Continuous-Time Flows

A. Assumptions of Theorem 2

First, let us define the infinitesimal generator of the diffusion
(2). Formally, the generator L of the diffusion (2) is defined
for any compactly supported twice differentiable function
f:RY — R, such that,
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wherea-b 2 a”b, A:B 2 tr(A” B), h — 0T means h
approaches zero along the positive real axis.

Given an ergodic diffusion (2) with an invariant mea-
sure p(Z), the posterior average is defined as: ¢ =
Jw(Z)p(Z)dZ for some test function 1)(Z) of interest.
For a glven numerical method with generated samples
(z1)_,, we use the sample average ¢ defined as ¢y =
L S 9(zk) to approximate . We define a functional

1E that solves the following Poisson Equation:

L(zi) = p(z1) — ¥ (12)

We make the following assumptions on 0.

Assumption 1 1[) exists, and its up to 4rd-order derivatives,
D’“zﬁ, are bounded by a function V, i.e., )
fork =1(0,1,2,3,4), Ck,pr > 0. Furthermore, the expec-
tation of V on {z1} is bounded: sup, EVP(z;) < oo, and
V is smooth such that supse 1) VP (sz+ (1 —s)y) <
C(VP(z)+ VP (y)), Vaz,y,p < max{2py} for some C >
0.

B. Proofs for Section 3

Proof [Sketch Proof of Lemma 1] First note that (5) in
Lemma 1 corresponds to eq.13 in (Jordan et al., 1998),
where F'(p) in (Jordan et al., 1998) is in the form of
KL(p||pe(x,2)) in our setting.

Proposition 4.1 in (Jordan et al., 1998) then proves that
(5) has a unique solution. Theorem 5.1 in (Jordan et al.,
1998) then guarantees that the solution of (5) approach the
solution of the Fokker-Planck equation in (3), which is pr
in the limit of o — 0.

Since this is true for each k (thus each ¢ in p;), we conclude
that pr, = ppr in the limit of h — 0. |

To prove Theorem 2, we first need a convergence result
about convergence to equilibrium in Wasserstein distance

for Fokker-Planck equations, which is presented in (Bolley
et al., 2012). Putting in our setting, we can get the following
lemma based on Corollary 2.4 in (Bolley et al., 2012).

Lemma 6 ((Bolley et al., 2012)) Let pr be the solution
of the FP equation (3) at time T, pe(x,z) be the
joint posterior distribution given Xx. Assume that
[ pr(2)py " (x,2)dz < oo and there exists a constant C

such that w > CW32 (pr,pe(x,z)). Then

z)) < W (po, p(x,2)) e 7.

Wa (pr, p(x, (13)

We further need to borrow convergence results from (Mat-
tingly et al., 2010; Vollmer et al., 2016; Chen et al., 2015)
to characterize error bounds of a numerical integrator for
the diffusion (2). Specifically, the goal is to evaluate
the posterlor average of a test function v (z), defined as
= f ¥(z)pe(x,2z)d z. When us1ng a numerical integrator
to solve (2) to get samples {z } < i1, the sample average

Ui 2 L ST (ay,) is used to approximate the posterior

average. The accuracy is characterized by the mean square
. N2

error (MSE) defined as: E (qu — w> . Lemma 7 derives

the bound for the MSE.

Lemma 7 ((Vollmer et al., 2016)) Under Assumption I,
and for a Ist-order numerical intergrator, the MSE is
bounded, for a constant C independent of h and K, by

E(&K—w) <C(hK+h2>

Furthermore, except for the 2nd-order Wasserstein distance
defined in Lemma 1, we define the 1st-order Wasserstein
distance between two probability measures w1 and po as

Wi (p1,p2) & inf
PEP (p1,12)
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According to the Kantorovich-Rubinstein duality (Arjovsky
etal., 2017), Wy (u1, u2) is equivalently represented as

Wi (i, p2) = sup Egpy [£(2)] = Eorps, [f(2)] 5 (15)

feLy

where £ is the space of 1-Lipschitz functions f : R — R.
We have the following relation between Wi (p1, 12) and
Wa(p, p2).

Lemma 8 ((Givens & Shortt, 1984)) We have for any two
distributions py and o that Wi (p, p2) < Wa(u, o).
Now it is ready to prove Theorem 2.

Proof [Proof of Theorem 2] The idea is to simply decom-
pose the MSE into two parts, with one part charactering the
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MSE of the numerical method, the other part charactering
the MSE of pr and pg(x, z), which consequentially can be
bounded using Lemma 6 above.

