
Hierarchical Clustering with Structural Constraints

Acknowledgements
Vaggos Chatziafratis was partially supported by ONR grant
N00014-17-1-2562. Rad Niazadeh was supported by Stan-
ford Motwani fellowship. Moses Charikar was supported by
NSF grant CCF-1617577 and a Simons Investigator Award.
We would also like to thank Leo Keselman, Aditi Raghu-
nathan and Yang Yuan for providing comments on an earlier
draft of the paper. We also thank the anonymous reviewers
for their helpful comments and suggestions.

A. Supplementary Materials
A.1. Real-world application example.

In phylogenetics, which is the study of the evolutionary his-
tory and relationships among species, an end-user usually
has access to whole genomes data of a group of organisms.
There are established methods in phylogeny to infer sim-
ilarity scores between pairs of datapoints, which give the
user the similarity weights wij . Often the user also has
access to rare structural footprints of a common ancestry
tree (e.g. through gene rearrangement data, gene inver-
sions/transpositions etc., see (Patané et al., 2018)). These
rare, yet informative, footprints play the role of the struc-
tural constraints. The user can follow our pre-processing
step to get triplet constraints from the given rare footprints,
and then use Ahos BUILD algorithm to choose between
regularized or hard version of the HC problem. The above
illustrates how to use our workflow and why using our al-
gorithms facilitates HC when expert domain knowledge is
available.

A.2. Missing proofs and discussion in Section 2

Proof of Proposition 1. For nodes u, v 2 T , let P (u) de-
note the parent of u in the tree and LCA(u, v) denote the
lowest common ancestor of u, v. For a leaf node li, i 2 [k],
we say that its label is li, whereas for an internal node of T ,
we say that its label is the label of any of its two children.
As long as there are any two nodes a, b that are siblings (i.e.
P (a) ⌘ P (b)), we create a constraint ab|c where c is the
label of the second child of P (P (a)). We delete leaves a, b
from the tree and repeat until there are fewer than 3 leaves
left. To see why the above procedure will only create at
most k constraints, notice that every time a new constraint
is created, we delete two nodes of the given tree T . Since T
has k leaves and is binary, it can have at most 2k � 1 nodes
in total. It follows that we create at most 2k�1

2 < k triplet
constraints. For the equivalence between the constraints
imposed by T and the created triplet constraints, observe
that all triplet constraints we create are explicitly imposed
by the given tree (since we only create constraints for two
leaves that are siblings) and that for any three datapoints
a, b, c 2 T with LCA(a, c)=LCA(b, c), our set of triplet con-

straints will indeed imply ab|c, because LCA(a, b) appears
further down the tree than LCA(a, c) and hence a, b become
siblings before a, c or b, c.

Proof of Fact 1 from (Charikar & Chatziafratis, 2017).

We will measure the contribution of an edge e = (u, v) 2 E
to the RHS and to the LHS. Suppose that r denotes the
size of the minimal cluster in OPT that contains both
u and v. Then the contribution of the edge e = (u, v)
to the LHS is by definition r · we. On the other hand,
(u, v) 2 OPT(t), 8t 2 {0, ..., r�1}. Hence the contribution
to the RHS is also r · we.

Proof of Fact 2 from (Charikar & Chatziafratis, 2017).

We rewrite OPT using the fact that

w(OPT(t)) � 0

at every level t 2 [n]:

6k · OPT = 6k
nX

t=0

w(OPT(t))

= 6k(w(OPT(0)) + · · ·+ w(OPT(n)))

� 6k(w(OPT(0)) + · · ·+ w(OPT(b n
6k c)))

=
nX

t=0

w(OPT(b t
6k c))

Proof of Lemma 2. By using the previous lemma we have:

CRSC =
X

A

rAw(B1, B2)

 O(↵n)
X

A

sAw(OPT(b rA
6kA

c) \A)

Observe that w(OPT(t)) is a decreasing function of t, since
as t decreases, more and more edges are getting cut. Hence
we can write:

X

A

sA · w(OPT(b rA
6k c) \A)

