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Abstract
We establish novel generalization bounds for
learning algorithms that converge to global min-
ima. We derive black-box stability results that
only depend on the convergence of a learning al-
gorithm and the geometry around the minimizers
of the empirical risk function. The results are
shown for non-convex loss functions satisfying
the Polyak-Łojasiewicz (PL) and the quadratic
growth (QG) conditions, which we show arise for
1-layer neural networks with leaky ReLU activa-
tions and deep neural networks with linear activa-
tions. We use our results to establish the stability
of first-order methods such as stochastic gradient
descent (SGD), gradient descent (GD), random-
ized coordinate descent (RCD), and the stochas-
tic variance reduced gradient method (SVRG), in
both the PL and the strongly convex setting. Our
results match or improve state-of-the-art general-
ization bounds and can easily extend to similar
optimization algorithms. Finally, although our re-
sults imply comparable stability for SGD and GD
in the PL setting, we show that there exist sim-
ple quadratic models with multiple local minima
where SGD is stable but GD is not.

1. Introduction
The recent success of training complex models at state-of-
the-art accuracy in many common machine learning tasks
has sparked significant interest and research in algorithmic
machine learning. In practice, not only can these com-
plex deep neural models yield zero training loss, they can
also generalize surprisingly well (Zhang et al., 2016; Lin
& Tegmark, 2016). Although there has been significant
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recent work in analyzing the generalization capacity of var-
ious learning algorithms, our theoretical understanding of
their generalization properties falls far below what has been
observed empirically.

A useful proxy for analyzing the generalization performance
of learning algorithms is that of stability. A training algo-
rithm is stable if small changes in the training set result in
small differences in the output predictions of the trained
model. In their foundational work, Bousquet & Elisseeff
(2002) establish that stability begets generalization.

While there has been stability analysis for empirical risk
minimizers (Bousquet & Elisseeff, 2002; Mukherjee et al.,
2006), there are far fewer results for commonly used iter-
ative learning algorithms. In a recent novel work, Hardt
et al. (2016) establish stability bounds for SGD, and discuss
algorithmic heuristics that provably increase the stability of
SGD models. Unfortunately, showing non-trivial stability
for more involved algorithms like SVRG (Johnson & Zhang,
2013) (even in the convex case), or SGD in more nuanced
non-convex setups is not straightforward. While Hardt et al.
(2016) provide an elegant analysis that shows stability of
SGD for non-convex loss functions, the result requires very
small step-sizes. The step-size is small enough that under
standard smoothness assumptions (Ghadimi & Lan, 2013),
approximate convergence may require an exponential num-
ber of steps (see Appendix section B.3). Generally, there
seems to be a trade-off between convergence and stability of
algorithms. In this work we show that under certain geomet-
ric assumptions on the loss function around global minima,
we can actually leverage the convergence properties of an
algorithm to prove that it is stable.

The goal of this work is to provide black-box and easy-to-
use stability results for a variety of learning algorithms in
non-convex settings. We show that this is in some cases
possible by decoupling the stability of global minima and
their proximity to models trained by learning algorithms.

Our Contributions: We establish that models trained by
algorithms that converge to global minima are stable un-
der the Polyak-Łojasiewicz (PL) and the quadratic growth
(QG) conditions (Karimi et al., 2016). Informally, these
conditions assert that the suboptimality of a model is upper
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bounded by the norm of its gradient and lower bounded
by its distance to the closest global minimizer. These are
weaker conditions than considered in previous work, but
still match several known stability bounds. For example, in
(Hardt et al., 2016) the authors require convexity or strong
convexity. Gonen & Shalev-Shwartz (2017) prove the sta-
bility of ERMs for non-convex but locally strongly convex
loss functions obeying strict saddle inequalities. By con-
trast, we develop comparable stability results for a large
class of non-convex functions. Although (Hardt et al., 2016)
establishes the stability of SGD for smooth non-convex ob-
jectives, the step size selection can be prohibitively small
for convergence. Our bounds make no assumptions on the
hyper-parameters of the algorithm.

We use our black-box results to directly compare the gen-
eralization performance of popular first-order methods in
general learning setups. While direct proofs of stability may
require novel algorithm-specific analysis, our results are de-
rived from known convergence rates of popular algorithms.
For strong convexity (a special case of the PL condition),
we recover order-wise the stability bounds of Hardt et al.
(2016), but for a larger family of optimization algorithms
(e.g., SGD, GD, SVRG, etc). We show that many of these
algorithms offer order-wise similar stability as saddle-point
avoiding algorithms in non-convex problems where all local
minima are global (Gonen & Shalev-Shwartz, 2017).

We give examples of some machine learning scenarios
where the PL condition mentioned above holds true. Adapt-
ing techniques from (Hardt & Ma, 2016), we show that deep
networks with linear activation functions are PL almost ev-
erywhere in the parameter space. Our theory allows us to
derive results similar to those in (Kawaguchi, 2016) about
local/global minimizers in linear neural networks and refor-
mulate them in terms fo the PL condition. We also show
that 1-layer neural networks with leaky ReLU activations
satisfy the PL condition.

Finally, we show that while SGD and GD have analogous
stability in the convex setting, this breaks down in the non-
convex setting. We give an explicit example of a simple
1-layer neural network on which SGD is stable but GD
is not. Such an example was theorized in (Hardt et al.,
2016) (see Figure 10 in that paper); here we formalize the
authors’ intuition. Our results offer yet another indication
that models trained via SGD generalize better than those
trained by full-batch GD.

Prior Work: The idea of stability analysis has been
around for more than 30 years since Devroye & Wagner
(1979). Bousquet & Elisseeff (2002) defined several notions
of algorithmic stability and used them to derive bounds on
generalization error. Further work has focused on stability
of randomized algorithms (Elisseeff et al., 2005) and the

interplay between uniform convergence and generalization
(Shalev-Shwartz et al., 2010). Mukherjee et al. (2006) show
that stability implies consistency of empirical risk minimiza-
tion. Shalev-Shwartz et al. (2010) show that stability can
also imply learnability in some problems.

Hardt et al. (2016) establish stability bounds for stochastic
gradient descent (SGD) in the convex, strongly convex, and
non-convex case. Work by Lin et al. (2016) shows that
stability of SGD can be controlled by forms of regulariza-
tion. In (Kuzborskij & Lampert, 2017), the authors give
stability bounds for SGD that are data-dependent. These
bounds are smaller than those in (Hardt et al., 2016), but
require assumptions on the underlying data. Liu et al. give a
related notion of uniform hypothesis stability and show that
it implies guarantees on the generalization error (Liu et al.,
2017).

Stability is closely related to the notion of differential pri-
vacy (Dwork, 2006). Roughly speaking, differential privacy
ensures that the probability of observing any outcome from
a statistical query changes if you modify any single dataset
element. It was later shown that differentially private al-
gorithms generalize well (Dwork et al., 2015; Nissim &
Stemmer, 2015).

2. Preliminaries
We first introduce some notation we will use in this paper.
For w 2 Rm, we will let kwk denote the 2-norm of w. For a
matrix A 2 Rn⇥m, we will let �min(A) denote its minimum
singular value, and kAk

F

denote its Frobenius norm.

Let S = {z1, . . . , zn} be a set of training data, where z
i

iid⇠
D. For a model w and a loss function `, let `(w; z) be the
error of w on the training example z. We define the expected
risk of a model w by R[w] := E

z⇠D `(w; z). Since, we do
not have access to the underlying distribution D optimizing
R[w] directly is not possible. Instead, we will measure the
empirical risk of a model w on a set S, given by:

R
S

[w] :=
1

n

nX

i=1

`(w; z
i

).

The generalization of our model is measured by the gener-
alization gap, ✏gen(w) := |R

S

[w]�R[w]|.

