A. Variance Reduction Theorem

Each of our results relies on a recent variance reduction technique, proposed by (Mokhtari et al., 2018a;b). We now present Theorem 3, which appears as Lemma 2 in (Mokhtari et al., 2018a). Although the proof is essentially the same, we present it here so that it is self-contained. When we apply Theorem 3 in the analysis of our algorithms, we will have that $\left\{\mathbf{a}_{t}\right\}$ are a sequence of gradients, $\left\{\tilde{\mathbf{a}}_{t}\right\}$ are stochastic gradient estimates, and $\left\{\mathbf{d}_{t}\right\}$ are the sequence of averaged gradient estimates. Moreover, the upper bound on the norm of the difference of gradients $\left\|\mathbf{a}_{t}-\mathbf{a}_{t-1}\right\|$ comes from the iterate update procedure and smoothness of the objective function.
Theorem 3. Let $\left\{\mathbf{a}_{t}\right\}_{t=0}^{T}$ be a sequence of points in \mathbb{R}^{n} such that $\left\|\mathbf{a}_{t}-\mathbf{a}_{t-1}\right\| \leq G /(t+s)$ for all $1 \leq t \leq T$ with fixed constants $G \geq 0$ and $s \geq 3$. Let $\left\{\tilde{\mathbf{a}}_{t}\right\}_{t=1}^{T}$ be a sequence of random variables such that $\mathbb{E}\left[\tilde{\mathbf{a}}_{t} \mid \mathcal{F}_{t-1}\right]=\mathbf{a}_{t}$ and $\mathbb{E}\left[\left\|\tilde{\mathbf{a}}_{t}-\mathbf{a}_{t}\right\|^{2} \mid \mathcal{F}_{t-1}\right] \leq \sigma^{2}$ for every $t \geq 0$, where \mathcal{F}_{t-1} is the σ-field generated by $\left\{\tilde{\mathbf{a}}_{i}\right\}_{i=1}^{t}$ and $\mathcal{F}_{0}=\varnothing$. Let $\left\{\mathbf{d}_{t}\right\}_{t=0}^{T}$ be a sequence of random variables where \mathbf{d}_{0} is fixed and subsequent \mathbf{d}_{t} are obtained by the recurrence

$$
\mathbf{d}_{t}=\left(1-\rho_{t}\right) \mathbf{d}_{t-1}+\rho_{t} \tilde{\mathbf{a}}_{t}
$$

with $\rho_{t}=\frac{2}{(t+s)^{2 / 3}}$. Then, we have

$$
\mathbb{E}\left[\left\|\mathbf{a}_{t}-\mathbf{d}_{t}\right\|^{2}\right] \leq \frac{Q}{(t+s+1)^{2 / 3}},
$$

where $Q \triangleq \max \left\{\left\|\mathbf{a}_{0}-\mathbf{d}_{0}\right\|^{2}(s+1)^{2 / 3}, 4 \sigma^{2}+3 G^{2} / 2\right\}$.
We remark that we only need $s \geq 2^{3 / 2} \approx 2.83$ in the statement of Theorem 3 .
Proof. Let $\Delta_{t}=\left\|\mathbf{a}_{t}-\mathbf{d}_{t}\right\|^{2}$. We have the following identity

$$
\Delta_{t}=\left\|\rho_{t}\left(\mathbf{a}_{t}-\tilde{\mathbf{a}}_{t}\right)+\left(1-\rho_{t}\right)\left(\mathbf{a}_{t}-\mathbf{a}_{t-1}\right)+\left(1-\rho_{t}\right)\left(\mathbf{a}_{t-1}-\mathbf{d}_{t-1}\right)\right\|^{2} .
$$

Expanding the square and taking the expectation with respect to \mathcal{F}_{t-1} gives

$$
\mathbb{E}\left[\Delta_{t} \mid \mathcal{F}_{t-1}\right] \leq \rho_{t}^{2} \sigma^{2}+\left(1-\rho_{t}\right)^{2} \frac{G^{2}}{(t+s)^{2}}+\left(1-\rho_{t}\right)^{2} \Delta_{t-1}+2\left(1-\rho_{t}\right)^{2} \mathbb{E}\left[\left\langle\mathbf{a}_{t}-\mathbf{a}_{t-1}, \mathbf{a}_{t-1}-\mathbf{d}_{t-1}\right\rangle \mid \mathcal{F}_{t-1}\right] .
$$

Taking the expectation again gives

$$
\mathbb{E}\left[\Delta_{t}\right] \leq \rho_{t}^{2} \sigma^{2}+\left(1-\rho_{t}\right)^{2} \frac{G^{2}}{(t+s)^{2}}+\left(1-\rho_{t}\right)^{2} \mathbb{E}\left[\Delta_{t-1}\right]+2\left(1-\rho_{t}\right)^{2} \mathbb{E}\left[\left\langle\mathbf{a}_{t}-\mathbf{a}_{t-1}, \mathbf{a}_{t-1}-\mathbf{d}_{t-1}\right\rangle\right]
$$

By Young's inequality, we have

$$
2\left\langle\mathbf{a}_{t}-\mathbf{a}_{t-1}, \mathbf{a}_{t-1}-\mathbf{d}_{t-1}\right\rangle \leq \beta_{t}\left\|\mathbf{a}_{t-1}-\mathbf{d}_{t-1}\right\|^{2}+\left(1 / \beta_{t}\right) \frac{G^{2}}{(t+s)^{2}} .
$$

