
Continuous-Time Flows

A. Assumptions of Theorem 2

First, let us define the infinitesimal generator of the diffusion
(2). Formally, the generator L of the diffusion (2) is defined
for any compactly supported twice differentiable function
f : RL ! R, such that,

Lf(Zt) =, lim
h!0+

E [f(Zt+h)] � f(Zt)

h

=

✓
F (Zt) · r +

1

2

�
G(Zt)G(Zt)

T
�
:rrT

◆
f(Zt) ,

where a ·b , aT b, A :B , tr(AT B), h ! 0+ means h

approaches zero along the positive real axis.

Given an ergodic diffusion (2) with an invariant mea-
sure ⇢(Z), the posterior average is defined as: ̄ ,R
 (Z)⇢(Z)dZ for some test function (Z) of interest.

For a given numerical method with generated samples
(zk)K

k=1, we use the sample average ̂ defined as ̂K =
1
K

PK
k=1 (zk) to approximate ̄. We define a functional

 ̃ that solves the following Poisson Equation:

L ̃(zk) = (zk) � ̄ (12)

We make the following assumptions on ̃.

Assumption 1 ̃ exists, and its up to 4rd-order derivatives,

Dk
 ̃, are bounded by a function V , i.e., kDk

 ̃k  CkVpk

for k = (0, 1, 2, 3, 4), Ck, pk > 0. Furthermore, the expec-

tation of V on {zk} is bounded: supl EVp(zk) < 1, and

V is smooth such that sups2(0,1) Vp (s z+ (1 � s)y) 
C (Vp (z) + Vp (y)), 8 z,y, p  max{2pk} for some C >

0.

B. Proofs for Section 3

Proof [Sketch Proof of Lemma 1] First note that (5) in
Lemma 1 corresponds to eq.13 in (Jordan et al., 1998),
where F (p) in (Jordan et al., 1998) is in the form of
KL(⇢kp✓(x, z)) in our setting.

Proposition 4.1 in (Jordan et al., 1998) then proves that
(5) has a unique solution. Theorem 5.1 in (Jordan et al.,
1998) then guarantees that the solution of (5) approach the
solution of the Fokker-Planck equation in (3), which is ⇢T

in the limit of h ! 0.

Since this is true for each k (thus each t in ⇢t), we conclude
that ⇢̃k = ⇢hk in the limit of h ! 0.

To prove Theorem 2, we first need a convergence result
about convergence to equilibrium in Wasserstein distance

for Fokker-Planck equations, which is presented in (Bolley
et al., 2012). Putting in our setting, we can get the following
lemma based on Corollary 2.4 in (Bolley et al., 2012).

Lemma 6 ((Bolley et al., 2012)) Let ⇢T be the solution

of the FP equation (3) at time T , p✓(x, z) be the

joint posterior distribution given x. Assume thatR
⇢T (z)p�1

✓ (x, z)d z < 1 and there exists a constant C

such that
dW 2

2 (⇢T ,p✓(x,z))
dt � CW

2
2 (⇢T , p✓(x, z)). Then

W2 (⇢T , p(x, z))  W2 (⇢0, p(x, z)) e
�CT

. (13)

We further need to borrow convergence results from (Mat-
tingly et al., 2010; Vollmer et al., 2016; Chen et al., 2015)
to characterize error bounds of a numerical integrator for
the diffusion (2). Specifically, the goal is to evaluate
the posterior average of a test function (z), defined as
 ̄ ,

R
 (z)p✓(x, z)d z. When using a numerical integrator

to solve (2) to get samples {zk}K
k=1, the sample average

 ̂K , 1
K

PK
k=1 (zk) is used to approximate the posterior

average. The accuracy is characterized by the mean square

error (MSE) defined as: E
⇣
 ̂K � ̄

⌘2
. Lemma 7 derives

the bound for the MSE.

Lemma 7 ((Vollmer et al., 2016)) Under Assumption 1,

and for a 1st-order numerical intergrator, the MSE is

bounded, for a constant C independent of h and K, by

E
⇣
 ̂K � ̄

⌘2
 C

✓
1

hK
+ h

2

◆
.