For our purposes, w will be the output of some (potentially
randomized) learning algorithm A, trained on some data
set S. We will denote this output by A(S). Let S0

=

{z1, . . . , zi�1, z
0
i

, z
i+1, . . . , zn}, where z0

i

⇠ D. We then
have the following notion of uniform stability that was first
introduced in (Bousquet & Elisseeff, 2002).
Definition 1 (Uniform Stability). An algorithm A is uni-
formly ✏-stable if for all data sets S, S0 differing in at most
one example, sup

z

EA
⇥
`(A(S); z)� `(A(S0

); z)]  ✏.
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The expectation is taken with respect to the randomness
of the algorithm A. Bousquet and Elisseeff establish that
uniform stability implies small generalization gap (Bousquet
& Elisseeff, 2002).
Theorem 1. Suppose A is uniformly ✏-stable. Then
|E

S,A
⇥
R

S

[A(S)]�R[A(S)]
⇤
|  ✏.

In practice, uniform stability may be too restrictive, since the
bound above must hold for all z, irrespective of its marginal
distribution. The following notion of stability, while weaker,
is still enough to control the generalization gap. Given a
data set S = {z1, . . . , zn} and i 2 {1, . . . , n}, we define
Si as S\z

i

.
Definition 2 (Pointwise Hypothesis Stability, Bousquet
& Elisseeff (2002)). A has pointwise hypothesis stabil-
ity � with respect to a loss function ` if 8i 2 {1, . . . , n},
E
S

[|`(A(S); z
i

)� `(A(Si

); z
i

)|]  �.

Pointwise hypothesis stability is a weaker notion than uni-
form stability, but can still be used to establish non-trivial
generalization bounds.
Theorem 2 (Elisseeff et al. (2005)). Suppose A has point-
wise hypothesis stability � with respect to ` where 0 
`(w; z)  M . For any �, with probability at least 1� �,

R[A(S)]  R
S

[A(S)] +

r
M2

+ 12Mn�

2n�
.

While this result was initially proved only for non-random
algorithms, (Elisseeff et al., 2005) later extended this type
of argument to random algorithms using similar notions of
stability.

In the following, we derive stability bounds for models
trained on empirical risk functions satisfying the PL and
QG conditions. To do so, we will assume that the functions
in question are L-Lipschitz.
Definition 3. A function f : ⌦ ! R is L-Lipschitz if for all
x1, x2 2 ⌦, |f(x1)� f(x2)|  Lkx1 � x2k.

If f is assumed to be differentiable, this is equivalent to
saying that for all x, krf(x)k  L.

In recent work, Karimi et al. (2016) used the Polyak-
Łojasiewicz condition to prove simplified nearly-optimal
convergence rates for several first-order methods. Notably,
there are some non-convex functions that satisfy the PL
condition. The condition is defined below.
Definition 4 (Polyak-Łojasiewicz). Fix a set X and
let f⇤

= min

x2X f(x). Then f satisfies the Polyak-
Łojasiewicz (PL) condition with parameter µ > 0 on X
if for all x 2 X , 1

2krf(x)k2 � µ(f(x)� f⇤
).

We often refer to such functions as µ-PL. Note that for
PL functions, every critical point is a global minimizer.

While strong convexity implies PL, the reverse is not true.
Moreover, PL functions are in general non-convex (e.g.,
invex functions). We also consider a strictly larger family
of functions that satisfy the quadratic growth condition.

Definition 5 (Quadratic Growth). A function f satisfies
the quadratic growth (QG) condition on X with parameter
µ > 0 if for all x 2 X , f(x)�f⇤ � µ

2 kx�x
p

k2, where x
p

denotes the euclidean projection of x onto the set of global
minimizers of f in X (i.e., x

p

is the closest point to x in X
satisfying f(x

p

) = f⇤).

We often refer to such functions as µ-QG. Both of these
conditions have been considered in previous studies. The
PL condition was first introduced by Polyak in (Lojasiewicz,
1963), who showed that under this assumption, gradient
descent converges linearly. The QG condition has been
considered under various guises (Bonnans & Ioffe, 1995;
Ioffe, 1994) and can imply important properties about the
geometry of critical points. For example, Anitescu (2000)
showed that local minima of non-linear programs satisfying
the QG condition are actually isolated stationary points.
These kinds of geometric implications will allow us to derive
stability results for large classes of algorithms.

In general, the PL condition retains many properties of
strong convexity (such as the fact that under the PL assump-
tion, all critical points are local minima) without requiring
convexity. The QG condition further relaxes this, allowing
for critical points that are not global minima, while still en-
forcing that locally, the function grows quadratically away
from global minima. Figure 1 gives examples of µ-strongly
convex, µ-PL, and µ-QG functions for µ = 2.
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Figure 1. Examples of (a) strongly convex, (b) PL, and (c) QG
functions.

3. Stability of Approximate Global Minima
In this section, we establish the stability of large classes
of learning algorithms under the PL and QG conditions
presented above. Our stability results are “black-box” in
the sense that our bounds are decomposed as a sum of two
terms: a term concerning the convergence of the algorithm
to a global minimizer, and a term relevant to the geometry
of the loss function around the global minima. Both terms
are used to establish good generalization and provide some
insights into the way that learning algorithms perform.
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For an algorithm A, let w
S

denote its output on S. The
empirical training error on a data set S is denoted f

S

(w)
and defined as f

S

(w) = 1
|S|

P
z2S

`(w; z). We assume that
`(·, w) is L-Lipschitz w.r.t. w for all z.

3.1. Pointwise Hypothesis Stability for PL/QG Loss
Functions

We will show that if f
S

satisfies the PL or QG condition, we
will be able to quantify the stability of A. Although these
conditions may at first seem unnatural, we show in Section
4 that they arise in a large number of machine learning
settings, including in certain deep linear neural networks.
Let Xmin denote the set of global minima of f

S

.

Theorem 3. Assume that for all S and w 2 X , f
S

is PL
with parameter µ. We assume that applying A to f

S

pro-
duces output w

S

that is converging to some global mini-
mizer w⇤

S

. Then A has pointwise hypothesis stability with
parameter ✏stab satisfying the following conditions.

Case 1: If for all S, kw
S

� w⇤
S

k  ✏A then
✏stab  2L✏A +

2L2

µ(n�1) .

Case 2: If for all S, |f
S

(w
S

)� f
S

(w⇤
S

)|  ✏0A then

✏stab  2L
q

2✏0A
µ

+

2L2

µ(n�1) .

Case 3: If for all S, krf
S

(w
S

)k  ✏00A, then
✏stab  2L✏

00
A

µ

+

2L2

µ(n�1) .

Suppose our loss functions are PL and our algorithm A is
an oracle that returns a global optimizer w⇤

S

. Then the terms
✏A, ✏

0
A, ✏

00
A above are all equal to 0, leading to the following

corollary.

Corollary 4. Suppose f
S

is PL with parameter µ and let
A(S) = argmin

w2X f
S

(w). Then, A has pointwise hy-
pothesis stability with ✏stab =

2L2

µ(n�1) .

Bousquet & Elisseeff (2002) considered the stability of
empirical risk minimizers where the loss function satisfied
strong convexity. Their work implies that for �-strongly
convex functions, the empirical risk minimizer has stability
satisfying ✏stab  L

2

�n

. Since �-strongly convex implies �-
PL, Corollary 6 generalizes their result, with only a constant
factor loss.

Remark 1. Theorem 3 holds even if we only have infor-
mation about A in expectation. For example, if we only
know that EAkwS

�w⇤
S

k  ✏A, we still establish pointwise
hypothesis stability (in expectation with respect to A), with
the same constant as above. This allows us to apply our
result to randomized algorithms such as SGD where we are
interested in the convergence in expectation.

A similar result to Theorem 3 can be derived for empirical
risk functions that satisfy the QG condition and that are

realizable, that is, where the global minimum of f , denoted
f⇤, is 0.
Theorem 5. Suppose that for all S, f

S

is QG with parame-
ter µ and f⇤

= 0. Suppose that applying A to f
S

produces
output w

S

that is converging to some global minimizer w⇤
S

.
Assume that for all w and z, |`(w; z)|  c. Then A has
pointwise hypothesis stability with parameter ✏stab satisfy-
ing the following conditions.