Therefore we deduce

$$
\begin{aligned}
\mathbb{E}\left[\Delta_{t}\right] & \leq \rho_{t}^{2} \sigma^{2}+\left(1-\rho_{t}\right)^{2} \frac{G^{2}}{(t+s)^{2}}+\left(1-\rho_{t}\right)^{2} \mathbb{E}\left[\Delta_{t-1}\right]+\left(1-\rho_{t}\right)^{2}\left(\beta_{t} \mathbb{E}\left[\Delta_{t-1}\right]+\left(1 / \beta_{t}\right) \frac{G^{2}}{(t+s)^{2}}\right) \\
& \leq \rho_{t}^{2} \sigma^{2}+\frac{G^{2}}{(t+s)^{2}}\left(1-\rho_{t}\right)^{2}\left(1+\frac{1}{\beta_{t}}\right)+\mathbb{E}\left[\Delta_{t-1}\right]\left(1-\rho_{t}\right)^{2}\left(1+\beta_{t}\right) .
\end{aligned}
$$

We write z_{t} for $\mathbb{E}\left[\Delta_{t}\right]$. Notice that $\left(1-\rho_{t}\right)\left(1+\rho_{t} / 2\right) \leq 1$ as long as $\rho_{t} \geq 0$. If we assume $\rho_{t} \in[0,1]$, setting $\beta_{t}=\rho_{t} / 2$ yields

$$
\begin{aligned}
z_{t} & \leq \rho_{t}^{2} \sigma^{2}+\frac{G^{2}}{(t+s)^{2}}\left(1-\rho_{t}\right)^{2}\left(1+\frac{2}{\rho_{t}}\right)+z_{t-1}\left(1-\rho_{t}\right)^{2}\left(1+\frac{\rho_{t}}{2}\right) \\
& \leq \rho_{t}^{2} \sigma^{2}+\frac{G^{2}}{(t+s)^{2}}\left(1+\frac{2}{\rho_{t}}\right)+z_{t-1}\left(1-\rho_{t}\right) .
\end{aligned}
$$

We set $\rho_{t}=\frac{2}{(t+s)^{2 / 3}}$, where $s^{2 / 3} \geq 2$. Since $(t+s)^{2}=(t+s)^{4 / 3}(t+s)^{2 / 3} \geq 2(t+s)^{4 / 3}$, we have

$$
\begin{aligned}
z_{t} & \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) z_{t-1}+\frac{4 \sigma^{2}}{(t+s)^{4 / 3}}+\frac{G^{2}}{(t+s)^{2}}+\frac{G^{2}}{(t+s)^{4 / 3}} \\
& \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) z_{t-1}+\frac{4 \sigma^{2}}{(t+s)^{4 / 3}}+\frac{3 G^{2}}{2(t+s)^{4 / 3}} \\
& \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) z_{t-1}+\frac{4 \sigma^{2}+3 G^{2} / 2}{(t+s)^{4 / 3}} \\
& \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) z_{t-1}+\frac{Q}{(t+s)^{4 / 3}} .
\end{aligned}
$$

We claim $z_{t} \leq \frac{Q}{(t+s+1)^{2 / 3}}$ for $\forall 0 \leq t \leq T$ and show this by induction. It holds for $t=0$ due to the definition of Q. Now we assume that it is true for $t=k-1$. We have

$$
\begin{aligned}
z_{k} & \leq\left(1-\frac{2}{(k+s)^{2 / 3}}\right) z_{k-1}+\frac{Q}{(k+s)^{4 / 3}} \\
& \leq\left(1-\frac{2}{(k+s)^{2 / 3}}\right) \frac{Q}{(k+s)^{2 / 3}}+\frac{Q}{(k+s)^{4 / 3}} \\
& =Q \frac{(k+s)^{2 / 3}-1}{(k+s)^{4 / 3}}
\end{aligned}
$$

In order to show that $z_{k} \leq \frac{Q}{(k+s+1)^{2 / 3}}$, it suffices to show that

$$
\left((k+s)^{2 / 3}-1\right)(k+s+1)^{2 / 3} \leq(k+s)^{4 / 3}
$$

The above inequality holds since $(k+s+1)^{2 / 3} \leq(k+s)^{2 / 3}+1$.

B. Proof of Theorem 1: Convex Case

We begin by examining the sequence of iterates $\mathbf{x}_{t}^{(1)}, \mathbf{x}_{t}^{(2)}, \ldots, \mathbf{x}_{t}^{(K+1)}$ produced in Algorithm 1 for a fixed t. By definition of the update and because f_{t} is L-smooth, we have

$$
\begin{aligned}
f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right)-f_{t}\left(\mathbf{x}^{*}\right) & =f_{t}\left(\mathbf{x}_{t}^{(k)}+\eta_{k}\left(\mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right)\right)-f_{t}\left(\mathbf{x}^{*}\right) \\
& \leq f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-f_{t}\left(\mathbf{x}^{*}\right)+\eta_{k}\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\rangle+\eta_{k}^{2} \frac{L}{2}\left\|\mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\|^{2} \\
& \leq f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-f_{t}\left(\mathbf{x}^{*}\right)+\eta_{k}\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\rangle+\eta_{k}^{2} \frac{L D^{2}}{2}
\end{aligned}
$$

Now, observe that the dual pairing may be decomposed as

$$
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\rangle=\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*}-\mathbf{x}_{t}^{(k)}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle
$$

