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A. Omitted Proofs
This appendix contains the proofs that have been omitted from Section 3.

A.1. Proof of Lemma 3.3

Proof. We first prove by induction that, for every 0 ≤ i ≤ k,

E[f(OPTi)] ≥ [1− e−γ·
∑k
j=i+1 j

−1

] · f(OPT ) . (2)

For i = k, Inequality (2) follows from the non-negativity of f since

f(OPTk) ≥ 0 = [1− e−γ·0] · f(OPT ) = [1− e−γ·
∑k
j=k+1 j

−1

] · f(OPT ) .

Assume now that Inequality (2) holds for some 0 < i+ 1 ≤ k, and let us prove it holds also for i. Observe that OPTi is
a uniformly random subset of OPT of size k − i, and OPTi+1 is a uniformly random subset of OPT of size k − i− 1.
Thus, we can think of OPTi as obtained from OPTi+1 by adding a uniformly random element of OPT \OPTi+1. Taking
this point of view, we get, for every set S ⊆ OPT of size k − i− 1,

E[f(OPTi) | OPTi+1 = S] = f(S) +

∑
u∈OPT\S f(u | S)
|OPT \ S|

= f(S) +
1

i+ 1
·

∑
u∈OPT\S

f(u | S)

≥ f(S) + γ

i+ 1
· f(OPT \ S | S) =

(
1− γ

i+ 1

)
· f(S) + γ

i+ 1
· f(OPT ) ,

where the inequality holds by the γ-weak submodularity of f . Taking expectation over the set OPTi+1, the last inequality
becomes

E[f(OPTi)] ≥
(
1− γ

i+ 1

)
· E[f(OPTi+1)] +

γ

i+ 1
· f(OPT )

≥
(
1− γ

i+ 1

)
· [1− e−γ·

∑k
j=i+2 j

−1

] · f(OPT ) + γ

i+ 1
· f(OPT )

= f(OPT )−
(
1− γ

i+ 1

)
· e−γ·

∑k
j=i+2 j

−1

· f(OPT )

≥ f(OPT )− e−γ·
∑k
j=i+1 j

−1

· f(OPT ) = [1− e−γ·
∑k
j=i+1 j

−1

] · f(OPT ) ,

where the second inequality follows by the induction hypothesis, and the last inequality follows by the inequality 1−x ≤ e−x
(which holds for every x). This completes the proof of Inequality (2). To see why the lemma follows from this inequality,
we observe that

k∑
j=i+1

1

j
≥
∫ k+1

i+1

dx

x
= lnx|k+1

i+1 = ln

(
k + 1

i+ 1

)
,

which implies (by Inequality (2))

E[f(OPTi)] ≥ [1− e−γ·
∑k
j=i+1 j

−1

] · f(OPT ) ≥
[
1−

(
i+ 1

k + 1

)γ]
· f(OPT ) .

A.2. Proof of Observation 3.4

Proof. Fix 1 ≤ i ≤ k, and let Ai−1 be an arbitrary event fixing all the random decisions of Algorithm 1 up to iteration i− 1
(including). All the probabilities, expectations and random quantities in the first part of this proof are implicitly conditioned
on Ai−1. The γ-weak submodularity of f implies∑

u∈OPTi−1

f(u | Si−1) ≥ γ · f(OPTi−1 | Si−1) .
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Since OPTi−1 is one possible candidate to be Mi, we get∑
u∈Mi

f(u | Si−1) ≥
∑

u∈OPTi−1

f(u | Si−1) ≥ γ · f(OPTi−1 | Si−1) .

Algorithm 1 gets Si by adding a uniformly random element ui ∈Mi to the set Si−1. Since the size of Mi is k − i+ 1, this
implies

E[f(Si)] = f(Si−1) + E[f(ui | Si−1)] = f(Si−1) +
1

k − i+ 1
·
∑
u∈Mi

f(u | Si−1)

≥ f(Si−1) +
γ

k − i+ 1
· f(OPTi−1 | Si−1) = f(Si−1) + γ · f(OPTi−1 ∪ Si−1)− f(Si−1)

k − i+ 1
.