Case 1: If for all S, kw
S

� w⇤
S

k  ✏A then
✏stab  2L✏A + 2L

q
c

µn

.

Case 2: If for all S, |f
S

(w
S

)� f
S

(w⇤
S

)|  ✏0A then

✏stab  2L
q

2✏0A
µ

+ 2L
q

c

µn

.

Remark 2. Observe that unlike the case of PL empirical
losses, QG empirical losses only allow for a O(

1p
n

) con-
vergence rate of stability. Moreover, similarly to our result
for PL loss functions, the result of Theorem 5 holds even
if we only have information about the convergence of A in
expectation.

Finally, we can obtain the following Corollary for empirical
risk minimizers.
Corollary 6. Let f

S

satisfy the QG inequality with param-
eter µ and let A(S) = argmin

w2X f
S

(w). Then, A has
pointwise hypothesis stability with ✏stab = 2L

q
c

µn

.

3.2. Uniform Stability for PL/QG Loss Functions

Under a more restrictive setup, we can obtain similar bounds
for uniform hypothesis stability, which is a stronger stability
notion compared to its pointwise hypothesis variant. The
usefulness of uniform stability compared to pointwise sta-
bility, is that it can lead to generalization bounds that con-
centrate exponentially faster (Bousquet & Elisseeff, 2002)
with respect to the sample size n.

As before, given a data set S, we let denote w
S

be the model
that A outputs. Let ⇡

S

(w) denote the closest optimal point
of f

S

to w. We will denote ⇡
S

(w
S

) by w⇤
S

. Let S, S0 be
data sets differing in at most one entry. We will make the
following technical assumption:
Assumption 1. The empirical risk minimizers for f

S

and
f
S

0 , i.e., w⇤
S

, w⇤
S

0 satisfy ⇡
S

(w⇤
S

0) = w⇤
S

, where ⇡
S

(w) is
the projection of w on the set of empirical risk minimizers
of f

S

. Note that this is satisfied if for every data set S, there
is a unique minimizer w⇤

S

.

Remark 3. The above assumption is relatively strict, and
in general does not apply to empirical losses with infinitely
many global minima. To tackle the existence of infinitely
many global minima, one could imagine designing A(S) to
output a structured empirical risk minimizer, e.g., one such
that if A is applied on S0, its projection on the optima of
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f
S

would always yield back A(S). This could be possible
if A(S) corresponds to minimizing a regularized, or struc-
tured cost function whose set of optimizers only contained a
small subset of the global minima of f

S

. Unfortunately, com-
ing up with such a structured empirical risk minimizer for
general non-convex losses seems far from straightforward,
and serves as an interesting open problem.

Theorem 7. Assume that for all S, f
S

satisfies the PL con-
dition with parameter µ, and suppose that Assumption 1
holds. Then A has uniform stability with parameter ✏stab

satisfying the following conditions.

Case 1: If for all S, kw
S

� w⇤
S

k  ✏A then
✏stab  2L✏A +

2L2

µn

.

Case 2: If for all S, |f
S

(w
S

)� f
S

(w⇤
S

)|  ✏0A then

✏stab  2L
q

2✏0A
µ

+

2L2

µn

.

Case 3: If for all S, krf
S

(w
S

)k  ✏00A, then
✏stab  2L✏

00
A

µ

+

2L2

µn

.

Since strong convexity is a special case of PL, this theorem
implies that if we run enough iterations of a convergent
algorithm A on a �-strongly convex loss function, then we
obtain uniform stability on the order of ✏stab = L2/�n. In
particular, this theorem recovers the stability estimates for
ERMs and SGD applied to strongly convex functions proved
in (Bousquet & Elisseeff, 2002) and (Hardt et al., 2016),
respectively.

In order to make this result more generally applicable, we
would like to extend the theorem to a larger class of func-
tions than just globally PL functions. If we assume bounded-
ness of the loss function, then we can derive a similar result
for globally QG functions. This leads us to the following
theorem:

Theorem 8. Assume that for all S, f
S

satisfies the QG
condition with parameter µ, moreover let Assumption 1
hold. Suppose that for all z and w 2 X , `(w; z)  c. Then
A is uniformly stable with parameter ✏stab satisfying:

Case 1: If for all S, kw
S

� w⇤
S

k  ✏A then
✏stab  2L✏A + 2L

q
c

µn

.

Case 2: If for all S, |f
S

(w
S

)� f⇤
S

|  ✏0A then

✏stab  2L
q

2✏0A
µ

+ 2L
q

c

µn

.

Remark 4. By analogous reasoning to that in Remark 1,
both Theorem 7 and Theorem 8 hold if you only have infor-
mation about the output of A in expectation.

4. PL Loss Functions in Practice
Strongly Convex Composed with Piecewise-Linear
Functions: As the bounds above show, the PL and QG

conditions are sufficient for algorithmic stability and there-
fore imply good generalization. In this section, we show
that the PL condition actually arises in some interesting
machine learning setups, including least squares minimiza-
tion, strongly convex functions composed with piecewise
linear functions, and neural networks with linear activation
functions. A first step towards a characterization of PL loss
functions was proved by Karimi et al. (2016), which estab-
lished that the composition of a strongly-convex function
and a linear function results in a loss that satisfies the PL
condition.

We wish to generalize this result to piecewise linear acti-
vation functions. Suppose that � : R ! R is defined by
�(z) = c1z, for z > 0 and �(z) = c2z, forz  0. Here
c
i

> 0. For a vector z 2 Rn, we denote by �(z) 2 Rn the
vector whose ith component is �(z

i

). Note that this encom-
passes leaky-ReLU functions. Following similar techniques
to those in (Karimi et al., 2016), we get the following result
showing that the composition of strongly convex functions
with piecewise-linear functions are PL. The proof can be
found in Appendix A.6.

Theorem 9. Let g be strongly-convex with parameter �, �
a leaky ReLU activation function with slopes c1 and c2, and
X a matrix with minimum singular value �min(X). Let
c = min{|c1|, |c2|}. Then f(w) = g(�(Xw)) is PL almost
everywhere with parameter µ = ��min(X)

2c2.

In particular, 1-layer neural networks with a squared error
loss and leaky ReLU activations satisfy the PL condition.
More generally, this holds for any piecewise-linear activa-
tion function with slopes {c

i

}k
i=1. As long as each slope

is non-zero and X is full rank, the result above shows that
the PL condition is satisfied. This result is closely related
to that of (Brutzkus et al., 2017), which shows that SGD
converges to global minimizers on such networks when the
data is linearly separable.

Linear Neural Networks: The results above only con-
cern one layer neural networks. Given the prevalence of
deep networks, we would like to say something about the as-
sociated loss function. As it turns out, we can prove that a PL
inequality holds in large regions of the parameter space for
deep linear networks. Such networks have recently become
popular as objects of analysis due to the non-convexity of
their landscape. In many cases, all critical points are global
minimizers (Kawaguchi, 2016). We will show that a similar
theorem can be derived through the lens of the PL condition.

Say we are given a training set S = {z1, . . . , zn} where
z
i

= (x
i

, y
i

) for x
i

, y
i

2 Rd. Our neural network will have
` fully-connected non-input layers, each with d neurons
and linear activation functions. We will parametrize the
neural network model via W1, . . . ,W`

, where each W
i

2
Rd⇥d. That is, the output at the first non-input layer is
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u1 = W1x and the output at layer k � 2 is A
k

u
k�1. Letting

X,Y 2 Rd⇥N be the matrices with x
i

, y
i

as their columns
(respectively), we can then write our loss function as

f(W ) =

1

2

kW
`

W
`�1 . . .W1X � Y k2

F

.

Let W = W
`

W
`�1 . . .W1. The optimal value of W is

W ⇤
= Y X+. Here, X+

= XT

(XXT

)

�1 is the pseudoin-
verse of X . We assume that X 2 Rd⇥N has rank d so that
XXT is invertible. We will also make use of the following
lemma which we prove in Appendix A.7.