We can bound the first term using Young's Inequality to get

$$
\begin{aligned}
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle & \leq \frac{1}{2 \beta_{k}}\left\|f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+2 \beta_{k}\left\|\mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\|^{2} \\
& \leq \frac{1}{2 \beta_{k}}\left\|f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+2 \beta_{k} D^{2}
\end{aligned}
$$

for any $\beta_{k}>0$, which will be chosen later in the proof. We may also bound the second term in the decomposition of the dual pairing using convexity of f_{t}, i.e. $\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*}-\mathbf{x}_{t}^{(k)}\right\rangle \leq f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)$. Using these upper bounds, we get that

$$
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\rangle \leq \frac{1}{2 \beta_{k}}\left\|f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+2 \beta_{k} D^{2}+f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle
$$

Using this upper bound on the dual pairing in the first inequality, we get that
$f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right)-f_{t}\left(\mathbf{x}^{*}\right) \leq\left(1-\eta_{k}\right)\left(f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right)+\eta_{k}\left[\frac{1}{2 \beta_{k}}\left\|f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+2 \beta_{k} D^{2}+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\eta_{k} \frac{L D^{2}}{2}\right]$.
Now we will apply the variance reduction technique. Note that

$$
\| \nabla f_{t}\left(\mathbf{x}_{t}^{(k+1)}-\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\|\leq L\| \mathbf{x}_{t}^{(k+1)}-\mathbf{x}_{t}^{(k)}\left\|\leq L \eta_{k}\right\| \mathbf{x}_{t}^{(k)}-\mathbf{v}_{t}^{(k)} \| \leq \frac{L D}{k+3}\right.
$$

Where we have used that f_{t} is L-smooth, the convex update, and that the step size is $\eta_{k}=\frac{1}{k+3}$. Now, using Theorem 3 with $G=L D$ and $s=3$, we have that

$$
\mathbb{E}\left[\left\|f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}\right] \leq \frac{Q_{t}}{(k+4)^{2 / 3}} \leq \frac{Q}{(k+4)^{2 / 3}}
$$

Where $Q_{t} \triangleq \max \left\{\left\|\nabla f_{t}\left(\mathbf{x}_{1}\right)\right\|^{2} 4^{2 / 3}, 4 \sigma^{2}+3(L D)^{2} / 2\right\}$ and $Q \triangleq \max \left\{4^{2 / 3} \max _{1 \leq t \leq T}\left\|\nabla f_{t}\left(\mathbf{x}_{1}\right)\right\|^{2}, 4 \sigma^{2}+3(L D)^{2} / 2\right\}$ Thus, taking expectation of both sides of the optimality gap and setting $\beta_{k}=\frac{Q^{1 / 2}}{2 D(k+4)^{1 / 3}}$ yields

$$
\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right) \leq\left(1-\eta_{k}\right)\left(\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right)\right)+\eta_{k}\left[\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\eta_{k} \frac{L D^{2}}{2}\right]
$$

Now we have obtained an upper bound on the expected optimality gap $\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right)$ in terms of the expected optimality gap $\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right)$ in the previous iteration. By induction on k, we get that the final iterate in the sequence, $\mathbf{x}_{t} \triangleq \mathbf{x}_{t}^{(K+1)}$, satisfies the following expected optimality gap
$\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right) \leq \prod_{k=1}^{K}\left(1-\eta_{k}\right)\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]+\sum_{k=1}^{K} \eta_{k} \prod_{j=k+1}^{K}\left(1-\eta_{j}\right)\left[\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\eta_{k} \frac{L D^{2}}{2}\right]$

Recall that the Frank Wolfe step sizes are $\eta_{k}=\frac{1}{k+3}$. We may obtain upper bounds on product of the form $\prod_{k=r}^{K}\left(1-\eta_{k}\right)$ by

$$
\prod_{k=r}^{K}\left(1-\eta_{k}\right)=\prod_{k=r}^{K}\left(1-\frac{1}{k+3}\right) \leq \exp \left(-\sum_{k=r}^{K} \frac{1}{x+3}\right) \leq \exp \left(-\int_{x=r}^{K+1} \frac{1}{x+3} d x\right)=\frac{r+3}{K+4} \leq \frac{r+3}{K}
$$

Substituting step sizes $\eta_{k}=\frac{1}{k+3}$ into Eq (2) and using this upper bound yields

$$
\begin{equation*}
\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right) \leq \frac{4}{K}\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]+\sum_{k=1}^{K}\left(\frac{1}{k+3} \cdot \frac{k+4}{K}\right)\left[\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\frac{L D^{2}}{2(k+3)}\right] \tag{3}
\end{equation*}
$$

Which may be further simplified by using $\left(\frac{1}{k+3} \cdot \frac{k+4}{K}\right) \leq \frac{4}{3 K}$ to obtain

$$
\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right) \leq \frac{4}{K}\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]+\frac{4}{3 K} \sum_{k=1}^{K}\left[\frac{2 Q^{1 / 2} D}{(k+3)^{1 / 3}}+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\frac{L D^{2}}{2(k+3)}\right]
$$

As before, we can obtain the following upper bounds using integral methods:

$$
\sum_{k=1}^{K} \frac{1}{k+3} \leq \log \left(\frac{K+3}{3}\right) \leq \log (K+1) \quad \text { and } \quad \sum_{k=1}^{K} \frac{1}{(k+3)^{1 / 3}} \leq \frac{3}{2}\left((K+3)^{2 / 3}-3^{2 / 3}\right) \leq \frac{3}{2} K^{2 / 3}
$$

Substituting these bounds into Eq (3) yields

$$
\mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-f_{t}\left(\mathbf{x}^{*}\right) \leq \frac{4}{K}\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]+\frac{4 Q^{1 / 2} D}{K^{1 / 3}}+\frac{4 L D^{2} \log (K+1)}{3 K}+\frac{4}{3 K} \sum_{k=1}^{K}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle
$$

