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A Proof of nonparametric estimation theorem

We here prove the consistency theorem for nonparametric estimation. Additionally, an extension
to the theorem where the condition X = Y is relaxed to X ⊆ Y is presented and proved. For this
extended theorem, the following definition is required:

pextd (u) =

{
pd(u) if u ∈ X
0 if u ∈ Y \ X. (1)

In order to simplify the notation for the proof, the following definitions are introduced,

r(u1,u2) =
pc(u2|u1)

pc(u1|u2)
=

1

r(u2,u1)
, (2)

and

Ω = {(u1,u2) ∈ X× X | pd(u1) > 0 ∧ pc(u1|u2) > 0}. (3)

Furthermore, the following Taylor expansion will be used in the the proof,

log(1 + exp(−(G+ εq))) = log(1 + exp(−G))

− εq exp(−G)

1 + exp(−G)

+
ε2q2

2

exp(−G)

(1 + exp(−G))2

+O(ε3).

(4)

Using these new definitions, the extended theorem reads:
Theorem (Nonparametric estimation ext.). Let G : U× U→ R be a function of the form

G(u1,u2) = f(u1)− f(u2) + log r(u1,u2), (5)

where f is a function from U to R. Under the assumption X ⊆ Y, J̃ attains a unique minimum at

G∗(u1,u2) = log
pextd (u1)pc(u2|u1)

pextd (u2)pc(u1|u2)
(6)

for (u1,u2) ∈ Ω.
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First, the proof of the theorem of the main article is presented, followed by the extra steps required to
prove the extended theorem.

Proof of Nonparametric estimation. The proof is divided into two parts. First, G∗ is proved to be a
critical point of J̃ by showing that the linear term of the Taylor expansion for J̃ with respect to G is
zero for G∗. In the second part, we prove that G∗ is a minimum and the only extremum by showing
that the quadratic part of the Taylor expansion is strictly positive on the set Ω.

The functional J̃ [G] is expressed as the integral

J̃ [G] = Exy log (1 + exp(−G(x,y))) (7)

=

∫
X×Y

log (1 + exp(−G(x,y))) pd(x)pc(x|y)dxdy. (8)

Inserting Equation (5), we obtain the functional

J̃f [f ] = Exy log (1 + exp(f(y)− f(x) + log r(x,y)))

=

∫
X×Y

log (1 + exp(f(y)− f(x) + log r(x,y))) pd(x)pc(x|y)dxdy.
(9)

Now consider an arbitrary perturbation ψ : U→ R of f

J̃f [f + εψ] = Exy log (1 + exp [f(y) + εψ(y)− f(x)− εψ(x) + log r(x,y)]) (10)

=

∫
X×Y

log (1 + exp [−(G(x,y) + ε(ψ(x)− ψ(y)))]) pd(x)pc(x|y)dxdy. (11)

The perturbation of J̃f [f ] corresponds to the following perturbation of J̃ [G],

J̃ [G+ ε(ψ(x)− ψ(y))] = Exy log (1 + exp[−(G(x,y) + ε(ψ(x)− ψ(y)))]) . (12)

Using the Taylor expansion from Equation (4) gives

J̃ [G+ ε(ψ(x)− ψ(y))] = Exy log(1 + exp(−G(x,y)))

− εExy(ψ(x)− ψ(y))
exp(−G(x,y))

1 + exp(−G(x,y))

+
ε2

2
Exy(ψ(x)− ψ(y))2

exp(−G(x,y))

(1 + exp(−G(x,y)))2

+O(ε3).

(13)

Equating the 1st order term with 0 lets us find a necessary condition for the optimal G,

0 = Exy(ψ(x)− ψ(y))
exp(−G(x,y))

1 + exp(−G(x,y))
(14)

=

∫
X×Y

ψ(x)
exp(−G(x,y))

1 + exp(−G(x,y))
pd(x)pc(y|x)dxdy

−
∫
X×Y

ψ(y)
exp(−G(x,y))

1 + exp(−G(x,y))
pd(x)pc(y|x)dxdy

(15)

We now make a change of variables. For the first term in Equation (15) we write u for x and v for y
while for the second term we use the transform

T2 :

(
u
v

)
=

(
0 1
1 0

)(
x
y

)
(16)

det

(
0 1
1 0

)
= −1 (17)

T2(X× Y) = Y× X. (18)

2



In the resulting equation, the integrals for the two terms are taken over different domains,

0 =

∫
X×Y

ψ(u)
exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫
Y×X

ψ(u)
exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv.