Lemma 10. Let W 2 Rd⇥d be some weight matrix. Then
for C = k(XXT

)

�1Xk2
F

, we have

Ck(WX�Y )XT k2
F

� kWX�Y k2
F

�kY X+X�Y k2
F

.

For a matrix A, let �min(A) denote the smallest singu-
lar value of A. For a given W1, . . . ,W`

, let W =

W
`

W
`�1 . . .W1. In Appendix A.8, we prove the following

lemma.

Lemma 11. Suppose that the W
i

satisfy �min(Wi

) � ⌧ >
0 for all i. Then,

krf(W1, . . . ,W`

)k2
F

� `⌧2`�2k(WX � Y )XT k2
F

.

Combining Lemmas 10 and 11, we derive the following
interesting corollary about when critical points are global
minimizers. This result is not directly related to the work
above, but gives an easy way to understand the landscape of
critical points of deep linear networks.

Theorem 12. Let (W1, . . . ,W`

) be a critical point such
that each W

i

has full rank. Then (W1, . . . ,W`

) is a global
minimizer of f .

Thematically similar results have been derived previously
for 1 layer networks in (Xie et al., 2017) and for deep neural
networks in (Zhou & Feng, 2017). In (Kawaguchi, 2016),
Kawaguchi derives a similar result to ours for deep linear
neural networks, showing that every critical point is either
a global minima or a saddle point. Our result, by contrast,
implies that all full-rank critical points are global minima.

Lemmas 10 and 11 can also be combined to show that
linear networks satisfy the PL condition in large regions of
parameter space, as the following theorem states.

Theorem 13. Suppose our weight matrices (W1, . . . ,W`

)

satisfy �min(Wi

) � ⌧ for ⌧ > 0. Then f(W1, . . . ,W`

)

satisfies the following PL inequality:

1

2

krfk2
F

� `⌧2`�2

k(XXT

)

�1Xk2
F

(f(W1, . . . ,W`

)� f⇤
).

5. Stability of Some First-order Methods
We wish to apply our bounds from the previous section to
popular convergent gradient-based methods. We consider
SGD, GD, RCD, and SVRG. When we have L-Lipschitz,
µ-PL loss functions f

S

and n training examples, Theorem
7 states that any learning algorithm A has uniform stability
✏stab satisfying ✏stab  O(L

p
✏A/µ) +O(L2/µn).

Here, ✏A refers to how quickly A converges to the optimal
value of the loss function. Specifically, this holds if the
algorithm produces a model w

S

satisfying |f
S

(w
s

)� f⇤
S

| 
O(✏A).

The convergence rates of SGD, GD, RCD, and SVRG have
been studied extensively both for strongly convex functions
(Bubeck et al., 2015; Johnson & Zhang, 2013; Nesterov,
2012; 2013) and PL functions (Karimi et al., 2016). These
results are summarized in Table 1. When necessary to state
the result, we assume a constant step-size of �. Note that
the same convergence rates apply to both �-strongly convex
and �-PL functions.

Table 1. Convergence rates for T iterations of various gradient-
based algorithms with step size � applied to both �-SC and �-PL
functions.

ALGORITHM CONVERGENCE RATE

SGD (1� 2��)T + �L2

2�

GD
�
1� �

L

�T

RCD
�
1� �

dL

�T

SVRG
⇣

1

��(1�2L�)m + 2L�
1�2L�

⌘T

We wish to perform enough iterations of our algorithm guar-
antee to guarantee the same stability as SGD in the strongly
convex case. We need to determine how many iterations
T we need to perform such that ✏A = O(L2/µn), as then
Corollary 6 implies that our algorithm is uniformly stable
with parameter ✏stab = O(L2/µn). The number of iterations
needed are summarized in Table 2.

In these settings, the above algorithms all exhibit the same
stability for these values of T , despite the potential non-
convexity. This is not the case for general non-convex
functions. Several studies have observed that small-batch
SGD offers superior generalization performance compared
to large-batch SGD, or full-batch GD, when training deep
neural networks (Keskar et al., 2016).

Unfortunately our bounds are not nuanced enough to capture
the difference in generalization performance between mini-
batch and large-batch SGD. In Section 6, we will make this
observation formal. Although SGD and GD can be equally
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Table 2. The number of iterations T that achieves stability ✏stab =
O(L2/µn) for various gradient-based algorithms with step size �
in the �-SC and �-PL settings.

ALGORITHM NUMBER OF ITERATIONS

SGD Ln
�

GD log(

L/�n)

log(1��/L)

RCD log(

L/�n)

log(1��/dL)

SVRG log(

L/�n)

log((��(1�2L�)m)

�1
+2L�(1�2L�)�1)

stable for non-convex problems satisfying the PL condition,
there exist non-convex problems where full-batch GD is not
stable and SGD is stable.

6. The Instability of Gradient Descent
In (Hardt et al., 2016), the authors proved bounds on the
uniform stability of SGD. They also noted that GD does
not appear to be provably as stable for the non-convex case
and sketched a situation in which this difference would
appear. Due to the similarity of SGD and GD, one may
expect similar uniform stability. While this is true in the
convex setting (as we show in the Appendix, subsection
B.1), this breaks down in the non-convex setting. Below we
construct an explicit example where GD is not uniformly
stable, but SGD is. This example formalizes the intuition
given in (Hardt et al., 2016).

For x,w 2 Rm and y 2 R, we let `(w; (x, y)) = (hw, xi2+
hw, xi � y)2. Intuitively, this is a generalized quadratic
model where the predicted label ŷ for a given x is given by
ŷ = hw, xi2 + hw, xi.

For almost every x, y, the function `(w; (x, y)) is non-
convex as it is a quartic polynomial in the weight vec-
tor w. We will use this function to construct data sets
S, S0 that differ in only one entry, for which GD pro-
duces significantly different models. We consider this loss
function for all z = (x, y) with kzk  C for C suffi-
ciently large. When m = 1, the loss function simplifies
to `(w; (x, y)) = (w2x2

+ wx� y)2.

Define ↵ := (�1, 1),� := (

�1
2 , 1). The graphs of `(w; z)

at ↵ and � are given in Figure 2. We also graph g(w),
defined by g(w) = 1

2 (`(w;↵) + `(w;�)).

Note that the last function has two distinct basins of different
heights. Taking the gradient, one can show that the right-
most function in Figure 2 has zero slope at ŵ ⇡ 0.598004.
Comparing `(w;↵) and `(w;�), we see that the sign of their
slopes agrees on (� 1

2 ,
1
2 ) and on (1, 3

2 ). The slopes are of
different sign in the interval [ 12 , 1]. We will use this to our
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Figure 2. Graphs of the functions `(w; (�1, 1)) (top-left),
`(w; (�1

2

, 1)) (top-right), and g(w) = 1

2

[`(w; (�1, 1)) +
`(w; (�1

2

, 1))] (bottom).

-0.5 0 0.5 1 1.5
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Figure 3. Graph of the function `(w; (� 1

2ŵ ), 0). By construction,
this function has critical points at w = 0, ŵ, 2ŵ.

advantage in showing that gradient descent is not stable,
while that SGD is.

We will construct points (x1, y1) and (x2, y2) such that
`(w; (x1, y1)) and `(w; (x2, y2)) have positive and negative
slope at ŵ. To do so, we will first construct an example with
a slope of zero at ŵ. A straightforward computation shows
that `(w; (�1

2ŵ , 0)) has slope zero at ŵ. A graph of this loss
function is given in Figure 3. Note that ŵ corresponds to
the concave-down critical point in between the two global
minima.

Define z± =

⇣
�1

2(ŵ±✏) , 0
⌘
. Straightforward calculations

show that `(w; (z+, 0)) will have positive slope for w 2
(0, ŵ + ✏), while `(w; (z�, 0)) will have negative slope for
w 2 (ŵ � ✏, 2(ŵ � ✏)). In particular, their slopes have
opposite signs in the interval (ŵ � ✏, ŵ + ✏). Define S =

{z1, . . . , zn�1, z�}, S0
= {z1, . . . , zn�1, z+}, where z

i

=

↵ for 1  i  n�1
2 , z

i

= � for n�1
2 < i  n� 1.

