh‖h−r(h)‖2+LG

∑
v∈C |γv(h)|·‖v−h‖

2
2

3: for number of training iterations do
4: Do LCC Sampling to obtain a minibatch {γ(hi)}ni=1

5: Sample a minibatch {xi}ni=1 from the data distribution
6: Update the discriminator by ascending the gradient:

∇v
1
n

∑n
i=1 φ(Dv(xi)) + φ((1−Dv(Gw(γ(hi)))))

7: Do LCC Sampling to obtain a minibatch {γ(hi)}ni=1

8: Update the generator by descending the gradient:
∇w

1
n

∑n
i=1 φ(1−Dv(Gw(γ(hi))))

9: end for

5. Theoretical Analysis
We first give some necessary notations to develop our theo-
retical analysis for LCC based GANs. Let {xi}Ni=1 be a set
of observed training samples drawn from the real distribu-
tion Dreal, and let D̂real denote the empirical distribution
over {xi}Ni=1. Given a generator Gu and a set of the latent
points {hi}ri=1, {Gu(hi)}ri=1 denotes a set of r generated
samples from the generated distribution DGu , and D̂Gw is
an empirical generated distribution. Motivated by (Arora
et al., 2017; Zhang et al., 2018), we define the generaliza-
tion of LCC-GANs as follows:

Definition 5 (Generalization) The neural network dis-
tance dF,φ(·, ·) between distributions generalizes with N
training samples and error ε, if for a learned distribution
DGu

, the following holds with high probability,∣∣∣∣dF,φ (D̂Gw
,Dreal

)
− inf
G
dF,φ (DGu

,Dreal)
∣∣∣∣ ≤ ε.

In Definition 5, the generalization of GANs means that
the population distance dF,φ(DGu ,Dreal) is close to the
distance dF,φ(D̂Gw

,Dreal). In theory, we hope to ob-
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tain a small dF,φ(DGu
,Dreal). In practice, we can min-

imize the empirical loss dF,φ(D̂Gw , D̂real) to approximate
dF,φ(D̂Gw

,Dreal). First, we have the following general-
ization bound on D̂real to develop the generalization anal-
ysis of LCC-GANs.

Theorem 1 Suppose φ(·) is Lipschitz smooth: |φ′(·)| ≤
Lφ, and bounded in [−∆,∆]. Given the coordinate coding
(γ, C), an example set H in latent space and the empiri-
cal distribution D̂real, if the generator is Lipschitz smooth,
then the expected generalization error satisfies:

EH
[
dF,φ

(
D̂Gŵ(γ(h)), D̂real

)]
≤ inf
G

EH
[
dF,φ

(
DGu(h), D̂real

)]
+ ε(dM),

where ε(dM) = LφQLh,LG
(γ, C) + 2∆, and generative

quality QLh,LG
(γ, C) has an upper bound w.r.t. dM in

Lemma 3 which is given in supplementary materials.

See supplementary materials for the proof.

Theorem 1 shows that the generalization bound for D̂real
is related to the dimension of the latent manifold (i.e.,
dM) rather than the dimension of the latent space (i.e.,
dB). Based on Theorem 1 and the Rademacher complexity
(Bartlett & Mendelson, 2002), we then accomplish the gen-
eralization bound on an unknown real distribution Dreal.

Theorem 2 Under the condition of Theorem 1, given an
empirical distribution D̂real with N samples drawn from
Dreal, the following holds with probability at least 1− δ,∣∣∣∣EH [dF,φ (D̂Gŵ

,Dreal
)]
− inf
G

EH [dF,φ (DGu ,Dreal)]
∣∣∣∣

≤2RX (F) + 2∆

√
2

N
log(

1

δ
) + 2ε(dM),

where RX (F) is the Rademacher complexity of F .

See supplementary materials for the proof.

Theorem 2 shows that the generalization error of LCC-
GANs can be bounded by Rademacher complexity of F
and an error term ε(dM). Specifically, the former term
RX (F) implies that the set of discriminator should be
smaller to have better generalization ability, and also be
large enough to be able to identify the data distribution,
which is consistent with (Zhang et al., 2018). The latter
term ε(dM) indicates that a small dimensional input is suf-
ficient to achieve good generalization. In practice, every
dataset has its own dimension of the latent manifold. Nev-
ertheless, experiments show that the proposed method is
able to generate perceptually convincing images with small
dimensional inputs.