Recall that the last inequality is implicitly conditioned on the event Ai−1. The observation now follows by taking the
expectation of both sides of this inequality over all possible such events.

A.3. Proof of Corollary 3.5

Proof. Note that

E[f(Si)] ≥ E[f(Si−1)] + γ · E[f(OPTi−1 ∪ Si−1)]− E[f(Si−1)]
k − i+ 1

≥ E[f(Si−1)] + γ · E[f(OPTi−1)]− E[f(Si−1)]
k − i+ 1

≥ E[f(Si−1)] + γ · {1− [i/(k + 1)]γ} · f(OPT )− E[f(Si−1)]
k − i+ 1

,

where the first inequality follows by Observation 3.4, the second inequality holds by the monotonicity of f , and the last
inequality follows by Lemma 3.3.

A.4. Proof of Theorem 3.6

Proof. Let us first prove by induction that, for every 0 ≤ i ≤ k,

E[f(Si)] ≥ γ ·
∑i
j=1{1− [j/(k + 1)]γ} · f(OPT )− i · E[f(Sk)]

k
. (3)

For i = 0, Inequality (3) follows from the non-negativity of f since

E[f(S0)] ≥ 0 = γ · 0 · f(OPT )− 0

k
= γ ·

∑0
j=1{1− [j/(k + 1)]γ} · f(OPT )− 0 · E[f(Sk)]

k
.

Assume now that Inequality (3) holds for some 0 ≤ i− 1 < k, and let us prove that it holds for i as well. There are two
cases to consider. If {1− [i/(k+1)]γ} · f(OPT ) ≤ E[f(Sk)], then the monotonicity of f and the fact that Si−1 is a subset
of Si guarantee together that

E[f(Si)] ≥ E[f(Si−1)] ≥ γ ·
∑i−1
j=1{1− [j/(k + 1)]γ} · f(OPT )− (i− 1) · E[f(Sk)]

k

≥ γ ·
∑i
j=1{1− [j/(k + 1)]γ} · f(OPT )− i · E[f(Sk)]

k
,

where the second inequality follows by the induction hypothesis. Thus, it remains to consider the case that {1− [i/(k +
1)]γ} · f(OPT ) ≥ E[f(Sk)]. By Corollary 3.5, we get in this case

E[f(Si)]− E[f(Si−1)] ≥ γ ·
{1− [i/(k + 1)]γ} · f(OPT )− E[f(Si−1)]

k − i+ 1

≥ γ · {1− [i/(k + 1)]γ} · f(OPT )− E[f(Sk)]
k − i+ 1

≥ γ · {1− [i/(k + 1)]γ} · f(OPT )− E[f(Sk)]
k

,
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where the second inequality follows by the monotonicity of f since Si−1 is a subset of Sk. Adding the last inequality to the
induction hypothesis proves that Inequality (3) holds for i, and thus, completes the proof by induction of Inequality (3).

Let us now explain why the theorem follows from Inequality (3). Plugging i = k into this inequality yields

E[f(Sk)] ≥ γ ·
∑k
j=1{1− [j/(k + 1)]γ} · f(OPT )− k · E[f(Sk)]

k
,

which implies, by extracting E[f(Sk)],

E[f(Sk)] ≥
γ · f(OPT )
(1 + γ)k

·
k∑
j=1

[
1−

(
j

k + 1

)γ]
≥ γ · f(OPT )

(1 + γ)k
·
∫ k+1

1

[
1−

(
x

k + 1

)γ]
dx

=
γ · f(OPT )
(1 + γ)k

·

[
x− k + 1

1 + γ
·
(

x

k + 1

)1+γ
]k+1

1

≥ γ · f(OPT )
(1 + γ)k

·
[
k − k + 1

1 + γ

]

=
γ · f(OPT )
(1 + γ)k

·
[
γk

1 + γ
− 1

1 + γ

]
≥

[(
γ

1 + γ

)2

− 1

k

]
· f(OPT ) .