By construction, we have

fS(w) =
n� 1
n

g(w) + `

✓
w;

✓
�1

2(ŵ + ✏)
, 0

◆◆
.
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fS0(w) =
n� 1
n

g(w) + `

✓
w;

✓
�1

2(ŵ � ✏)
, 0

◆◆
.

Then f
S

(w), f
S

0
(w) will approximately have the shape of

the bottom function in Figure 2 above. However, recall
that d

dw

g(w) = 0 at w = ŵ. Therefore, there is some �,
with 0 < � < ✏, such that for all w 2 (ŵ � �, ŵ + �),
d

dw

f
S

(w) < 0 < d

dw

f
S

0
(w).

Now say that we initialize gradient descent with some step-
size � > 0 in the interval (w � �, w + �). The above
equation implies that the first step of gradient descent on f

S

will produce a step moving to the left, but a step moving to
the right for f

S

0 . This will hold for all � > 0. Moreover,
the iterations for f

S

will continue to move to towards the
left basin, while the iterations for f

S

0 will continue to move
to the right basin since `(w; (z+, 0)) has positive slope for
w 2 (0, ŵ + ✏) while `(w; (z�, 0)) has negative slope for
w 2 (ŵ � ✏, 2(ŵ � ✏), and that g(w) has positive slope for
w 2 (� 1

2 , ŵ) and negative slope for w 2 (ŵ, 3
2 ).

After enough iterations of gradient descent on f
S

, f
S

0 , we
will obtain models w

S

and w
S

0 that are close to the distinct
local minima in the right-most graph in Figure 2. This will
hold as long as � is not too large. To ensure this does not
happen, we restrict to �  1.

Let w1 < w2 denote the two local minima of g(w). For
z⇤ = (� 1

2 , 1), plugging these values into `(w; z⇤) shows
that |`(w1; z

⇤
) � `(w2; z

⇤
)| > 1. Since w

S

is close to w1

and w
S

0 is close to w2, we get the following theorem.
Theorem 14. For all n,m � 1, � 2 (0, 1], there are K � 1,
S, S0 ✓ Rm of size n with |S \ S0| = n � 1, and a non-
zero measure A ✓ Rm such that if we perform at least K
iterations of gradient descent with step-size � on S and S0,
starting in A, to get outputs A(S),A(S0

), then there is a z⇤

such that |`(A(S); z⇤)� `(A(S0
); z⇤)| � 1

2 .

This theorem establishes that there exist simple non-convex
settings for which the uniform stability of gradient descent
does not decrease with n. In light of the work in (Hardt et al.,
2016), where the authors show that for very conservative
step-sizes, SGD is stable on non-convex loss function, we
might wonder whether SGD is stable in this setting. We
show in Section B.2 that SGD is stable in this setting. For
simplicity of analysis, we focus on the case where � = 1.
In this section we prove the following theorem.
Theorem 15. Suppose that we initialize SGD in [ŵ�⌘, ŵ+

⌘] with a step-size of � = 1. Let A(S),A(S0
) denote the

output of SGD after k iteration for sufficiently large k. For
kzk  2,EA[`(A(S); z)� `(A(S0

); z)]  O(

1
n

).

This is in contrast to gradient descent, which is unstable in
this setting. While (Zhang et al., 2016) suggests that SGD is
generally more stable in non-convex settings, proving that
this holds remains an open problem.

7. Conclusion
The success of machine learning algorithms in practice is
often dictated by their ability to generalize. While recent
work has developed great insight into the training error
of machine learning algorithms, much less is understood
about their generalization error. Most prior work has been
algorithm-specific or has made strong assumptions on the
loss function that may not hold in practice. By decompos-
ing stability into convergence and the geometry of global
minimizers, we are able to derive broader results. These
easy-to-use stability results encompass a general class of
non-convex functions, some of which appear in machine
learning setups. Our bounds establish the stability for SGD,
GD, SVRG, and RCD and match prior specialized results.
Although our bounds are not nuanced enough to compare the
generalization of mini-batch and large-batch SGD, we hope
that the generality of our bounds serves as a step towards
understanding the generalization performance of practical
machine learning algorithms.

There are still many exciting open problems concerning
the stability and generalization of machine learning and
optimization algorithms. We give a few below.

Stability for non-convex loss functions: While our results
establish the stability of learning algorithms in some non-
convex scenarios, it is unclear how to extend them directly
to more general non-convex loss functions. Due to the
wide variety of similar but not identical algorithms in ma-
chine learning, it would be particularly interesting to derive
black-box results on the stability of learning algorithms for
general non-convex loss functions, even when it concerns
convergence to approximate local minima. In non-convex
functions, local minima are not necessarily global. The
question remains, among all local minima of a loss function,
which one has the smallest generalization gap? The local
minima with the smallest generalization error may not be a
global minimizer. Even if we restrict to global minimizers,
these may have different generalization errors. Is there a
simple geometric characterization of their generalization
error?

Generalization of SGD vs GD: We showed above that
there are settings in which gradient descent is not uniformly
stable, but SGD is. Empirically, SGD leads to small gener-
alization error in neural networks (Zhang et al., 2016). The-
oretically, it is unclear how widespread this phenomenon is.
Does SGD actually lead to more generalizable models than
gradient descent?
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A. Proof of Results
A.1. Properties of PL and QG Functions

We have the following equivalent definition of PL due to
Karimi et al. (2016).

Lemma 16 (Error bound, (Karimi et al., 2016)). The PL
condition is equivalent to the condition that there is some
constant µ > 0 such that for all x, krf(x)k � µkx

p

� xk.

Karimi et al. (2016) also show that PL functions also satisfy
QG.

Lemma 17 ((Karimi et al., 2016)). The PL condition im-
plies the QG condition.

A.2. Proof of Theorem 3

Proof. Fix a training set S and i 2 {1, . . . , n}. We will
show pointwise hypothesis stability for all S, i instead of
for them in expectation. Let w1 denote the output of A on
S, and let w2 denote the output of A on Si. Let w⇤

1 denote
the critical point of f

S

to which w1 is approaching, and w⇤
2

denote the critical point of f
S

i that w2 is approaching. We
then have,

|`(w1; zi)� `(w2; zi)|
 |`(w1; zi)� `(w⇤

1 ; zi)|+ |`(w⇤
1 ; zi)� `(w⇤

2 ; zi)|
+ |`(w⇤

2 ; zi)� `(w2; zi)|. (1)

We first wish to bound the first and third terms of (1). The
bound depends on the case in Theorem 3.

Case 1: By assumption, kw1 � w⇤
1k  ✏A. Since `(·; z

i

) is
L-Lipschitz, this implies

|`(w1; zi)� `(w⇤
1 ; zi)|  Lkw1 � w⇤

1k  L✏A.

Case 2: As stated in Lemma 17, the PL condition implies
the QG condition. Therefore,

µ

2

kw1 � w⇤
1k2  |f

S

(w1)� f
S

(w⇤
1)|. (2)

By assumption on case 2, |f
S

(w1) � f
S

(w⇤
1)|  ✏0A. This

implies

kw1 � w⇤
1k 

p
2

p
µ

q
|f

S

(w1)� f
S

(w⇤
1)|



s
2✏0A
µ

.

Case 3: By Lemma 16, the PL condition on w1, w
⇤
1 implies

that
krf

S

(w1)k � µkw1 � w⇤
1k.

Using the fact that f
S

is L-Lipschitz and the fact that

krf
S

(w
j

)k  ✏00A by assumption on Case 3, we find

|`(w1; zi)� `(w⇤
1 ; zi)|

 Lkw1 � w⇤
1k  L

µ
krf

S

(w1)k

 2L✏00A
µ

.