(19)

For the first theorem we assume Y = X so that

0 =

∫
X×X

ψ(u)
exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫
X×X

ψ(u)
exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(20)

=

∫
X×X

ψ(u)

(
exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))

−exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))

)
dudv

(21)

Since Equation (21) should hold for any ψ on X× X, the factor in the parenthesis must equal 0. The
factor can be expanded by inserting the assumed form of G, see Equation (5),

exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))
=

exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))
(22)

pd(u)pc(v|u)

exp(G(u,v)) + 1
=

pd(v)pc(u|v)

exp(G(v,u)) + 1
(23)

pd(u)pc(v|u)

exp(f(u)− f(v))r(u,v) + 1
=

pd(v)pc(u|v)

exp(f(v)− f(u))r(v,u) + 1
(24)

exp(f(v))pd(u)pc(v|u)

exp(f(u))r(u,v) + exp(f(v))
=

exp(f(u))pd(v)pc(u|v)

exp(f(v))r(v,u) + exp(f(u))
(25)

Using r(v,u) = 1/r(u,v) from Equation (2), a factor can be taken out of the denominator of the
r.h.s,

exp(f(v))pd(u)pc(v|u)

exp(f(u))r(u,v) + exp(f(v))
=

1

r(v,u)

exp(f(u))pd(v)pc(u|v)

exp(f(v)) + exp(f(u))r(u,v)
(26)

exp(f(v))pd(u)pc(v|u) =
1

r(v,u)
exp(f(u))pd(v)pc(u|v) (27)

exp(f(v))pd(u)pc(v|u) =
pc(v|u)

pc(u|v)
exp(f(u))pd(v)pc(u|v). (28)

Now consider only the set Ω where both sides in the above equation are not trivially zero,

exp(f(v))pd(u) = exp(f(u))pd(v) (29)
pd(u)

exp(f(u))
=

pd(v)

exp(f(v))
= Z (30)

f∗(u) = log pd(u)− logZ (31)
G∗(u1,u2) = log pd(u1)− log pd(u2) + log r(u1,u2). (32)

The first part of the proof is now completed as G∗ in Equation (32) is a critical point of J̃ .

It is straightforward to show that G∗ is minimising J̃ and is the only extreme point. By considering
the second order term of the Taylor expansion in Equation (13),

Exy(ψ(x)− ψ(y))2
exp(−G(x,y))

(1 + exp(−G(x,y)))2
, (33)

we observe that it is positive for all non-constant perturbations ψ. Since constant perturbations of f
does not change G, it can be concluded that Equation (32) describes a minimum and the only extreme
point on the set Ω. �
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Proof of Nonparametric estimation ext.. We can follow the previous proof until Equation (19), just
after the change of variables. We now observe the following

X× Y = (X ∩ Y)× (X ∩ Y) ∪ (X \ Y)× (X ∩ Y)

∪ (X ∩ Y)× (Y \ X) ∪ (X \ Y)× (Y \ X)
(34)

The assumption X ⊆ Y implies (X \ Y) = ∅ and (X ∩ Y) = X. Therefore,

X× Y =
(

(X ∩ Y)× (X ∩ Y)
)
∪
(

(X ∩ Y)× (Y \ X)
)

(35)

=
(
X× X

)
∪
(
X× (Y \ X)

)
, (36)

and similarly

Y× X =
(
X× X

)
∪
(

(Y \ X)× X
)
. (37)

It is now possible to reevaluate Equation (19),

0 =

∫
X×X

ψ(u)
exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

+

∫
X×(Y\X)