X

A

rAX

t=rA�sA+1

w(OPT(b rA
6kA

c) \A)

To conclude with the proof of the first part all that remains
to be shown is that:

X

A

rAX

t=rA�sA+1

w(OPT(b t
6kA

c)\A)
nX

t=0

w(OPT(b t
6k c))

To see why this is true consider the clusters A with a con-
tribution to the LHS. We have that rA � sA + 1 t rA,

Hierarchical Clustering with Structural Constraints

hence |B2| < t meaning that A is a minimal cluster of size
|A| � t > |B2| � |B1|, i.e. if both A’s children are of size
less than t, then this cluster A contributes such a term. The
set of all such A form a disjoint partition of V because of
the definition for minimality (in order for them to overlap in
the hierarchical clustering, one of them needs to be ancestor
of the other and this cannot happen because of minimality).
Since OPT(b t

6k c) \A for all such A forms a disjoint parti-
tion of OPT(b t

6k c), the claim follows by summing up over
all t.

Note that so far our analysis handles clusters A with size
rA � 6k. However, for clusters with smaller size rA < 6k
we can get away by using a crude bound for bounding the
total cost and still not affecting the approximation guarantee
that will be dominated by O(k↵n):
X

|A|<6k

rAw(B1, B2) < 6k·
X

ij2E

wij = 6k·OPT(1) 6k·OPT

Theorem 6 (The divisive algorithm using balanced cut).
Given a weighted graph G(V,E,w) with k triplet con-

straints ab|c for a, b, c 2 V , the constrained recursive bal-

anced cut algorithm (same as CRSC, but using balanced cut

instead of sparsest cut) outputs a HC respecting all triplet

constraints and achieves an O(k↵n)-approximation for the

HC objective (1).

Proof. It is not hard to show that one can use access to
balanced cut rather than sparsest cut and achieve the same
approximation factor by the recursive balanced cut algo-
rithm.

We will follow the same notation as in the sparsest cut
analysis and we will use some of the facts and inequali-
ties we previously proved about OPT(t). Again, for a
cluster A of size r, the important observation is that the
partition A1, . . . , Al (at the end, we will again choose
l = 6kA) induced inside the cluster A by OPT(rl) can
be separated into two groups, lets say (C1, C2) such that
r/3 |C1|, |C2| 2r/3. In other words we can demon-
strate a Balanced Cut with ratio 1

3 : 2
3 for the cluster A.

Since we cut fewer edges when creating C1, C2 compared
to the partitioning of OPT(rl):

w(C1, C2) w(OPT(b r
l c) \A)

By the fact we used an ↵n-approximation to balanced cut
we can get the following inequality (similarly to Lemma 1):

r · w(C1, C2) O(↵n) · s · w(OPT(b r
l c) \A)

Finally, we have to sum up over all the clusters A (now in
the summation we should write rA, sA instead of just r, s,
since there is dependence in A) produced by the constrained

recursive balanced cut algorithm for Hierarchical Cluster-
ing and we get that we can approximate the HC objective
function up to O(k↵n).

Remark 4. Using balanced-cut can be useful for two rea-
sons. First, the runtime of sparsest and balanced cut on a
graph with n nodes and m edges are Õ(m+ n1+✏). When
run recursively however as in our case, taking recursive
sparsest cuts might be worse off by a factor of n (in case of
unbalanced splits at every step) in the worst case. However,
recursive balanced cut is still Õ(m + n1+✏). Second, it is
known that an ↵-approximation for the sparsest cut yields an
O(↵)-approximation for balanced cut, but not the other way.
This gives more flexibility to the balanced cut algorithm,
and there is a chance it can achieve a better approximation
factor (although we don’t study it further in this paper).