6. Experiments
We compare LCC-GANs with several state-of-the-arts, i.e.,
Vanilla GANs (Goodfellow et al., 2014), WGANs (Ar-
jovsky et al., 2017) and Progressive GANs (Karras et al.,
2018). Here, Vanilla GANs and Progressive GANs are used
to implement our LCC-GANs. For all considered GAN
methods, the inputs are sampled from a d-dimensional prior
distribution, and we train the generative models to produce
64× 64 images. All experiments are conducted on a single
Nvidia Titan X GPU.

Implementation details. We implement LCC-GANs based
on PyTorch.1 We follow the experimental settings in DC-
GANs (Radford et al., 2015). Specifically, for the optimiza-
tion, we use Adam (Kingma & Ba, 2015) with a mini-batch
size of 64 and a learning rate of 0.0002 to train the gen-
erator and the discriminator. We initialize the parameters
of both the generator and the discriminator following the
strategy in (He et al., 2015).

Datasets and evaluation metrics. To thoroughly evaluate
the proposed method, we conduct experiments on a wide
variety of benchmark datasets, including MNIST (LeCun
et al., 1998), Oxford-102 (Nilsback & Zisserman, 2008),
LSUN (Yu et al., 2015) and CelebA (Liu et al., 2015).
For quantitative comparisons, we adopt the Inception Score
(IS) (Salimans et al., 2016) and Multi-Scale Structural Sim-
ilarity (MS-SSIM) (Karras et al., 2018) as the performance
metrics, which are highly consistent with human evalua-
tions. Inception Score measures both the single image qual-
ity and the diversity over a large number of samples (i.e.,
50k). In general, a larger IS value corresponds to the better
performance of the method, and a smaller MS-SSIM value
corresponds to images with more diversity.

(a) Generated samples with d = 3. The yellow and red boxes
denote similar generated digits “2” and “8”, respectively.

(b) Comparisons of different GANs with d = 5, where GANs with
d = 100 are considered as the baseline.

Figure 4. Performance comparisons of various GANs on MNIST.

1PyTorch is from http://pytorch.org/.
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Table 1. Inception scores of various generative models on Oxford-102. For each method, we produce 50, 000 samples for testing.

Samples
Methods Vanilla GANs (d=10) WGANs (d=10) Progressive GANs (d=10) Vanilla GANs (d=100) LCC-GANs (d=10)
Scores 2.21± 0.03 2.14± 0.02 2.43± 0.05 2.66 ± 0.03 2.71± 0.03

Figure 5. Results of LCC-GANs and Vanilla GANs on Oxford-
102. Top: Vanilla GANs. Bottom: LCC-GANs.

6.1. Results on MNIST

In this experiment, we evaluate the performance of the pro-
posed method on MNIST (LeCun et al., 1998), which con-
tains handwritten digit images ranging from 0 to 9. In this
small dataset, we adopt Vanilla GANs as the baseline to im-
plement the proposed LCC-GANs. The visual comparisons
are shown in Figure 4.

From Figure 4(a), given a very low dimensional input with
d = 3, Vanilla GANs produce only few kinds of digits with
almost the same shapes (see the yellow and red boxes in
Figure 4(a)). In other words, Vanilla GANs produce im-
ages with very low diversity. In contrast, LCC-GANs with
a small dimensional input d = 3 can produce digits with
different styles and different orientations. Equipped with
LCC, the proposed LCC-GANs effectively preserve the lo-
cal information of data on the latent manifold and thus help
the training of GANs.

In Figure 4(b), we increase the dimension of input to d = 5
and compare the proposed LCC-GANs with other state-
of-the-art GAN methods. In this experiment, the base-
line GAN methods often produce digits with obscure struc-
ture. Nevertheless, the proposed LCC-GANs significantly
outperform the considered baseline methods and produce
sharp images with high diversity. More critically, LCC-
GANs with d = 5 are able to achieve comparable or
even better performance than their GAN counterparts with
d = 100 (see the red box in Figure 4(b)). These results
show the effectiveness of the proposed LCC-GANs when
training a generative model with the local information of
the latent manifold. Compared to the baseline methods,
LCC-GANs only need a relatively low dimensional input
to produce visually promising images.