ψ(u)
exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫
X×X

ψ(u)
exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

−
∫
(Y\X)×X

ψ(u)
exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(38)

0 =

∫
X×X

ψ(u)

(
exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))

−exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))

)
dudv

+

∫
X×(Y\X)

ψ(u)
exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫
(Y\X)×X

ψ(u)
exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(39)

Following the previous proof,

G(u1,u2) = log pd(u1)− log pd(u2) + log r(u1,u2) (40)

will set the first term of Equation (39) to 0. By using the expanded data distribution pextd from
Equation (1) in place of pd, we find

G∗(u1,u2) = log pextd (u1)− log pextd (u2) + log r(u1,u2). (41)

Since G∗ becomes arbitrarily large on X× (Y \ X), the second and third terms of Equation (39) are
0. Again, the second order term is positive for all non-constant perturbations ψ on the set Ω. �

B Proof of connection to score matching

Proof of Connection to score matching. We here assume that y = x + εξ where ξ is a vector of
uncorrelated random variables of mean zero and variance one that are independent from x and have a
symmetric density.

Since ξ has a symmetric density, pc is symmetric and cancels in the definition of G(u1,u2;θ),

G(u1,u2;θ) = log
φ(u1;θ)pc(u2|u1)

φ(u2;θ)pc(u1|u2)
= log φ(u1;θ)− log φ(u2;θ). (42)
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The loss function thus is

J (θ) = 2Exy log [1 + exp(−G(x,y;θ))] (43)
= 2Exy log [1 + exp (− log φ(x;θ) + log φ(y;θ))]

= 2Exξ log [1 + exp (− log φ(x;θ) + log φ(x + εξ;θ))] (44)

Let us denote the log unnormalised model log φ(·;θ) by fθ(·) so that

J (θ) = 2Exξ log [1 + exp (−fθ(x) + fθ(x + εξ))] (45)

By assumption ε is small so that for any fixed value of ξ, we have

fθ(x + εξ) =fθ(x) + ε∇xfθ(x)T ξ +
ε2

2
ξTHθ(x)ξ +O(ε3) (46)

where Hθ(x) is the Hessian with elements ∂xi
∂xj

fθ(x). We thus obtain

J (θ) = 2Exξ log

[
1 + exp

(
ε∇xfθ(x)T ξ +

ε2

2
ξTHθ(x)ξ +O(ε3)

)]
(47)

The function log(1 + exp(v)) has the following Taylor expansion around v = 0,

log(1 + exp(v)) = log(2) +
1

2
v +

1

8
v2 +O(v3), (48)

so that

J (θ) = 2Exξ

[
log(2) +

1

2
ε∇xfθ(x)T ξ +

ε2

4
ξTHθ(x)ξ +O(ε3)

]
+

2Exξ

[
1

8

(
ε∇xfθ(x)T ξ +

ε2

2
ξTHθ(x)ξ +O(ε3)

)2]
. (49)

Squaring the term
(
ε∇xfθ(x)T ξ + ε2

2 ξ
THθ(x)ξ +O(ε3)

)2

gives ε2(∇xfθ(x)T ξ)2 +O(ε3) so

that

J (θ) = 2Exξ

[
log(2) +

1

2
ε∇xfθ(x)T ξ +

ε2

4
ξTHθ(x)ξ +

1

8
ε2(∇xfθ(x)T ξ)2

]
+O(ε3) (50)

By assumption, x and ξ are independent, and Eξξ = 0, so that we have

J (θ) = 2ExEξ

[
log(2) +

ε2

4
ξTHθ(x)ξ +

1

8
ε2(∇xfθ(x)T ξ)2

]
+O(ε3) (51)

Furthermore, with Eξξξ
T being equal to the identity matrix 1, we have

Eξξ
THθ(x)ξ = Eξ tr

[
Hθ(x)ξξT

]
(52)

= tr
[
Hθ(x)Eξξξ

T
]

(53)

= trHθ(x). (54)

Similarly, we obtain

Eξ(∇xfθ(x)T ξ)2 = Eξξ
T∇xfθ(x)∇xfθ(x)T ξ (55)