Now, we can begin to bound regret by summing over all $t=1 \ldots T$ to obtain

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}^{*}\right) \leq & \frac{4}{K} \sum_{t=1}^{T}\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]+\frac{4 T Q^{1 / 2} D}{K^{1 / 3}} \\
& +\frac{4 T L D^{2} \log (K+1)}{3 K}+\frac{4}{3 K} \sum_{t=1}^{T} \sum_{k=1}^{K}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle
\end{aligned}
$$

Recall that for a fixed k, the sequence $\left\{\mathbf{v}_{t}^{(k)}\right\}_{t=1}^{T}$ is produced by a online linear minimization oracle with regret $\mathcal{R}_{T}^{\mathcal{E}}$ so that

$$
\sum_{t=1}^{T}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle \leq \sum_{t=1}^{T}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}\right\rangle-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}\right\rangle \leq \mathcal{R}_{T}^{\mathcal{E}}
$$

Substituting this into the upper bound and using $M=\max _{1 \leq t \leq T}\left[f_{t}\left(\mathbf{x}_{1}\right)-f_{t}\left(\mathbf{x}^{*}\right)\right]$ yields

$$
\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}^{*}\right) \leq \frac{4 T D Q^{1 / 2}}{K^{1 / 3}}+\frac{4 T}{K}\left(M+\frac{L D^{2}}{3} \log (K+1)\right)+\frac{4}{3} \mathcal{R}_{T}^{\mathcal{E}}
$$

Now, setting $K=T^{3 / 2}$ and using a linear oracle with $\mathcal{R}_{T}^{\mathcal{E}}=O(\sqrt{T})$ yields

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right]-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}^{*}\right) & \leq 4 \sqrt{T} D Q^{1 / 2}+\frac{4}{\sqrt{T}}\left(M+\frac{L D^{2}}{3}\left(\log T^{3 / 2}+1\right)\right)+\frac{4}{3} \mathcal{R}_{T}^{\mathcal{E}} \\
& =O(\sqrt{T})
\end{aligned}
$$

C. Proof of Theorem 1: DR-Submodular Case

Using the smoothness of f_{t} and recalling $\mathbf{x}_{t}^{(k+1)}-\mathbf{x}_{t}^{(k)}=\frac{1}{K} \mathbf{v}_{t}^{(k)}$, we have

$$
\begin{align*}
f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right) & \geq f_{t}\left(\mathbf{x}_{t}^{(k)}\right)+\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}_{t}^{(k+1)}-\mathbf{x}_{t}^{(k)}\right\rangle-\frac{L}{2}\left\|\mathbf{x}_{t}^{(k+1)}-\mathbf{x}_{t}^{(k)}\right\|^{2} \\
& =f_{t}\left(\mathbf{x}_{t}^{(k)}\right)+\left\langle\frac{1}{K} \nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}\right\rangle-\frac{L}{2 K^{2}}\left\|\mathbf{v}_{t}^{(k)}\right\|^{2} \tag{4}\\
& \geq f_{t}\left(\mathbf{x}_{t}^{(k)}\right)+\frac{1}{K}\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}\right\rangle-\frac{L D^{2}}{2 K^{2}}
\end{align*}
$$

We can re-write the term $\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}\right\rangle$ as

$$
\begin{align*}
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}\right\rangle & =\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}\right\rangle \\
& =\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle \tag{5}\\
& =\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle
\end{align*}
$$

We claim $\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*}\right\rangle \geq f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)$. Indeed, using monotonicity of f_{t} and concavity along non-negative directions, we have

$$
\begin{align*}
f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right) & \leq f_{t}\left(\mathbf{x}^{*} \vee \mathbf{x}_{t}^{(k)}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right) \\
& \leq\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*} \vee \mathbf{x}_{t}^{(k)}-\mathbf{x}_{t}^{(k)}\right\rangle \tag{6}\\
& =\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right),\left(\mathbf{x}^{*}-\mathbf{x}_{t}^{(k)}\right) \vee 0\right\rangle \\
& \leq\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{x}^{*}\right\rangle
\end{align*}
$$

Plugging Eq. (6) into Eq. (5), we obtain

$$
\begin{equation*}
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right), \mathbf{v}_{t}^{(k)}\right\rangle \geq\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\left(f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\right) \tag{7}
\end{equation*}
$$

Using Young's inequality, we can show that

$$
\begin{align*}
\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle & \geq-\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}-\frac{\beta^{(k)}}{2}\left\|\mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\|^{2} \tag{8}\\
& \geq-\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}-\beta^{(k)} D^{2} / 2
\end{align*}
$$

Then we plug Eqs. (7) and (8) into Eq. (4), we deduce
$f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right) \geq f_{t}\left(\mathbf{x}_{t}^{(k)}\right)+\frac{1}{K}\left[-\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}-\beta^{(k)} D^{2} / 2+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle+\left(f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\right)\right]-\frac{L D^{2}}{2 K^{2}}$.
Equivalently, we have

$$
\begin{align*}
& f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right) \leq(1-1 / K)\left[f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k)}\right)\right] \tag{9}\\
&-\frac{1}{K}\left[-\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}-\beta^{(k)} D^{2} / 2+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{v}_{t}^{(k)}-\mathbf{x}^{*}\right\rangle\right]+\frac{L D^{2}}{2 K^{2}}
\end{align*}
$$