Specifically, we have
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where  “(1)”  follows by the  fact that
E (% Zszl U(zr) — [V(2)pe(x, 2 dZ) = 0 (Chen

et al., 2015); “(2)” follows by the definition of W7y (11, f2)
in (14) and the 1-Lipschitz assumption of the test function
1; “(3)” follows by Lemma 8; “(4)” follows by Lemma 6
and Lemma 7. |

C. Sample Distance D Implemented as a
Discriminator in the GAN Framework

We first prove Proposition 4, and then describe our imple-
mentation for the Wasserstein distance D in (8).

Proof [Proof of Proposition 4] By defining D as standard
Euclidean distance, the objective becomes:

1(3)
zZy —2Z,

1
/_ .
¢ = argngn—s )2

where {zg(i)}le are a set of samples generated from

ae (2q | x) via Q4 (-), i.e.
W~ qo(w), Zg = Qo (| Xawli) )
and {z1 )} >_, are samples drawn by

W o), 2y = Qullxwh), 21 ~ Ti(2)) .
For simplicity, we consider 77 as one discretized step for
Langevin dynamics, i.e.,

Ti(zh) = Zi + Vi, log pe(x, 24)h + V2hE

where £ ~ N(0,

I). Consequently, the objective becomes

S
F& 2 Z\% 1%, w') = Qg+ x,w)

, 2
~V,logpo(x.Z)h +V2he |, (16)
(16) is a stochastic version of the following equivalent ob-
jective:

F éEw’,wwpg(w),f HQ¢(| X?w/i> - QdJ(‘ X, wi)

2
v, log pe(x, 7)) + \/ﬁgH 17)
There are two cases related to w and w’. i) If w is restricted
to be equal to w’, e.g., they share the same random seed,
this is the case in amortized SVGD (Wang & Liu, 2017) or
amortized MCMC (Li et al., 2017b), as well as in Proposi-
tion 4 where Euclidean distance is adopted. ii) If 2 and €’
do not share the same random seed, this is a more general
case, which we also want to show that it can not learn a
good generator.

For case i), F is simplified as:
~in 12
F = Eypy(w) || Valogpe(x,25)||” h* + V2hEe||€])* .

Thus the minimum value corresponds to V, log pg (x, 7)) =
0, i.e., ¢ is updated so that z{, falls in one of the local modes
of pg(z | x). Proposition 4 is proved.

We also want to consider case ii). In this case, F' is bounded
by
1 i 2
o oo () [| Qe (-] 3, W) — Q¢(~|x W'
+ Eopo(w) ||V log po(x, Z, y| h? + 2hE¢| |2

F<E

The minimum possible value of the upper bound of F' is
achieved when Q4 matches all w ~ po(w) to a fixed point z,
and also V, log pe(x,z) = 0. This is also a special mode
of pg(z | x) if exists.

To sum up, by defining D to be standard Euclidean distance,
Q4 would generate samples from local modes of pg(z | x).
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Figure 8. Implementation of D defined in (8) for distribution
matching with the ALICE framework (Li et al., 2017a).

Now we describe how to define D as Wasserstein within a
GAN framework. Following (Li et al., 2017a), we define a
discriminator to match the joint distributions p(x, z¢r) (an
implicit distribution) and g4(x, Z), where

4p(%,2) £ q(%)qy (2| x)
(X, Zef) ~ p(X,2), with zqe = T1(Z) .

The graphical structure is defined in Figure 8.

D. Two 2D Distributions

z={z1,20)}: p(z) x e~ V),

The first distribution is
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E. Algorithm for Density Estimation with
CTFs

Algorithm 1 illustrates the details updates for MacGAN.

F. Connection to WGAN

We derive the upper bound of the maximum likelihood esti-
mator, which connects MacGAN to WGAN. Let p,. be the

Algorithm 1 CTFs for generative models at the k-th itera-
tion. D(, -) is the same as (8).