In the above three cases, we can bound |`(w2; zi) �
`(w⇤

2 ; zi)| in the same manner. We now wish to bound
the second term of (1). Note that we can manipulate this
term as

|`(w⇤
1 ; zi)� `(w⇤

2 ; zi)|
= |(nf

S

(w⇤
1)� (n� 1)f

S

i
(w⇤

1))

� (nf
S

(w⇤
2) + (n� 1)f

S

i
(w⇤

2))|
 n|f

S

(w⇤
1)� f

S

(w⇤
2)|+ (n� 1)|f

S

i
(w⇤

1)� f
S

i
(w⇤

2)|.

By the PL condition, we can find a local minimum u of f
S

such that

krf
S

(w⇤
2)k2 � µ|f

S

(w⇤
2)� f

S

(u)|.

Similarly, we can find a local minimum v of f
S

i such that

krf
S

i
(w⇤

1)k2 � µ|f
S

i
(w⇤

1)� f
S

i
(v)|.

Note that since rf
S

i
(w⇤

2) = 0, we get:

krf
S

(w⇤
2)k2 =

1

n2
kr`(w⇤

2 ; zi)k2  L2

n2
.

Similarly, since rf
S

(w⇤
1) = 0, we get:

krf
S

i
(w⇤

1)k2 =

1

(n� 1)

2
kr`(w⇤

1 ; zi)k2  L2

(n� 1)

2
.

Since all local minima of a PL function are global minima,
we obtain

n|f
S

(w⇤
1)� f

S

(w⇤
2)|

 n|f
S

(w⇤
1)� f

S

(u)|+ n|f
S

(u)� f
S

(w⇤
2)|

 n
L2

µn2

=

L2

µn
.

In a similar manner, we get

(n� 1)|f
S

i
(w⇤

1)� f
S

i
(w⇤

2)|
 (n� 1)|f

S

i
(w⇤

1)� f
S

i
(v)|+ (n� 1)|f

S

i
(v)� f

S

i
(w⇤

2)|

 (n� 1)

L2

µ(n� 1)

2

 L2

µ(n� 1)

.
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Therefore,

|`(w⇤
1 ; zi)� `(w⇤

2 ; zi)| 
L2

µn
+

L2

µ(n� 1)

.

This proves the desired result.

A.3. Proof of Theorem 5

Proof. By analogous reasoning to the proof of Theorem 3,
we have the following decomposition:

|`(w1; zi)� `(w2; zi)|
 |`(w1; zi)� `(w⇤

1 ; zi)|+ |`(w⇤
1 ; zi)� `(w⇤

2 ; zi)|
+ |`(w⇤

2 ; zi)� `(w2; zi)|. (3)

We first wish to bound the first and third terms of (3). The
bound depends on the case in Theorem 5.

Case 1: By assumption, kw1 � w⇤
1k  ✏A. Since `(·; z

i

) is
L-Lipschitz, this implies

|`(w1; zi)� `(w⇤
1 ; zi)|  Lkw1 � w⇤

1k  L✏A.

Case 2: By the QG condition, we have
µ

2

kw1 � w⇤
1k2  |f

S

(w1)� f
S

(w⇤
1)|. (4)

By assumption on case 2, |f
S

(w1) � f
S

(w⇤
1)|  ✏0A. This

implies

kw1 � w⇤
1k 

p
2

p
µ

q
|f

S

(w1)� f
S

(w⇤
1)|



s
2✏0A
µ

.

In the above two cases, we can bound |`(w2; zi)�`(w⇤
2 ; zi)|

in the same manner. We now wish to bound the second term
of (3). By the QG property, we can pick some local minima
v of f

S

such that

kw⇤
2 � vk  2

p
µ

q
|f

S

(w⇤
2)� f

S

(v)|. (5)

We then have

|`(w⇤
1 ; zi)� `(w⇤

2 ; zi)|
 |`(w⇤

1 ; zi)� `(v; z
i

)|+ |`(v; z
i

)� `(w⇤
2 ; zi)|.

By construction, f
S

(w⇤
1) = f

S

(u) = 0, so |`(w⇤
1 ; zi) �

`(v; z
i

)| = 0. By the Lipschitz property and the QG condi-
tion we have

|`(v; z
i

)� `(w⇤
2 ; zi)|

 Lkv � w⇤
2k

 2L
p
µ

q
|f

S

(w⇤
2)� f

S

(v)|

 2L
p
µ

q
|f

S

(w⇤
2)� f

S

(w⇤
1)|+ |f

S

(w⇤
1)� f

S

(v)|. (6)

Note that |f
S

(w⇤
1)�f

S

(v)| = 0 by our realizability assump-
tion. By assumption on w⇤

1 , w
⇤
2 , we know that f

S

(w⇤
1) 

f
S

(w⇤
2) and f

S

i
(w⇤

2)  f
S

i
(w⇤

1). Some simple analysis
shows

nf
S

(w⇤
2) = nf

S

i
(w⇤

2) + `(w⇤
2 ; zi)

 nf
S

i
(w⇤

1) + `(w⇤
2 ; zi)

= nf
S

(w⇤
1) + `(w⇤

2 ; zi)� `(w⇤
1 ; zi).

Since `(w⇤
2 ; zi)  c, this implies that n|f

S

(w⇤
2) �

f
S

(w⇤
1)|  c. Plugging this bound into (6), we get

|`(v; z
i

)� `(w⇤
2 ; zi)|  2L

r
c

µn
.

This proves the desired result.

A.4. Proof of Theorem 7

Let S1 = {z1, . . . , zn}, S2 = {z1, . . . , zn�1, z
0
n

} be data
sets of size n differing only in one entry. Let w

i

denote
the output of A on data set S

i

and let w⇤
i

denote w⇤
Si

. Let
f
i

(w) = f
Si(w).

Proof. Using the fact that `(·; z) is L-Lipschitz we get

|`(w1; z)� `(w2; z)|
 Lkw1 � w2k
 Lkw1 � w⇤

1k+ Lkw⇤
1 � w⇤

2k+ Lkw⇤
2 � w2k. (7)

Note that by A1, we know that w⇤
1 is the closest optimal

point of f1 to w⇤
2 . By the PL condition,

kw⇤
1 � w⇤

2k

 1

µ
krf1(w

⇤
2)k

=

1

µ
krf2(w

⇤
2)�

1

n
r`(w⇤

2 ; z
0
n

) +

1

n
r`(w⇤

2 ; zn)k

 1

µn
(kr`(w⇤

2 ; z
0
n

)k+ kr`(w⇤
2 ; zn)k)

 2L

µn
.

This bounds the second term of (7). The first and third terms
must be bounded differently depending on the case. These
can be bounded analogously via the method in the proof of
Theorem 3, completing the proof.
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A.5. Proof of Theorem 8

We will use the following lemma.
Lemma 18. Let f

S

be QG and assume that `(w; z)  c for
all z and w 2 X . We assume A1 as above. Then for S1, S2

differing in at most one place,

kw⇤
1 � w⇤

2k  2

r
c

µn
.

Proof. By the QG property:

µ

2

kw⇤
1 � w⇤

2k2

 |f1(w⇤
2)� f1(w

⇤
1)|

 |f1(w⇤
2)� f2(w

⇤
2)|+ |f2(w⇤

2)� f1(w
⇤
1)|.

Note that for all w, |f1(w) � f2(w)| =

1
n

|`(w; z
n

) �
`(w; z0

n

)|, so this is bounded by c

n

.

By this same reasoning we get:

f2(w
⇤
2)  f2(w

⇤
1)  f1(w

⇤
1) +

c

n
.

The desired result follows.

Proof of Theorem 8. Using the fact that `(·; z) is L-
Lipschitz we get

|`(w1; z)� `(w2; z)|
 Lkw1 � w2k
 Lkw1 � w⇤

1k+ Lkw⇤
1 � w⇤

2k+ Lkw⇤
2 � w2k. (8)

Note that by A1, we know that w⇤
1 is the closest optimal

point of f1 to w⇤
2 . By Lemma 18,

kw⇤
1 � w⇤

2k  2

r
c

µn
.