Applying Eq. (9) recursively for $1 \leq k \leq K$ immediately yields

$$
\begin{aligned}
& f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(k+1)}\right) \leq(1-1 / K)^{K}\left[f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}^{(1)}\right)\right] \\
&+\frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+\beta^{(k)} D^{2} / 2+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}-\mathbf{v}_{t}^{(k)}\right\rangle\right]+\frac{L D^{2}}{2 K}
\end{aligned}
$$

Recall that the point played in round t is $\mathbf{x}_{t} \triangleq \mathbf{x}_{t}^{(K+1)}$, the first iterate in the sequence is $\mathbf{x}_{t}^{(1)}=0$, and that $(1-1 / K)^{K} \leq$ $1 / e$ for all $K \geq 1$ so that
$f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}\right) \leq \frac{1}{e}\left[f_{t}\left(\mathbf{x}^{*}\right)-f_{t}(0)\right]+\frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+\beta^{(k)} D^{2} / 2+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}-\mathbf{v}_{t}^{(k)}\right\rangle\right]+\frac{L D^{2}}{2 K}$.
Since $f_{t}(0) \geq 0$, we obtain

$$
\begin{equation*}
(1-1 / e) f_{t}\left(\mathbf{x}^{*}\right)-f_{t}\left(\mathbf{x}_{t}\right) \leq \frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+\beta^{(k)} D^{2} / 2+\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}-\mathbf{v}_{t}^{(k)}\right\rangle\right]+\frac{L D^{2}}{2 K} \tag{10}
\end{equation*}
$$

If we sum Eq. (10) over $t=1,2,3, \ldots, T$, we obtain

$$
\begin{aligned}
& (1-1 / e) \sum_{t=1}^{T} f_{t}\left(\mathbf{x}^{*}\right) \\
& \quad-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right) \leq \frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}} \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+\beta^{(k)} D^{2} T / 2+\sum_{t=1}^{T}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}-\mathbf{v}_{t}^{(k)}\right\rangle\right]+\frac{L D^{2} T}{2 K} .
\end{aligned}
$$

By the definition of the regret, we have

$$
\sum_{t=1}^{T}\left\langle\mathbf{d}_{t}^{(k)}, \mathbf{x}^{*}-\mathbf{v}_{t}^{(k)}\right\rangle \leq \mathcal{R}_{T}^{\mathcal{E}}
$$

Therefore, we deduce

$$
\begin{aligned}
& (1-1 / e) \sum_{t=1}^{T} f_{t}\left(\mathbf{x}^{*}\right)-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right) \\
& \quad \leq \frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}} \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}+\beta^{(k)} D^{2} T / 2\right]+\frac{L D^{2} T}{2 K}+\mathcal{R}_{T}^{\mathcal{E}}
\end{aligned}
$$

Taking the expectation in both sides, we obtain

$$
\begin{align*}
& (1-1 / e) \sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}^{*}\right)\right]-\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] \tag{11}\\
& \quad \leq \frac{1}{K} \sum_{k=1}^{K}\left[\frac{1}{2 \beta^{(k)}} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}\right]+\beta^{(k)} D^{2} T / 2\right]+\frac{L D^{2} T}{2 K}+\mathcal{R}_{T}^{\mathcal{E}}
\end{align*}
$$

Notice that $\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\nabla f_{t}\left(\mathbf{x}_{t}^{(k-1)}\right)\right\| \leq L\left\|\mathbf{v}_{t}^{(k)}\right\| / T \leq L R / T \leq 2 L R /(k+3)$. By Theorem 3, if we set $\rho_{k}=\frac{2}{(k+3)^{2 / 3}}$, we have

$$
\begin{align*}
\mathbb{E}\left[\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{(k)}\right)-\mathbf{d}_{t}^{(k)}\right\|^{2}\right] & \leq \frac{Q_{t}}{(k+4)^{2 / 3}} \tag{12}\\
& \leq \frac{Q}{(k+4)^{2 / 3}}
\end{align*}
$$

where $Q_{t} \triangleq \max \left\{\left\|\nabla f_{t}(0)\right\|^{2} 4^{2 / 3}, 4 \sigma^{2}+6 L^{2} R^{2}\right\}$ and $Q \triangleq \max \left\{\max _{1 \leq t \leq T}\left\|\nabla f_{t}\left(\mathbf{x}_{1}\right)\right\|^{2} 4^{2 / 3}, 4 \sigma^{2}+6 L^{2} R^{2}\right\}$.
Plugging Eq. (12) into Eq. (11) and setting $\beta^{(k)}=\left(Q^{1 / 2}\right) /\left(D(k+3)^{1 / 3}\right)$, we deduce

$$
(1-1 / e) \sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}^{*}\right)\right]-\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] \leq \frac{T D Q^{1 / 2}}{K} \sum_{k=1}^{K} \frac{1}{(k+4)^{1 / 3}}+\frac{L D^{2} T}{2 K}+\mathcal{R}_{T}^{\mathcal{E}}
$$

Since $\sum_{k=1}^{K} \frac{1}{(k+4)^{1 / 3}} \leq \int_{0}^{K} \frac{d x}{(x+4)^{1 / 3}}=\frac{3}{2}\left[(K+4)^{2 / 3}-9^{2 / 3}\right] \leq \frac{3}{2} K^{2 / 3}$, we have

$$
(1-1 / e) \sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}^{*}\right)\right]-\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(\mathbf{x}_{t}\right)\right] \leq \frac{3 T D Q^{1 / 2}}{2 K^{1 / 3}}+\frac{L D^{2} T}{2 K}+\mathcal{R}_{T}^{\mathcal{E}}
$$