Table 2. Inception-Score (IS) and MS-SSIM on Oxford-102.
Methods d = 5 d = 10 d = 30 d = 100

IS SSIM IS SSIM IS SSIM IS SSIM
Vanilla GANs 2.03 0.205 2.37 0.180 2.57 0.166 2.66 0.160

VAE 2.14 0.203 2.38 0.185 2.54 0.163 2.68 0.162
Sparse Coding 2.44 0.197 2.63 0.179 2.68 0.157 2.72 0.153
LCC Coding 2.57 0.188 2.71 0.163 2.83 0.153 2.75 0.147

6.2. Results on Oxford-102 Flowers

We further evaluate the proposed LCC-GANs on a larger
dataset Oxford-102 which contains flower images of 102
categories. In this experiment, we adjust the input of
generative models with different dimensions, i.e., d =
{3, 5, 10, 30}, and adopt Vanilla GANs to implement the
proposed LCC-GANs and investigate the effect of different
input dimensions. The results are shown in Figure 5.

From Figure 5, we have the following observations. First,
for Vanilla GANs, the performance highly depends on the
input dimension. Given a small dimension, i.e., d = 3
or d = 5, Vanilla GANs often fail to produce meaning-
ful flowers and obtain images with a blurring structure and
distorted regions. In contrast, the proposed LCC-GANs are
able to produce promising images with clear structure given
an input with d = 5. With such a low dimensional in-
put, LCC-GANs effectively capture the local information
of the latent manifold and produce perceptually convinc-
ing images. Second, we further investigate the effect of
input dimension. From Figure 5, the proposed LCC-GANs
consistently outperform Vanilla GANs given the inputs of
different dimensions.

Moreover, we compare the proposed LCC-GANs with sev-
eral state-of-the-art GAN methods and report the results
in Table 1. From Table 1, the proposed LCC-GANs with
d = 10 significantly outperform the other baseline meth-
ods and achieve the best performance with a score of 2.71.
More critically, LCC-GANs with d = 10 achieve even bet-
ter performance than Vanilla GANs with d = 100, which
require the input with much higher dimension.

Comparisons of different representation methods. On
Oxford-102, we compare different representation meth-
ods and adopt Inception Score and MS-SSIM to evaluate
the quality and diversity of the generated images, respec-
tively. We adjust the input with different dimensions, i.e.,
d = {5, 10, 30, 100}, and adopt Vanilla GANs to imple-
ment LCC-GANs. The results are shown in Table 2.
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(a) Results of LCC-GANs with d = 10.

(b) Results of Vanilla GANs with d = 10.

(c) Results of Vanilla GANs with d = 100.

Figure 6. Results of LCC-GANs with Vanilla GANs for different
dimensions of the latent distribution on LSUN.

From Table 2, LCC-GANs consistently outperform other
methods with various d in both measures. These results
show the effectiveness of the proposed LCC-GANs in pro-
ducing perceptually promising images with higher quality
and larger diversity than the considered baselines.

6.3. Results on LSUN

In this experiment, we evaluate the proposed LCC-GANs
on LSUN which is a collection of natural images of indoor
scenes. We train the generative models to produce images
of different categories, including bedroom, classroom, con-
ference room, etc. In this experiment, we also adopt Vanilla
GANs as the baseline models to implement LCC-GANs.
We show the visual comparison results in Figure 6.

From Figure 6, when we train the models using an input
with a small dimension d = 10, Vanilla GANs often fail to
generate clear and meaningful images. In contrast, LCC-
GANs significantly outperform their GAN counterparts
and produce images with sharp structure and rich details.
Moreover, when generating images of different scenes,
LCC-GANs consistently outperform Vanilla GANs. Note
that the scene images in LSUN are much more complex
than the images of MNIST and Oxford-102. Therefore,
training a generative model can be more difficult. How-
ever, with the help of LCC, the proposed LCC-GANs are

(a) Results of LCC-GANs with d = 30.

(b) Results of Progressive GANs with d = 30.

(c) Results of Progressive GANs with d = 100.

Figure 7. Performance comparisons of LCC-GANs with Progres-
sive GANs.

able to effectively capture the local common features and
produce visually convincing images.

In this experiment, we also present the generated samples
of Vanilla GANs with a high dimensional input d = 100.
Compared to this method, LCC-GANs only require an in-
put with d = 10 to produce even better images. In other
words, this LCC sampled input effectively preserves the
local information of real images on the latent manifold and
thus helps the training of GANs. With the help of LCC
sampling, most of the generated images show sharper struc-
ture and contain more meaningful details.