This bounds the second term of (7). The first and third terms
can be bounded analogously to the methods used in the
proof of Theorem 5. This proves the desired result.

A.6. Proof of Theorem 9

Proof. For almost all w, we can write �(Xw) as
diag(b)Xw for a vector b where b

i

(Xw)
i

= �((Xw)
i

)

(this only excludes points w such that (Xw)
i

is on a cusp
of the piecewise-linear function). Then in an open neighbor-
hood of such an w, we find

f(w) = g(�(Xw)) = g(diag(b)Xw).

For a given w, let w
p

be the closest global minima of f
(i.e., the closest point such that f⇤

= f(w
p

)). By strong

convexity of g, we find:

g(diag(b)Xw
p

)� g(diag(b)Xw)

� hrg(diag(b)Xw), diag(b)X(w
p

� w)i

+

�

2

kdiag(b)X(w
p

� w)k2

� hXT diag(b)Trg(diag(b)Xw), w
p

� wi

+

�

2

kdiag(b)X(w
p

� w)k2.

Noting that f(w) = g(diag(b)Xw), this implies

f(w
p

)� f(w) � hrf(w), w
p

� wi

+

��min(X)

2�min(diag(b))2

2

kw
p

� wk2.

Note that the minimum singular value of diag(b) is the
square root of the minimum eigenvalue of diag(b)2. Since
diag(b)2 has entries c2

i

on the diagonal, we know that the
minimum singular value is at least c = min

i

{|c
i

|}. There-
fore we get:

f(w
p

)� f(w)

� hf(w), w
p

� wi+ ��min(X)

2c2

2

kw
p

� wk2

� min

y


hrf(w), y � wi+ ��min(X)

2c2

2

ky � wk2
�

= � 1

2��min(X)

2c2
krf(w)k2.

A.7. Proof of Lemma 10

Proof. Using basic properties of the Frobenius norm and
the definition of the pseudo-inverse, we have

k(WX � Y )XT k2
F

k(XXT

)

�1Xk2
F

� k(WX � Y )XT

(XXT

)

�1Xk2
F

= k(WX � Y )X+Xk2
F

= kWXX+X � Y X+Xk2
F

= kWX � Y X+Xk2
F

.

This last step follows by basic properties of the pseudo-
inverse. By the triangle inequality,

kWX � Y k2
F

= kWX � Y X+X + Y X+X � Y k2
F

 kY X+X � Y k2
F

+ kWX � Y X+Xk2
F

.

Note that Y X+X�Y is the component of Y that is orthogo-
nal to the row-space of X , while Y X+X is the projection of
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Y on to this row space. Therefore, Y X+X � Y is orthogo-
nal to WX�Y X+X with respect to the trace inner product.
Therefore, the inequality above is actually an equality, that
is

kWX � Y k2
F

= kY X+X � Y k2
F

+ kWX � Y X+Xk2
F

.

Putting this all together, we find

k(XXT

)

�1Xk2
F

k(WX � Y )XT k2
F

� kWX � Y k2
F

� kY X+X � Y k2
F

.

A.8. Proof of Lemma 11

Proof. Our proof uses similar techniques to that in (Hardt
& Ma, 2016). This result can be viewed as a parallel version
of their results under the lens of the PL condition. We wish
to compute the gradient of f with respect to a matrix W

j

.
One can show the following:

@f

@W
j

= WT

j+1 . . .W
T

`

(WX � Y )XTWT

1 . . .WT

j�1.

Using the fact that for a matrix A 2 Rd⇥d and another
matrix B 2 Rd⇥k, we have kABk

F

� �min(A)kBk
F

, we
find:

����

����
@f

@W
j

����

����
F

�
Y

i 6=j

�min(Wi

)k(WX � Y )XT k
F

.

By assumption, �min(Wj

) � ⌧ . Therefore:

����

����
@f

@W
j

����

����
2

F

� ⌧2`�2k(WX � Y )XT k2
F

.

Taking the gradient with respect to all W
i

we get:

����

����
@f

@(W1, . . . ,W`

)

����

����
2

F

=

`X

j=1

����

����
@f

@W
j

����

����
2

F

� `⌧2`�2k(WX � Y )XT k2
F

.

A.9. Proof of Theorem 12

Proof. Since each W
i

has full rank, we know that ⌧ =

min

i

�min(Wi

) > 0. Using Lemma 11 and the fact that
rf(W1, . . . ,W`

) = 0, we get k(WX � Y )XT k2
F

= 0.
Therefore, WXXT

= Y XT . Assuming that (XXT

) is
invertible, we find that W = Y X+, which equals W ⇤.

A.10. Proof of Theorem 13

Proof. By Lemma 11 and Lemma 10 we find:

1

2

����

����
@f

@(W1, . . . ,W`

)

����

����
2

F

� `⌧2`�2 1

2

k(WX � Y )XT k2
F

� `⌧2`�2

k(XXT

)

�1Xk2
F

1

2

(kWX � Y k2
F

� kY X+X � Y k2
F

)

=

`⌧2`�2

k(XXT

)

�1Xk2
F

(f(W1, . . . ,W`

)� f⇤
).

B. Stability Properties of SGD
B.1. Stability of Gradient Descent for Convex Loss

Functions

To prove the stability of gradient descent, we will assume
that the underlying loss function is smooth.

Definition 6. A function f : ⌦ ! R is �-smooth if for all
u, v 2 ⌦, we have

krf(u)�rf(v)k  �ku� vk.

Hardt et al. (2016) show the following theorem.

Theorem 19 ((Hardt et al., 2016)). Let `(·; z) be L-
Lipschitz, �-smooth, and convex for all z. Say we perform
T iterations of SGD with a constant step size �  2

�

to
train iterates w

t

on S and ŵ
t

on S0. Then for all such S, S0

with |S| = |S0| = n such that S, S0 differ in at most one
example,

EA[kwT

� ŵ
T

k]  2�LT

n

If `(·; z) is �-strongly convex for all z, then

EA[kwT

� ŵ
T

k]  2L

�n

Performing similar analysis for gradient descent, we obtain
the following theorem.

Theorem 20. Assume that for all z, `(·; z) is convex, �-
smooth, and L-Lipschitz. Say we run GD for T iterations
with step sizes �

t

such that �
t

 2
�

. Then GD is uniformly
stable with

✏stab  2L2

n

TX

t=0

�
t

.

If `(·; z) is �-strongly convex for all z, then GD is uniformly
stable with

✏stab  2L

�n
.
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To prove this theorem, we use similar techniques to those in
(Hardt et al., 2016). We first consider the convex case.

Proof. By direct computation, we have:

kw
T

� ŵ
T

k

=

����wT�1 � ŵ
T�1

� �
T

n

n�1X

i=1

�
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

�

� �
T

n
r`(w

T�1; zn) +
�
T

n
r`(ŵ

T�1; z
0
n

)

����


����wT�1 � ŵ

T�1

� �
T

n

n�1X

i=1

�
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

�����

+

����
�
T

n
r`(w

T�1; zn)�
�
T

n
r`(ŵ

T�1; z
0
n

)

����.

Note that since `(·; z) is L-Lipschitz, the second part of this

summand is bounded by
2�

T

L

n
. We now wish to bound the

first part. Using the triangle inequality and co-coercivity of
r`(·, z

i

), we have

����wT�1 � ŵ
T�1

� �
T

n

n�1X

i=1

�
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

�����
2

 kw
T�1 � ŵ

T�1k2

+

n�1X

i=1

(

�2
T

n2
� 2�

T

n2�
)kr`(w

T�1; zi)�r`(ŵ
T�1; zi)k2.

Note that in particular, if �
T

 2
�

, each of the n � 1 sum-
mands on the right will be non-positive. Therefore for such
�
T

, we get:
����wT�1 � ŵ

T�1

� �
T

n

n�1X

i=1

✓
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

◆����

 kw
T�1 � ŵ

T�1k.