Input: parameters from last step 8%~ ¢(k—1)
Output: updated parameters 0(%), ¢(*)

1. Generate samples {x; ;}5_, via a discretized CTF:
X0,5 ™~ Qg(k—1) (Xo), X1,s 7—1(X0,5);

2. Update the generator by minimizing ({x{ ,}5_, are
generated with the updated parameter ¢(*)):

¢(k) = arg md}nD ({Xl,s}v {XZJ.,S}) :

3. Update the energy-based model 8* by maximum like-
lihood, with gradient as (9) except replacing Ey,, (x)

with Equd,(x);

data distribution, rewrite our maximum likelihood objective
as

1 N
a5 3o ot
N

— max © : U(x:6)
_maxNZ<U(xi,0)—log/e dx | .

i=1

The above maximum likelihood estimator can be bounded
with Jensen’s inequality as:

N
max % ; log pe (x;) (18)
<maxEx~,, [U(x;0)] — log/ ﬂ%(x;w)dx
’ G (x; )

U (x:9)
<maxEx.,. [U(x;0)] — Eygy (xiw) {log %(X,w)}
=max Ex,, [U(x;0)] — Exrgy (x;0) [U(x;0)] (19)

= Exgy (xiw) 108 g (x5 0)] - (20)

This results in the same objective form as WGAN except
that our model does not restrict U (x; @) to be 1-Lipschitz
functions and the objective has an extra constant term

Exngg (xi0) [log g (x;w)] w.r.t. 6.

Now we prove Proposition 5.

Proof [Proof of Proposition 5] First it is clear that the equal-
ity in (18) is achieved if and only if

gp(x;w) = po(x) eV x:0)
From the description in Section 4 and (18), we know that 0

and ¢ share the same objective function, which is an upper
bound of the MLE in (18).
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Furthermore, based on the property of continuous-time
flows (or formally Theorem 2), we know that gy is learned
such that gy — pg in the limit of i — 0 (or alternatively,
we could achieve this by using a decreasing-step-size
sequence in a numerical method, as proved in (Chen et al.,
2015)). When g4 = peg, the equality in (18) is achieved,
leading to the MLE. ]

G. Additional Experiments
G.1. Calculating the testing ELBO for MacVAE

We follow the method in (Pu et al., 2017) for calculating the
ELBO for a test data x,.. First, after distilling the CTF into
the inference network gg, we have that the ELBO can be
represented as

log p(x4) > Eq, [log pe (X, Z+)] — Eg, llog ge)] -

The expectation is approximated with samples {z.;}}.,
with z,; = fs(x.,¢j), and {; ~ ¢o(¢) the standard
isotropic normal. Here f4 represents the deep neural net-
work in the inference network. Note g4 (z.) is not readily
obtained. To evaluate it, we use the density transformation

—1
Ofg (%,
formula: g4(z.) = qo(C) ‘det%l

G.2. Network architecture

The architecture of the generator of MacGAN is given in
Table 1.

G.3. Additional results

Additional experimental results are given in Figure 9 — 14.

G .4. Robustness of the discretization stepsize

To test the impact of the discretization stepsize h in (6),
following SteinGAN (Feng et al., 2017), we test MacGAN
on the MNIST dataset, where ee use a simple Gaussian-
Bernoulli Restricted Boltzmann Machines as the energy-
based model. We adopt the annealed importance sampling
method to evaluate log-likelihoods (Feng et al., 2017). We
vary hin {6e—4,2.4e—3,3.6e—3,6e—3,1e—2,1.5e—2}.
The trend of log-likelihoods is plotted in Figure 15. We can
see that log-likelihoods do not change a lot within the chosen
stepsize interval, demonstrating the robustness of h.
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Figure 15. Log-likelihoods vs discretization stepsize for MacGAN
on MNIST.



ator in MacGAN
128 5 x 5 kernels, RelLU, strike 2, BN

s-Time Flows
3 5 x 5 kernels, Tanh, strike 2

ntinuou

Co
512 x 4 x 4 deconv, 256 5 x 5 kernels, ReLLU, strike 2, BN

Table 1. Architecture of gener:
100 x 10 Linear, BN, ReLU
128 x 16 x 16 deconv,

Architecture

128 x 16 x 16 256 x 8 x 8 deconv,

Output Size
100 x 1

256 x 8 X 8
3x32x32
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ated images for MNIST datasets with MacGAN (top) and SteinGAN (bottom).

Figure 9. Gener
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Figure 10. Generated images for CelebA datasets with MacGAN.
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Figure 11. Generated images for CIFAR-10 datasets with MacGAN.
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Figure 12. Generated images for CelebA datasets with SteinGAN.
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Figure 13. Generated images for CIFAR-10 datasets with SteinGAN.
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Figure 14. Generated images with a random walk on the w space for CelebA datasets with MacGAN, w; = w¢—1 + 0.02 X rand([—1, 1]).