Furthermore, except for the 2nd-order Wasserstein distance
defined in Lemma 1, we define the 1st-order Wasserstein
distance between two probability measures µ1 and µ2 as

W1 (µ1, µ2) , inf
p2P(µ1,µ2)

Z
kx�yk2 p(dx, dy) . (14)

According to the Kantorovich-Rubinstein duality (Arjovsky
et al., 2017), W1(µ1, µ2) is equivalently represented as

W1 (µ1, µ2) = sup
f2L1

Ez⇠µ1 [f(z)] � Ez⇠µ2 [f(z)] , (15)

where L1 is the space of 1-Lipschitz functions f : RL ! R.

We have the following relation between W1(µ1, µ2) and
W2(µ1, µ2).

Lemma 8 ((Givens & Shortt, 1984)) We have for any two

distributions µ1 and µ2 that W1(µ1, µ2)  W2(µ1, µ2).

Now it is ready to prove Theorem 2.

Proof [Proof of Theorem 2] The idea is to simply decom-
pose the MSE into two parts, with one part charactering the

Continuous-Time Flows

MSE of the numerical method, the other part charactering
the MSE of ⇢T and p✓(x, z), which consequentially can be
bounded using Lemma 6 above.

Specifically, we have

MSE(⇢̄T , ⇢T ;) , E
✓Z

 (z)(⇢̃T � ⇢T)(z)d z

◆2

=E

1

K

KX

k=1

 (zk) �
Z
 (z)⇢T (z)d z

!2

=E

1

K

KX

k=1

 (zk) �
Z
 (z)p✓(x, z)d z

!

�
✓Z

 (z)⇢T (z)d z�
Z
 (z)p✓(x, z)d z

◆◆2

(1)
=E

1

K

KX

k=1

 (zk) �
Z
 (z)p✓(x, z)d z

!2

+

✓Z
 (z)⇢T (z)d z�

Z
 (z)p✓(x, z)d z

◆2

(2)
E

1

K

KX

k=1

 (zk) �
Z
 (z)p✓(x, z)d z

!2

+ W
2
1 (⇢T , p✓)

(3)
E

1

K

KX

k=1

 (zk) �
Z
 (z)p✓(x, z)d z

!2

+ W
2
2 (⇢T , p✓)

(4)
C1

✓
1

hK
+ h

2

◆
+ W

2
2 (⇢0, p(x, z)) e

�2CT

=O

✓
1

hK
+ h

2 + e
�2ChK

◆
,

where “(1)” follows by the fact that
E
⇣

1
K

PK
k=1 (zk) �

R
 (z)p✓(x, z)d z

⌘
= 0 (Chen

et al., 2015); “(2)” follows by the definition of W1(µ1, µ2)
in (14) and the 1-Lipschitz assumption of the test function
 ; “(3)” follows by Lemma 8; “(4)” follows by Lemma 6
and Lemma 7.

C. Sample Distance D Implemented as a

Discriminator in the GAN Framework

We first prove Proposition 4, and then describe our imple-
mentation for the Wasserstein distance D in (8).

Proof [Proof of Proposition 4] By defining D as standard
Euclidean distance, the objective becomes:

���
0 = arg min

���

1

S

SX

i=1

���z0(i)
0 � z(i)

1

���
2

,

where {z0(i)
0 }S

i=1 are a set of samples generated from

q���0(z0
0 |x) via Q�(·), i.e.

!
0i ⇠ q0(!), z̃0i

0 = Q���(·|x,!
0i) ,

and {z(i)
1 }S

i=1 are samples drawn by

!
i ⇠ q0(!), z̃i

0 = Q���(·|x,!
i), z(i)

1 ⇠ T1(z̃
i
0) .