6.4. Results on CelebA

In this experiment, we evaluate the proposed method on
the large-scale dataset CelebA, which is composed of a set
of celebrity faces. Here, Progressive GANs (Karras et al.,
2018) are adopted to implement LCC-GANs. We conduct
comparisons and show the results in Figure 7.

Since face images often share a common face outline and
only differ in detailed attributes, e.g., hair, eyes, mouth,
skin features, it requires an input with a larger dimension to
capture the local information. In this way, we adopt the in-
put with a larger dimension for both Progressive GANs and
the proposed LCC-GANs in the training. From Figure 7,
the performance of Progressive GANs degrades severely
given an input with a small dimension d = 30, compared
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Table 3. Generated images from LCC sampling on MNIST,
Oxford-102 and CelebA. The last column shows the most simi-
lar images in training set to the generated samples on the left.

Datasets Generated Samples Nearest Real data

MNIST

Oxford-102

CelebA

to d = 100. However, with the help of LCC, the proposed
LCC-GANs with the input of d = 30 are able to produce
images of better quality than Progressive GANs with high
dimensional inputs of d = 100. According to these re-
sults, LCC-GANs greatly benefit from the LCC sampling
and make the training much easier than directly matching
the standard Gaussian distribution.

6.5. Demonstration of LCC Sampling

In this experiment, we investigate the effectiveness of the
proposed LCC sampling method. To achieve this, we can
simply fix a specific set of bases and only change the corre-
sponding weights to produce images. Ideally, these images
should be located in a local area of the latent manifold and
share some common features.

We conduct experiments on LCC sampling and show the
results in Table 3. The second column of Table 3 shows
the generated images sampled by LCC sampling method
on different datasets. The last column is the real image
with the largest similarity to the generated images. From
Table 3, LCC-GANs produce digits with sharp shapes and
different orientations or styles (see the top row in Table 3).
Each generated image contains a digit “5” but with obvious
individual differences. In other words, the proposed LCC
sampling method is able to generate new data by effectively
exploiting the local information on the latent manifold.

When synthesizing flowers and faces, we draw a simi-
lar conclusion that verifies the effectiveness of the pro-
posed LCC sampling method. Specifically, LCC-GANs
produce flowers with similar shapes but with different col-
ors. Similarly, LCC-GANs also produce varying face im-
ages of promising quality which share some common fea-
tures. These results demonstrate that the proposed LCC-
GANs generalize well to unseen data rather than simply
memorizing the training samples.

Table 4. MS-SSIM on different datasets. Here, d = 100 is for all
baselines and d = 30 for LCC-GANs.

Methods MNIST Oxford-102 LSUN CelebA
Vanilla GANs 0.242 0.160 0.224 0.337

WGANs 0.251 0.157 0.237 0.324
Progressive GANs 0.239 0.151 0.213 0.308

LCC-GANs 0.224 0.153 0.203 0.305

6.6. More Quantitative Results

In this experiment, we adopt MS-SSIM as the evaluation
measure and compare the proposed LCC-GANs with sev-
eral GAN methods on four benchmark datasets. We use
Vanilla GANs to implement LCC-GANs. To show the su-
periority of the proposed method, we set d = 30 for LCC-
GANs and d = 100 for the other baselines. Here, we
can only report MS-SSIM because Inception Score is no
longer a valid measure and may give misleading results on
CelebA (Barratt & Sharma, 2018). The quantitative results
are shown in Table 4.

From Table 4, with a low dimensional input, the proposed
method is able to produce images with larger or compara-
ble diversity (smaller MS-SSIM score) than the considered
baselines with high dimensional inputs on most datasets.
These results show the effectiveness of the proposed LCC-
GANs in generating images with large diversity.

7. Conclusions
In this paper, we have proposed a novel generative model
by exploiting the local information on the latent manifold
of real data to improve GANs using Local Coordinate Cod-
ing (LCC). Unlike existing methods, based on a genera-
tor approximation, we have developed an LCC based sam-
pling method to train GANs. In this way, we are able
to conduct analysis on the generalization ability of GANs
and theoretically prove that a small dimensional input will
help to achieve good generalization. Extensive experiments
on several benchmark datasets demonstrate the superior-
ity of the proposed method over the state-of-the-art meth-
ods. Specifically, with the proposed LCC sampling, the
proposed method outperforms the considered baselines by
producing sharper images with higher diversity.
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