B. Removal of the Low Order Term
Theorem 3.6 proves an approximation ratio guarantee for Algorithm 1 which is weaker than the approximation ratio
guarantee of Theorem 1.1 by a low order term of O(k−1). In this appendix we prove that this low order term can be dropped
from the guarantee of Theorem 3.6, which yields Theorem 1.1. In fact, we even prove the following stronger theorem.

Theorem B.1. Let c(γ) be an arbitrary function of γ, and let ε(k) be a function of k that approaches 0 as k increases.
Then, if the approximation ratio of Algorithm 1 is at least c(γ)− ε(k), then it is also at least c(γ).

Proof. Assume towards a contradiction that the theorem is wrong. This implies that the approximation ratio of Algorithm 1
is at least c(γ) − ε(k), and yet there exists an instance I with a γI -weakly submodular objective function on which the
approximation ratio of Algorithm 1 is c′ < c(γI). Since ε(k) approaches 0 when k increases, we can find a value k′ such that
c′ < c(γI)− ε(k) for every k ≥ k′. Note that we may assume, without loss of generality, that k′ is a non-negative integer.
Consider now the variant of Algorithm 1 given as Algorithm 2. Intuitively, this variant extends the input by introducing k′

new elements which do not affect the objective function and can be used to extend every independent set of the matroid.

Algorithm 2 Residual Random Greedy for Matroids (Variant)(f,M)

1: Create k′ new elements, and let N ′ denote the set of these new elements.
2: Extend the object function f to the ground set N ∪N ′ by setting f(S) = f(S \ N ′) for every set S which includes

new elements.
3: Extend the matroidM to the ground setN ∪N ′ by defining that a set S which includes new elements is independent if

and only if S \ N ′ is independent.
4: Initialize: S0 ← ∅.
5:
6: for i← 1, 2, . . . , k + k′ do
7: Let Mi be a base ofM/Si−1 maximizing

∑
u∈Mi

f(u | Si−1).
8: Let ui be a uniformly random element from Mi.
9: Si ← Si−1 + ui.

10: end for
11: Return Sk+k′ \ N ′.

Observe that the extension increases the rank of the matroidM to k + k′ and preserves the γ-weak submodularity of
the objective function f . Thus, by our assumption on the approximation ratio of Algorithm 1, Sk+k′ must provide an
approximation ratio of at least c(γ)− ε(k + k′) for the problem of maximizing the extended objective function f subject to
the extended matroidM. One can verify that, together with the properties of N ′, this implies that Sk+k′ \ N ′ provides an
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approximation ratio of at least c(γ)− ε(k + k′) for the problem of maximizing the original objective function f subject to
the original matroidM. Hence, Algorithm 2 has an approximation ratio of at least c(γ)− ε(k + k′) > c(γ)− [c(γI)− c′]
in general, which implies that for the specific instance I the approximation ratio of Algorithm 2 is strictly better than c′.

The final step required for getting the contradiction that we seek is to observe that Algorithms 1 and 2 share an identical
output distribution for every given instance. Before we explain why that observation is true, let us note that it indeed implies
a contradiction because Algorithm 1 has an approximation ratio of c′ for the instance I , while Algorithm 2 has a strictly
better approximation ratio for this instance. Thus, it remains to explain why Algorithms 1 and 2 have identical output
distributions, which is what we do in the rest of this paragraph. Note that Algorithm 2 must add all the elements of N ′ to its
solution set at some point because every base of the extended matroidM contains all of N ′. This means that we can view
Algorithm 2 as a variant of Algorithm 1 that has k′ more rounds, but must waste k′ of its rounds on adding the elements of
N ′ which do not affect anything and are removed at the end anyhow. Hence, the two algorithms share an identical behavior
if we disregard the extra k′ rounds that Algorithm 2 wastes on adding elements of N ′.