So, if �t

n

 2
�

for all t, we get:

kw
T

� ŵ
T

k  kw
T�1 � ŵ

T�1k+
2�

T

L

n

 kw
T�2 � ŵ

T�2k+
2L

n
(�

T�1 + �
T

)

...

 kw0 � ŵ0k+
2L

n

TX

t=1

�
t

=

2L

n

TX

t=1

�
t

.

This last step follows from the fact that w0 = ŵ0 if we
initialize at the same point. Using the fact that f(w) is
L-Lipschitz (since ` is), we get:

|f(w
T

; z)� f(ŵ
T

; z)|  2L2

n

nX

t=0

�
t

.

We now move to the �-strongly convex case. For simplicity
of analysis, we assume that we use a constant step size �
such that �  1/�.

Proof. The proof remains the same, except when using co-
coercivity. Under this assumption, some plug and play in an
analogous fashion will show:
����wT�1 � ŵ

T�1

� �
T

n

n�1X

i=1

�
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

�����
2


✓
1� 2���

�+ �

◆
kw

T�1 � ŵ
T�1k2

+

n�1X

i=1

(

�2
T

n2
� 2�

T

n�
)kr`(w

T�1; zi)�r`(ŵ
T�1; zi)k2.

Note that if �  1
�

then the second term is nonnegative and
one can show that this implies:

����wT�1 � ŵ
T�1

� �
T

n

n�1X

i=1

�
r`(w

T�1; zi)�r`(ŵ
T�1; zi)

�����


✓
1� ��

◆
kw

T�1 � ŵ
T�1k.

Combining, this shows:
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kw
T

� ŵ
T�1k  (1� ��)kw

T�1 � ŵ
T�1k+

2L�

n
...

 2L�

n

TX

t=0

(1� ��)t

 2L

�n
.

This implies uniform stability with parameter 2L2

�n

.

B.2. Proof of Theorem 15

Suppose we run SGD on the above f
S

, f
S

0 with step size 1

and initialize near ŵ (we will be more concrete later about
where we initialize). With probability n�1

n

, the first itera-
tion of SGD will use the same example for both S and S0,
either z = (�1, 1) = ↵ or z = (� 1

2 , 1) = �. Computing
derivatives at ŵ shows

d

dw
`(w;↵) ⇡ �0.486254,

d

dw
`(w;�) ⇡ 0.486254.

In both cases, the slope is at least 0.4. Therefore, there is
some ⌘ such that for all w 2 [ŵ � ⌘, ŵ + ⌘],

d

dw
`(w;↵) < �0.4,

d

dw
`(w;�) > 0.4.

Since we are taking � = 1 and ŵ ⇡ 0.598004, this implies
that with probability n�1

n

, after one step of SGD we move
outside of the open interval (0.5, 1). This is important since
this is the interval where `(w;↵) and `(w;�) have slopes
that point them towards distinct basins. Similarly, outside
of this interval we also have that the slopes of `(w; (z±, 0))
point towards the same basin.

Continuing to run SGD in this setting, even if we now de-
crease the step size, will eventually lead us to the same
basins of f

S

(w), f
S

0
(w). Let w

S

, w
S

0 denote the outputs of
SGD in this setting after enough steps so that we get con-
vergence to within 1

n

of a local minima. If our first sample
z was (�1, 1), we will end up in the right basin, while if
our first sample z was (� 1

2 , 1), we will end up in the left
basin. In particular, for ✏ small, z± are close enough that the
minima of f

S

, f
S

0 are within 1
n

of each other. Note that the
minima w1, w2 that w

S

, w
S

0 are converging to are different.
However, because they are in the same basin we know that
for ✏ small, z± are close enough that kw

S

� w
S

0k  O(

1
n

).
Therefore, kw

S

� w
S

0k  O(

1
n

).

In our proof of the instability of gradient descent, we only
needed to look at z satisfying kzk  2 to see the insta-
bility. However, for SGD if we restrict to kzk  2, then
by compactness we know that `(w; z) will be Lipschitz.

Therefore, with probability n�1
n

, k`(w
S

; z)� `(w
S

0
; z)k 

Lkw
S

� w
S

0k  O(

1
n

).

With probability 1
n

, SGD first sees the example on which
S, S0 differ. In this case, w

S

, w
S

0 may end up in different
basins of the right-most graph in Figure 2. Restricting to
kzk  2, by compactness we have |`(w

S

; z)� `(w
S

0
; z)| 

C for some constant C. Therefore, |`(w
S

; z)�`(w
S

0
; z)| =

O(

1
n

) with probability 1� 1
n

and |`(w
S

; z)� `(w
S

0
; z)| =

O(1) with probability 1
n

. This proves the desired theorem.

B.3. Convergence of SGD with Step Sizes �
t

= c/t

In this subsection we show that a provable rate for SGD on
smooth functions with learning rate proportional to O(1/t)
might require a large number of iterations. While (Hardt
et al., 2016) show stability of SGD in non-convex settings
with such a step size, their stability bounds grow close to
linearly with the number of iterations. When exponentially
many steps are taken, this no longer implies useful general-
ization bounds on SGD.

When a function f(x) =

P
n

i=1 fi(x) is � smooth on its
domain, then the following holds:

f(x)� f(y)  hrf(y), x� yi+ �

2

kx� yk2.

Fix some t and let x = x
t+1 = x

t

� �
t

rf
st(xt

) and let
y = x

t

. Here, x0 is set to some initial vector value, s
t

is
a uniform i.i.d. sample from {1, . . . , n], and �

t

= c/t for
some constant c > 0. Then, due to the �-smoothness of f
we have the following:

f(x
t+1)� f(x

t

)

 hrf(x
t

), x
t+1 � x

t

i+ ��2
t

2

krf
st(xt

)k2

 ��
t

hrf(x
t

),rf
st(xt

)i+ ��2
t

2

krf
st(xt

)k2.

Taking expectation with respect to all random samples s
t

and rearranging yields
✓
�
t

� ��2
t

2

◆
E[krf(x

t

)k2]  E [f(x
t

)� f(x
t+1)] .

Summing the above inequality for all t terms from 0 to T
we get

TX

t=1

✓
�
t

� ��2
t

2

◆
E[krf(x

t

)k2]  E[f(x0)� f(x
T

)]

)
TX

t=1

✓
�
t

� ��2
t

2

◆
E[krf(x

t

)k2]  f(x0)

) min

t=1,...,T
E[krf(x

t

)k2]  f(x0)

P
T

t=1

⇣
�
t

� ��

2
t

2

⌘ .
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Assuming that �
t

= c/t, we have

min

t=1,...,T
E[krf(x

t

)k2]  f(x0)

P
T

t=1 c
⇣
�
t

� �c

2

2t2

⌘

) min

t=1,...,T
E[krf(x

t

)k2]  f(x0)

c
P

T

t=1 t
�1

) min

t=1,...,T
E[krf(x

t
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C1 log(T )
.

Here C1 is a universal constant that depends only on c. Ob-
serve that even if C2 = 0, using the above simple bounding
technique (a simplified version of the non-convex conver-
gence bounds of (Ghadimi & Lan, 2013)), requires O(e�✏

)

steps to reach error ✏, an exponentially large number of
steps.

We note that the above bound does not imply that there

does not exist a smooth function for which 1/t step sizes
suffice for polynomial-time convergence (in fact there are
several convex problems for which 1/t suffices for fast
convergence). However, the above implies that when we
are only assuming smoothness on a non-convex function, it
may be the case that there exist non-convex problems where
1/t implies exponentially slow convergence.

Moreover, assuming that a function has bounded stochastic
gradients, e.g., Ekf

st(xt

)k  M , it is also easy to show that
after T steps each with step size �

t

= c/t, then the distance
of the current SGD model x

T

from the initial iterate x0

satisfies
Ekx

T

� x0k  2M log(T ).

This implies that if the optimal model is at distance ⌦(Md)
from x0, we would require at least O(eM ·d

) iterations to
reach it in expectation.