D. Proof of Theorem 2: Convex Case

Let $f(\mathbf{x})=\mathbb{E}_{f_{t} \sim \mathcal{D}}\left[f_{t}(\mathbf{x})\right]$ denote the expected function. Because f is L-smooth and convex, we have

$$
\begin{aligned}
f\left(\mathbf{x}_{t+1}\right)-f\left(\mathbf{x}^{*}\right) & =f\left(\mathbf{x}_{t}+\eta_{t}\left(\mathbf{v}_{t}-\mathbf{x}_{t}\right)\right)-f\left(\mathbf{x}^{*}\right) \\
& \leq f\left(\mathbf{x}_{t}\right)-f\left(\mathbf{x}^{*}\right)+\eta_{t}\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}-\mathbf{x}_{t}\right\rangle+\eta_{t}^{2} \frac{L}{2}\left\|\mathbf{v}_{t}-\mathbf{x}_{t}\right\|^{2} \\
& \leq f\left(\mathbf{x}_{t}\right)-f_{t}\left(\mathbf{x}^{*}\right)+\eta_{t}\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}-\mathbf{x}_{t}\right\rangle+\eta_{t}^{2} \frac{L D^{2}}{2} .
\end{aligned}
$$

As before, the dual pairing may be decomposed as

$$
\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}-\mathbf{x}_{t}\right\rangle=\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}-\mathbf{x}^{*}\right\rangle+\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{x}^{*}-\mathbf{x}_{t}\right\rangle+\left\langle\mathbf{d}_{t}, \mathbf{v}_{t}-\mathbf{x}^{*}\right\rangle .
$$

We can bound the first term using Young's Inequality to get

$$
\begin{aligned}
\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}-\mathbf{x}^{*}\right\rangle & \leq \frac{1}{2 \beta}\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}+2 \beta\left\|\mathbf{v}_{t}-\mathbf{x}^{*}\right\|^{2} \\
& \leq \frac{1}{2 \beta}\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}+2 \beta D^{2}
\end{aligned}
$$

for any $\beta>0$, which will be chosen later in the proof. We may also bound the second term in the decomposition of the dual pairing using convexity of f, i.e. $\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{x}^{*}-\mathbf{x}_{t}\right\rangle \leq f_{t}\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t}\right)$. Finally, the third term is nonpositive, by the choice of \mathbf{v}_{t}, namely $\mathbf{v}_{t}=\arg \min _{\mathbf{v} \in \mathcal{K}}\left\langle\mathbf{d}_{t}, \mathbf{v}\right\rangle$. Using these inequalities, we now have that

$$
f\left(\mathbf{x}_{t+1}\right)-f\left(\mathbf{x}^{*}\right) \leq\left(1-\eta_{t}\right)\left(f\left(\mathbf{x}_{t}\right)-f\left(\mathbf{x}^{*}\right)\right)+\eta_{t}\left(\frac{1}{2 \beta}\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}+2 \beta D^{2}\right)+\eta_{t}^{2} \frac{L D^{2}}{2}
$$

Taking expectation over the randomness in the iterates (i.e. the stochastic gradient estimates), we have that

$$
\begin{equation*}
\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right]-f\left(\mathbf{x}^{*}\right) \leq\left(1-\eta_{t}\right)\left(\mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right]-f\left(\mathbf{x}^{*}\right)\right)+\eta_{t}\left(\frac{1}{2 \beta} \mathbb{E}\left[\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}\right]+2 \beta D^{2}\right)+\eta_{t}^{2} \frac{L D^{2}}{2} \tag{13}
\end{equation*}
$$

Now we will apply the variance reduction technique. Note that

$$
\left\|\nabla f\left(\mathbf{x}_{t+1}\right)-\nabla f\left(\mathbf{x}_{t}\right)\right\| \leq L\left\|\mathbf{x}_{t+1}-\mathbf{x}_{t}\right\| \leq L \eta_{t}\left\|\mathbf{x}_{t}-\mathbf{v}_{t}\right\| \leq L \eta_{t} D
$$

where we have used that f is L-smooth, the convex update, and the diameter. Now, using Theorem 3 with $G=L D$ and $s=3$, we have that

$$
\mathbb{E}\left[\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}\right] \leq \frac{Q}{(t+4)^{2 / 3}}
$$

where $Q \triangleq \max \left\{4^{2 / 3}\left\|\nabla f\left(\mathbf{x}_{1}\right)\right\|^{2}, 4 \sigma^{2}+3(L D)^{2} / 2\right\}$. Using this bound in $\operatorname{Eq}(13)$ and setting $\beta=\frac{Q^{1 / 2}}{2 D(t+4)^{1 / 3}}$ yields

$$
\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right]-f\left(\mathbf{x}^{*}\right) \leq\left(1-\eta_{t}\right)\left(\mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right]-f\left(\mathbf{x}^{*}\right)\right)+\eta_{t} \frac{2 Q^{1 / 2} D}{(t+4)^{1 / 3}}+\eta_{t}^{2} \frac{L D^{2}}{2}
$$