A.3. Missing proofs in Section 3

Proof sketch of Proposition 2. Here the main obstacle is
similar to the one we handled when proving Theorem (1):
for a given cluster A created by the R-HSC algorithm, differ-
ent constraints are, in general, active compared to the OPT
decomposition for this cluster A. Note of course, that OPT
itself will not respect all constraints, but because we don’t
know which constraints are active for OPT, we still need
to use a charging argument to low levels of OPT. Observe
that here we are allowed to cut an edge ab even if we had
the ab|c constraint (incurring the corresponding cost cab|c),
however we cannot possibly hope to charge this to the OPT
solution, as OPT, for all we know, may have respected this
constraint. In the analysis, we crucially use a merging pro-
cedure between sub-clusters of A having active constraints
between them and this allows us to compare the cost of our
R-HSC with the cost of OPT .

3-hyperedges to triangles for general weights . Even
though the general reduction presented in Section 3
(Figure 3) to transform a 3-hyperedge to a triangle is valid
even for general instances of HSC with 3-hyperedges and
arbitrary weights, the reduced sparsest cut problem may
have negative weights, e.g. when wbc|a + wac|b < wab|c.
To the best of our knowledge, sparsest cut with negative
weights has not been studied. Notice however that if the
original weights wbc|a, wac|b, wab|c satisfy the triangle
inequality (or as a special case, if two of them are zero
which is usually the case when we have a triplet constraints),
then we can actually solve (approximately) the HSC
instance, as the sparsest cut instance will only have
non-negative weights.

A.4. Missing proofs in Section 4

Proof of Theorem 3. We start by looking at the objective
value of any algorithm as the summation of contributions of

Hierarchical Clustering with Structural Constraints

different triples i, j and k to the objective, where (i, j) 2 E
and k is some other point (possibly equal to i or j).

OBJ =
X

(i,j)2E

wij |Tij | =
X

(i,j)2E,k2V

wij1{k 2 leaves(Tij)}

=
X

(i,j)2E

X

k2V

Yi,j,k,

where random variable Yi,j,k denotes the contribution of the
edge (i, j) and vertex k to the objective value. The vertex
k is a leaf of Tij if and only if right before the time that i
and j gets separated k is still in the same cluster as i and j.
Therefore,

Yi,j,k = wij1{i separates from k no earlier than j }

We now show that E [Yi,j,k] = 2
3wij . Given this, the

expected objective value of recursive random cutting al-
gorithm will be at least 2n

3

P
(i,j)2E wij . Moreover, the

objective value of the optimal hierarchical clustering, i.e.
maximizer of the Dasgupta’s objective, is no more than
n
P

(i,j)2E wij , and we conclude that recursive random cut-
ting is a 2

3 -approximation. To see why E [Yi,j,k] =
2
3wij ,

think of randomized cutting as flipping an independent unbi-
ased coin for each vertex, and then deciding on which side
of the cut this vertex belongs to based on the outcome of
its coin. Look at the sequence of the coin flips of i, j and
k. Our goal is to find the probability of the event that for
the first time that i and j sequences are not matched, still i’s
sequence and k’s sequence are matched up to this point, or
still j’s sequence and k’s sequence are matched up to this.
The probability of each of these events is equal to 1

3 . To see
this for the first event, suppose i’s sequence is all heads (H).
We then need the pair of coin flips of (j, k) to be a sequence
of (H,H)’s ending with a (T,H), and this happens with
probability

P
i�1(

1
4)

i = 1
3 . The probability of the second

event is similarly calculated. Now, these events are disjoint.
Hence, the probability that i is separated from k no earlier
than j is exactly 2

3 , as desired.

Proof of Theorem 4. We derandomize the recursive random
cutting algorithm using the method of conditional expecta-

tions. At every recursion, we go over the points in the
current cluster one by one, and decide whether to put them
in the “left” partition or “right” partition for the next re-
cursion. Once we make a decision for a point, we fix that
point and go to the next one. Now suppose for a cluster C
we have already fixed points S ✓ C, and now we want to
make a decision for i 2 C \ S. The reward of assigning to
left(right) partition is now defined as the expected value of
recursive random cutting restricted to C, when the points
in S are fixed (i.e. it is already decided which points in
S are going to the left partition and which ones are going
to the right partition), i goes to the left(right) partition and

j 2 C \ ({i} [S) are randomly assigned to either the left
or right. Note that these two rewards (or the difference of
the two rewards) can be calculated exactly in polynomial
time by considering all triples consisting of an edge and
another vertex, and then calculating the probability that this
triple contributes to the objective function (this is similar to
the proof of Theorem 3, and we omit the details for brevity
here). Because we know the randomized assignment of i
gives a 2