=Eξ tr
[
∇xfθ(x)∇xfθ(x)T ξξT

]
(56)

= tr
[
∇xfθ(x)∇xfθ(x)TEξξξ

T
]

(57)

= tr
[
∇xfθ(x)∇xfθ(x)T

]
(58)

=||∇xfθ(x)||22. (59)
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With both identities plugged into (51), we can write J (θ) as

J (θ) =
ε2

2
Ex

[
trHθ(x) +

1

2
||∇xfθ(x)||22

]
+ 2 log(2) +O(ε3). (60)

Since trHθ(x) equals the sum of the second derivatives of fθ(x) = log φ(x;θ),

trHθ(x) =
∑
i

∂2fθ(x)

∂x2i
(61)

the term in the brackets is the loss function that is minimised in score matching, which completes the
proof. �

C Empirical validation on non-negative and discrete data

CNCE was also verified on a heavy-tailed distribution of positive data (log-normal) and a discrete
distribution (Bernoulli).

The log-normal distribution is a univariate continuous heavy-tailed distribution that is defined to
have its samples normal distributed in the log domain. Consequently, it is only defined on the positive
real axis X = R+. For this reason, the log-normal distribution is suitable to illustrate the fact that
only X ⊆ Y is required for CNCE given that the conditional noise distribution pc defined in the main
paper generates noise samples in Y = R. We used the following unnormalised log-normal model
defined over the whole real axis

log φ(u; θ, C) =

{
− θ2 (log u)2 − log u if u > 0

C if u ≤ 0
(62)

where θ, C ∈ R. On the positive axis, the model is proportional to a log-normal distribution with
mean zero in the log domain and with precision θ. On the negative axis, the model assumes the
constant value C. In theory, the optimal value of C would be −∞. Since this can never be reached in
practice, we only measured the estimation error for θ as the absolute error between true and estimated
parameter.

The Bernoulli model defines a simple probability mass function for a binary random variable taking
values on X = {0, 1}. In the normalised version, the Bernoulli model only has one free parameter.
Here, an unnormalised version with two free parameters θ1, θ2 ∈ R+ is used,

log φ(u; θ1, θ2) =

{
log θ1 if u = 0

log θ2 if u = 1.
(63)

The use of two free parameters means that there exist an infinite set of equivalent model parameters
which only differs from (θ1, θ2) by a scaling factor. Consequently, to measure the error for a parameter
estimate of the Bernoulli model, i.e. θ̂ = (θ̂1, θ̂2), we normalised the parameters before computing
the estimation error as ‖(θ̂1 + θ̂2)−1θ̂−θ∗‖2, where θ∗ = (θ∗1 , θ

∗
2) denotes the true parameter values

(which are related by θ∗2 = 1− θ∗1).

The discrete conditional noise distribution defined by Equation (64) was used for the Bernoulli model.
Again ε controls the similarity between data and noise, but with the added restriction ε ∈ [0, 1].

pBerc (y|x; ε) =

{
1− ε if y = x

ε if y 6= x,
(64)

D Supplemental feature visualisations

D.1 Neural network layer sizes

The sizes of the four layers are provided in Table 1. Note that the dimensionality of the data was
reduced by four using PCA as part of the gain control between the 2nd and 3rd layers.
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(a) Log-normal model.
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(b) Bernoulli model.

Figure 1: Empirical validation of consistency for CNCE. The x-axis shows the sample size in the
log10 domain, the y-axis the squared estimation error in the log10 domain. The solid lines show the
median result across 100 different simulations, and the dashed lines are the 0.1 and 0.9 quantiles. For
each of the 100 simulations, a new random set of parameters were used to generate the data. The
different coloured and marked lines correspond to different values of κ for CNCE and the black line
to the MLE results.

Table 1: Neural network input and output dimensions.