By induction, we have

$$
\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right]-f\left(\mathbf{x}^{*}\right) \leq \prod_{k=1}^{t}\left(1-\eta_{k}\right) M+\sum_{k=1}^{t} \eta_{k} \prod_{j=k+1}^{t}\left(1-\eta_{j}\right)\left(\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\eta_{k} \frac{L D^{2}}{2}\right)
$$

where $M=f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}^{*}\right)$. Recall that the step size is set to be $\eta_{t}=\frac{1}{t+3}$. As in Appendix B, we can obtain the bounds $\prod_{k=1}^{t}\left(1-\eta_{k}\right)=\prod_{k=1}^{t}\left(1-\frac{1}{k+3}\right) \leq \exp \left(-\sum_{k=1}^{t} \frac{1}{k+3}\right) \leq \exp \left(-\int_{1}^{t+1} \frac{d x}{x+3}\right)=4 /(t+4)$ and similarly $\prod_{j=k+1}^{t}(1-$ $\left.\frac{1}{j+3}\right) \leq \frac{k+4}{t+4}$. Using these bounds as well as the choice of step size $\eta_{t}=\frac{1}{t+3}$ in the above yields

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right]-f\left(\mathbf{x}^{*}\right) & \leq \frac{4 M}{t+4}+\sum_{k=1}^{t}\left(\frac{1}{k+3} \cdot \frac{k+4}{t+4}\right)\left(\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\frac{1}{k+3} \frac{L D^{2}}{2}\right) \\
& =\frac{4 M}{t+4}+\frac{4}{3(t+4)} \sum_{k=1}^{t}\left(\frac{2 Q^{1 / 2} D}{(k+4)^{1 / 3}}+\frac{1}{k+3} \frac{L D^{2}}{2}\right)
\end{aligned}
$$

where the second inequality used $\left(\frac{1}{k+3} \cdot \frac{k+4}{(t+4)}\right)<\frac{4}{3(t+4)}$. As before in Section B, using the inequalities $\sum_{k=1}^{t} \frac{1}{k+3} \leq$ $\log (t+1)$ and $\sum_{k=1}^{t} \frac{1}{(k+3)^{1 / 3}} \leq \frac{3}{2} t^{2 / 3}$ in the above yields

$$
\begin{equation*}
\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right]-f\left(\mathbf{x}^{*}\right) \leq \frac{4 M}{t+4}+4 Q^{1 / 2} D \frac{t^{2 / 3}}{t+4}+\frac{4}{3} L D^{2} \frac{\log (t+1)}{t+4} \tag{14}
\end{equation*}
$$

To obtain a regret bound, we sum over rounds $t=1, \ldots T$ to obtain

$$
\sum_{t=1}^{T} \mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right]-T f\left(\mathbf{x}^{*}\right) \leq 4 M\left(\sum_{t=1}^{T} \frac{1}{t+4}\right)+4 Q^{1 / 2} D\left(\sum_{t=1}^{T} \frac{t^{2 / 3}}{t+4}\right)+\frac{4}{3} L D^{2}\left(\sum_{t=1}^{T} \frac{\log (t+1)}{t+4}\right)
$$

Using the integral trick again, we obtain the upper bounds $\sum_{t=1}^{T} \frac{1}{t+4} \leq \log (T+1), \sum_{t=1}^{T} \frac{t^{2 / 3}}{t+4} \leq \frac{3}{2} T^{2 / 3}$, and $\sum_{t=1}^{T} \frac{\log (t+3)}{t+4} \leq \log ^{2}(T+3)$. Substituting these bounds in the regret bound above yields

$$
\sum_{t=1}^{T} \mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right]-T f\left(\mathbf{x}^{*}\right) \leq 4 M \log (T+1)+6 Q^{1 / 2} D T^{2 / 3}+\frac{4}{3} L D^{2} \log ^{2}(T+3)=O\left(T^{2 / 3}\right)
$$

E. Proof of Theorem 2: DR-Submodular Case

Since f is L-smooth, we obtain

$$
\begin{aligned}
f\left(\mathbf{x}_{t+1}\right) & \geq f\left(\mathbf{x}_{t}\right)+\left\langle\nabla f\left(\mathbf{x}_{t}\right), \frac{1}{T} \mathbf{v}_{t}\right\rangle-\frac{L}{2}\left\|\frac{1}{T} \mathbf{v}_{t}\right\|^{2} \\
& \geq f\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\nabla f\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}\right\rangle-\frac{L D^{2}}{2 T^{2}} \\
& =f\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\mathbf{d}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{T}\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}\right\rangle-\frac{L D^{2}}{2 T^{2}} \\
& \geq f\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\mathbf{d}_{t}, \mathbf{x}^{*}\right\rangle+\frac{1}{T}\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}\right\rangle-\frac{L D^{2}}{2 T^{2}} \\
& =f\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}-\mathbf{x}^{*}\right\rangle+\frac{1}{T}\left\langle f\left(\mathbf{x}_{t}\right), \mathbf{x}^{*}\right\rangle-\frac{L D^{2}}{2 T^{2}}
\end{aligned}
$$

In the last inequality, we used the fact that $\mathbf{v}_{t}=\arg \max _{\mathbf{v} \in \mathcal{K}}\left\langle\mathbf{d}_{t}, \mathbf{v}\right\rangle$. Similar to Eq. (6) in Appendix C, we have $\left\langle f\left(\mathbf{x}_{t}\right), \mathbf{x}^{*}\right\rangle \geq f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t}\right)$. Again, Young's inequality gives $\left\langle\nabla f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}, \mathbf{v}_{t}-\mathbf{x}^{*}\right\rangle \geq-\frac{1}{2}\left(\beta_{t}\left\|\mathbf{v}_{t}-\mathbf{x}^{*}\right\|^{2}+\| f\left(\mathbf{x}_{t}\right)-\right.$ $\left.\mathbf{d}_{t} \|^{2} / \beta_{t}\right)$. Therefore, we deduce

$$
\begin{aligned}
f\left(\mathbf{x}_{t+1}\right) & \geq f\left(\mathbf{x}_{t}\right)-\frac{1}{2 T}\left(\beta_{t}\left\|\mathbf{v}_{t}-\mathbf{x}^{*}\right\|^{2}+\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2} / \beta_{t}\right)+\frac{1}{T}\left(f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t}\right)\right)-\frac{L D^{2}}{2 T^{2}} \\
& \geq f\left(\mathbf{x}_{t}\right)-\frac{1}{2 T}\left(\beta_{t} D^{2}+\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2} / \beta_{t}\right)+\frac{1}{T}\left(f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t}\right)\right)-\frac{L D^{2}}{2 T^{2}}
\end{aligned}
$$