3 -approximation (Theorem 3), we conclude that as-
signing to the better of left or right partition for every vertex
will remain to be at least a 2

3 -approximation. For running
time, we have at most n clusters to investigate. Moreover,
a careful counting argument shows that the total number
of operations required to calculate the differences of the re-
wards of assigning to left and right partitions for all vertices
is at most n(n+ 2m). Hence, the running time is bounded
by O(n2(n+m)).

Proof sketch of Theorem 5. Before starting to prove the the-
orem, we prove the following simple lemma.

Lemma 3. There is no edge between any two classes in the

same layer Il.

Proof of Lemma 3. If such an edge exists, then there is a
path of length l + 1 from C to a class in Il, a contradiction.

Now, similar to the proof of Theorem 3, we consider every
triple {x, y, z}, where (x, y) 2 E and z is another point ,
but this time we only consider z’s that are not involved in
any triplet constraint (there are at least n� k such points).
We claim with probability at least 2

3·DMC({c1,...,ck})
the su-

pernode containing z is still in the same cluster as supern-
odes containing x and y right before x and y gets separated.
By summing over all such triples, we show that the algo-
rithm gets a gain of at least 2(n�k)

3·DMC({c1,...,ck})
P

(x,y)2E wxy ,
which proves the ↵-approximation as the optimal clustering
has a reward bounded by n

P
(x,y)2E wxy .

To prove the claim, if (x, y) is not the base of any triplet
constraint then a similar argument as in the proof of The-
orem 3 shows the desired probability is exactly 2

3 (with a
slight adaptation, i.e. by looking at the coin sequences of
supernodes containing x and y, which are going to be dis-
joint in this case at all iterations, and the coin sequence of
z). Now suppose (x, y) is the base of any constraint c and
suppose c belongs to a class C. Consider the layered depen-
dency subgraph of C as in Definition 2 and let the layers
to be I0, . . . , IL. In order for z to be in the same cluster
as x and y when they get separated, a chain of L+ 1 inde-
pendent events needs to happen. These events are defined
inductively; for the first event, consider the coin sequence
of z, coin sequence of (the supernode containing all the

Hierarchical Clustering with Structural Constraints

bases of) constraints in [L
l=0Il and coin sequences of all the

keys of constraints in IL (there are
P

C02IL
|C0| of them).

Without loss of generality, suppose the coin sequence of
(the supernode containing) [L

l=0Il is all heads. Now the
event happens only if at the time z flips its first tales all
keys of IL have already flipped at least one tales. Condi-
tioned on this event happening, all the constraints in IL
will be resolved and z remains in the same cluster as x and
y. Now, remove IL from the dependency subgraph and
repeat the same process to define the events 2, . . . , L in a
similar fashion. For the lth event to happen, we need to look
at 1 +

P
C02IL

|C0| number of i.i.d. symmetric geometric
random variable, and calculate the probability that first of
them is no smaller than the rest. This event happens with
a probability at least

�
1 +

P
C02IL

|C0|
��1. Moreover the

events are independent, as there is no edge between any two
classes in Il for l 2 [L], and different classes have differ-
ent keys. After these L events, the final event that needs
to happen is when all the constraints are unlocked, and z
needs to remain in the same cluster as x and y at the time
they get separated. This event happens with probability 2

3 .
Multiplying all of these probabilities due to independence
implies the desired approximation factor.

	Introduction
	Constrained Sparsest (Balanced) Cut
	Constraints and Regularization
	Variations on a Theme
	Conclusion
	Supplementary Materials
	Real-world application example.
	Missing proofs and discussion in Section 2
	Missing proofs in Section 3
	Missing proofs in Section 4