Layer Input D(L) Output K(L)

1 600 600
2 600 200

Intermediate gain control
3 196 60
4 60 30

D.2 CNCE and NCE 1st layer features comparison

In addition to the quantitative comparisons between CNCE and NCE, which were presented in Section
3 of the main paper, it is desirable to evaluate qualitative differences between the methods. To this
end we compared the easily interpretable 1st layer features at different stages of training with the aim
to determine qualitative differences between learned features and if learning is faster for one method
or the other.

Figure 2 shows the common initialisation and Figures 3 to 13 one hundred 1st layer features at the
end of the first eleven meta-iterations. Each meta-iteration consists of ten gradient steps after which
new noise samples are generated. The methods seem to learn similar features and for this model,
while we do not want to claim superior performance given the qualitative nature of the comparison,
CNCE does appear to learn slightly faster than NCE.

D.3 3rd layer features

All 60 3rd layer space-orientation receptive fields and maximal response patches are shown in Figures
14 to 17.

D.4 4th layer features

All 30 4th units are visualised in Figures 18 to 47 in the same manner as in the main text.
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(a) CNCE (b) NCE

Figure 2: The common initialisation for the 100 1st later features used for the qualitative comparison
between CNCE and NCE.

(a) CNCE (b) NCE

Figure 3: A sample of the 1st layer features after 1 meta-iteration.

(a) CNCE (b) NCE

Figure 4: A sample of the 1st layer features after 2 meta-iterations.
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(a) CNCE (b) NCE

Figure 5: A sample of the 1st layer features after 3 meta-iterations.

(a) CNCE (b) NCE

Figure 6: A sample of the 1st layer features after 4 meta-iterations.

(a) CNCE (b) NCE

Figure 7: A sample of the 1st layer features after 5 meta-iterations.

9



(a) CNCE (b) NCE

Figure 8: A sample of the 1st layer features after 6 meta-iterations.

(a) CNCE (b) NCE

Figure 9: A sample of the 1st layer features after 7 meta-iterations.

(a) CNCE (b) NCE

Figure 10: A sample of the 1st layer features after 8 meta-iterations.
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(a) CNCE (b) NCE

Figure 11: A sample of the 1st layer features after 9 meta-iterations.

(a) CNCE (b) NCE

Figure 12: A sample of the 1st layer features after 10 meta-iterations.

(a) CNCE (b) NCE

Figure 13: A sample of the 1st layer features after 11 meta-iterations.
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(a) (b) (c) (d)

Figure 14: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 1 to 8, and (c) and (d) 9 to 16.
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(a) (b) (c) (d)

Figure 15: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 17 to 24, and (c) and (d) 25 to 32.
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(a) (b) (c) (d)

Figure 16: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 33 to 40, and (c) and (d) 41 to 48.
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(a) (b) (c) (d)

Figure 17: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 49 to 56, and (c) and (d) 57 to 60.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 18: The estimation for unit 1 in the 4th layer. (a) shows the learned pooling of the 3rd layer
units and (b) shows 30 image patches that produced maximal responses for a batch of 10000 inputs.
For the space-orientation receptive fields, the bar beneath each icon indicates the relative size of the
4th weight, i.e. q(4)1,k/maxk q

(4)
1,k. The receptive fields shown account for 90% of the sum of the weight

vector. The thin bars beneath each image patch indicate the response strength relative to the patch
with the maximal response.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 19: Unit 2 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 20: Unit 3 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 21: Unit 4 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 22: Unit 5 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 23: Unit 6 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 24: Unit 7 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 25: Unit 8 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 26: Unit 9 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 27: Unit 10 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 28: Unit 11 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 29: Unit 12 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 30: Unit 13 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 31: Unit 14 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 32: Unit 15 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 33: Unit 16 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 34: Unit 17 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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Figure 35: Unit 18 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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Figure 36: Unit 19 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 37: Unit 20 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 38: Unit 21 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 39: Unit 22 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 40: Unit 23 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 41: Unit 24 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 42: Unit 25 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 43: Unit 26 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 44: Unit 27 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 45: Unit 28 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10
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(b) Maximal response inputs.

Figure 46: Unit 29 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 47: Unit 30 in the 4th layer, visualised as in Figure 18.
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