Re-arrangement of the terms yields

$$
f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t+1}\right) \leq(1-1 / T)\left(f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t}\right)\right)+\frac{1}{2 T}\left(\beta_{t} D^{2}+\left\|f\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2} / \beta_{t}\right)+\frac{L D^{2}}{2 T^{2}}
$$

Recalling that $(1-1 / T)^{T} \leq 1 / e$ and $f\left(\mathbf{x}_{1}\right)=f(0) \geq 0$, we have

$$
\begin{aligned}
f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t+1}\right) & \leq(1-1 / T)^{t}\left(f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{1}\right)\right)+\frac{1}{2 T} \sum_{i=1}^{t}\left(\beta_{i} D^{2}+\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{d}_{i}\right\|^{2} / \beta_{i}\right)+\frac{L D^{2}}{2 T} \\
& \leq \frac{1}{e} f\left(\mathbf{x}^{*}\right)+\frac{1}{2 T} \sum_{i=1}^{t}\left(\beta_{i} D^{2}+\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{d}_{i}\right\|^{2} / \beta_{i}\right)+\frac{L D^{2}}{2 T}
\end{aligned}
$$

which in turn yields

$$
(1-1 / e) f\left(\mathbf{x}^{*}\right)-f\left(\mathbf{x}_{t+1}\right) \leq \frac{1}{2 T} \sum_{i=1}^{t}\left(\beta_{i} D^{2}+\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{d}_{i}\right\|^{2} / \beta_{i}\right)+\frac{L D^{2}}{2 T}
$$

Taking expectation in both sides gives

$$
(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right] \leq \frac{1}{2 T} \sum_{i=1}^{t}\left(\beta_{i} D^{2}+\mathbb{E}\left[\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{d}_{i}\right\|^{2}\right] / \beta_{i}\right)+\frac{L D^{2}}{2 T}
$$

Notice that $\left\|\nabla f\left(\mathbf{x}_{t}\right)-\nabla f\left(\mathbf{x}_{t-1}\right)\right\| \leq L\left\|\mathbf{v}_{t}\right\| / T \leq L R / T \leq 2 L R /(k+3)$. By Theorem 3, if we set $\rho_{i}=\frac{2}{(i+3)^{2 / 3}}$, we have

$$
\mathbb{E}\left[\left\|f\left(\mathbf{x}_{i}\right)-\mathbf{d}_{i}\right\|^{2}\right] \leq \frac{Q}{(i+4)^{2 / 3}}
$$

for every $i \leq T$ and $Q=\max \left\{\|\nabla f(0)\|^{2} 4^{2 / 3}, 4 \sigma^{2}+6 L^{2} R^{2}\right\}$. If we set $\beta_{i}=\frac{Q^{1 / 2}}{D(i+4)^{1 / 3}}$, we have

$$
(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-\mathbb{E}\left[f\left(\mathbf{x}_{t+1}\right)\right] \leq \sum_{i=1}^{t} \frac{D Q^{1 / 2}}{(i+4)^{1 / 3} T}+\frac{L D^{2}}{2 T} \leq \frac{3 D Q^{1 / 2} t^{2 / 3}}{2 T}+\frac{L D^{2}}{2 T}
$$

since $\sum_{i=1}^{t} \frac{1}{(i+4)^{1 / 3}} \leq \int_{0}^{t} \frac{1}{(x+4)^{1 / 3}} d x=\frac{3}{2}\left[(x+4)^{2 / 3}\right]_{0}^{t} \leq \frac{3}{2}\left[x^{2 / 3}\right]_{0}^{t}=\frac{3}{2} t^{2 / 3}$.
Therefore we have

$$
\begin{aligned}
& (1-1 / e) T \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-\sum_{t=1}^{T} \mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right] \\
& \quad=(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-f(0)+\sum_{t=1}^{T-1}\left[(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-\mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right]\right] \\
& \quad \leq(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-f(0)+\sum_{t=1}^{T-1}\left[\frac{3 D Q^{1 / 2} t^{2 / 3}}{2 T}+\frac{L D^{2}}{2 T}\right]
\end{aligned}
$$

Since $\sum_{t=1}^{T-1} t^{2 / 3}=1+\sum_{t=2}^{T-1} t^{2 / 3} \leq 1+\int_{1}^{T} t^{2 / 3} d t=\frac{3}{5} T^{5 / 3}+\frac{2}{5}$, we conclude

$$
(1-1 / e) T \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-\sum_{t=1}^{T} \mathbb{E}\left[f\left(\mathbf{x}_{t}\right)\right] \leq(1-1 / e) \mathbb{E}\left[f\left(\mathbf{x}^{*}\right)\right]-f(0)+\frac{3 D Q^{1 / 2}}{10}\left(3 T^{2 / 3}+2 T^{-1}\right)+\frac{L D^{2}}{2}=O\left(T^{2 / 3}\right)
$$