For simplicity, we consider T1 as one discretized step for
Langevin dynamics, i.e.,

T1(z̃
i
0) = z̃i

0 + rz log p✓(x, z̃i
0)h +

p
2h⇠ ,

where ⇠ ⇠ N (0, I). Consequently, the objective becomes

F̃ , 1

S

SX

i=1

��Q���(·|x,!
0i) � Q���(·|x,!

i)

�rz log p✓(x, z̃i
0)h +

p
2h⇠

���
2

, (16)

(16) is a stochastic version of the following equivalent ob-
jective:

F ,E!0,!⇠p0(!),⇠

��Q���(·|x,!
0i) � Q���(·|x,!

i)

�rz log p✓(x, z̃i
0)h +

p
2h⇠

���
2

. (17)

There are two cases related to ! and !0. i) If ! is restricted
to be equal to !0, e.g., they share the same random seed,
this is the case in amortized SVGD (Wang & Liu, 2017) or
amortized MCMC (Li et al., 2017b), as well as in Proposi-
tion 4 where Euclidean distance is adopted. ii) If ⌦ and ⌦0

do not share the same random seed, this is a more general
case, which we also want to show that it can not learn a
good generator.

For case i), F is simplified as:

F = E!⇠p0(!)

��rz log p✓(x, z̃i
0)
��2

h
2 +

p
2hE⇠k⇠k2

.

Thus the minimum value corresponds to rz log p✓(x, z̃i
0) =

0, i.e., ��� is updated so that z̃i
0 falls in one of the local modes

of p✓(z |x). Proposition 4 is proved.

We also want to consider case ii). In this case, F is bounded
by

F  E!0,!⇠p0(!)

��Q���(·|x,!
0i) � Q���(·|x,!

i)
��2

+ E!⇠p0(!)

��rz log p✓(x, z̃i
0)
��2

h
2 + 2hE⇠k⇠k2

The minimum possible value of the upper bound of F is
achieved when Q��� matches all ! ⇠ p0(!) to a fixed point z̃,
and also rz log p✓(x, z̃) = 0. This is also a special mode
of p✓(z |x) if exists.

To sum up, by defining D to be standard Euclidean distance,
Q��� would generate samples from local modes of p✓(z |x).

Continuous-Time Flows

(x, z̃) (x, zctf)

zctfz̃z̃x
q�(z|x) CTF

D

Figure 8. Implementation of D defined in (8) for distribution
matching with the ALICE framework (Li et al., 2017a).

Now we describe how to define D as Wasserstein within a
GAN framework. Following (Li et al., 2017a), we define a
discriminator to match the joint distributions p(x, zctf) (an
implicit distribution) and q�(x, z̃), where

q�(x, z̃) , q(x)q�(z̃|x)

(x, zctf) ⇠ p(x̃, z), with zctf = T1(z̃) .

The graphical structure is defined in Figure 8.

D. Two 2D Distributions

z = {z1, z2}: p(z) / e
�U(z).

The first distribution is

U(z) , 1

2
(
k z k � 2

0.4
)2 � ln(e� 1

2 [
z2 �4
2.0]2 + e

� 1
2 [

z2 +2
0.2]2)

The second distribution is

U(z) , � ln(e� 1
2 [

z2 �w1(z)
0.35]2 + e

� 1
2 [

z2 �w1(z)+w2(z)
0.35]2)

where

w2(z) = sin(
2⇡ a1

4
), and w2(z) = 3 exp(

1

2


z1 �1

0.6

�2
)

E. Algorithm for Density Estimation with

CTFs

Algorithm 1 illustrates the details updates for MacGAN.

F. Connection to WGAN

We derive the upper bound of the maximum likelihood esti-
mator, which connects MacGAN to WGAN. Let pr be the

Algorithm 1 CTFs for generative models at the k-th itera-
tion. D(·, ·) is the same as (8).

Input: parameters from last step ✓(k�1)
,���

(k�1)

Output: updated parameters ✓(k)
,���

(k)

1. Generate samples {x1,s}S
s=1 via a discretized CTF:

x0,s ⇠ q���(k�1)(x0),x1,s ⇠ T1(x0,s);
2. Update the generator by minimizing ({x0

0,s}S
s=1 are

generated with the updated parameter ���(k)):

���
(k) = arg min

���
D
�
{x1,s}, {x0

0,s}
�

.

3. Update the energy-based model ✓k by maximum like-
lihood, with gradient as (9) except replacing Ex⇠p✓(x)

with Ex⇠q���(x);

data distribution, rewrite our maximum likelihood objective
as

max
1

N

NX

i=1

log p✓(xi)

= max
1

N

NX

i=1

✓
U(xi;✓) � log

Z
e
U(x;✓)dx

◆
.

The above maximum likelihood estimator can be bounded
with Jensen’s inequality as:

max
1

N

NX

i=1

log p✓(xi) (18)

 maxEx⇠pr [U(x;✓)] � log

Z
e
U(x;✓)

q���(x;!)
q���(x;!)dx

 maxEx⇠pr [U(x;✓)] � Ex⇠q���(x;!)


log

e
U(x;✓)

q���(x;!)

�

= maxEx⇠pr [U(x;✓)] � Ex⇠q���(x;!) [U(x;✓)] (19)

� Ex⇠q���(x;!) [log q���(x;!)] . (20)

This results in the same objective form as WGAN except
that our model does not restrict U(x;✓) to be 1-Lipschitz
functions and the objective has an extra constant term
Ex⇠q���(x;!) [log q���(x;!)] w.r.t. ✓.

Now we prove Proposition 5.

Proof [Proof of Proposition 5] First it is clear that the equal-
ity in (18) is achieved if and only if

q���(x;!) = p✓(x) / e
U(x;✓)

.

From the description in Section 4 and (18), we know that ✓
and ��� share the same objective function, which is an upper
bound of the MLE in (18).

Continuous-Time Flows

Furthermore, based on the property of continuous-time
flows (or formally Theorem 2), we know that q��� is learned
such that q��� ! p✓ in the limit of h ! 0 (or alternatively,
we could achieve this by using a decreasing-step-size
sequence in a numerical method, as proved in (Chen et al.,
2015)). When q��� = p✓, the equality in (18) is achieved,
leading to the MLE.

G. Additional Experiments

G.1. Calculating the testing ELBO for MacVAE

We follow the method in (Pu et al., 2017) for calculating the
ELBO for a test data x⇤. First, after distilling the CTF into
the inference network q���, we have that the ELBO can be
represented as

log p(x⇤) � Eq��� [log p✓(x⇤, z⇤)] � Eq��� [log q���] .

The expectation is approximated with samples {z⇤j}M
j=1

with z⇤j = f���(x⇤, ⇣j), and ⇣j ⇠ q0(⇣) the standard
isotropic normal. Here f��� represents the deep neural net-
work in the inference network. Note q���(z⇤) is not readily
obtained. To evaluate it, we use the density transformation

formula: q���(z⇤) = q0(⇣)
���det@f���(x⇤,⇣)

@⇣

���
�1

.

G.2. Network architecture

The architecture of the generator of MacGAN is given in
Table 1.

G.3. Additional results

Additional experimental results are given in Figure 9 – 14.

G.4. Robustness of the discretization stepsize

To test the impact of the discretization stepsize h in (6),
following SteinGAN (Feng et al., 2017), we test MacGAN
on the MNIST dataset, where ee use a simple Gaussian-
Bernoulli Restricted Boltzmann Machines as the energy-
based model. We adopt the annealed importance sampling
method to evaluate log-likelihoods (Feng et al., 2017). We
vary h in {6e�4, 2.4e�3, 3.6e�3, 6e�3, 1e�2, 1.5e�2}.
The trend of log-likelihoods is plotted in Figure 15. We can
see that log-likelihoods do not change a lot within the chosen
stepsize interval, demonstrating the robustness of h.

0 0.005 0.01 0.015
h

-900

-850

-800

-750

lo
g-
lik
el
ih
oo
d

Figure 15. Log-likelihoods vs discretization stepsize for MacGAN
on MNIST.

Continuous-Time Flows

Table 1. Architecture of generator in MacGAN

Output Size Architecture

100 ⇥ 1 100 ⇥ 10 Linear, BN, ReLU
256 ⇥ 8 ⇥ 8 512 ⇥ 4 ⇥ 4 deconv, 256 5 ⇥ 5 kernels, ReLU, strike 2, BN
128 ⇥ 16 ⇥ 16 256 ⇥ 8 ⇥ 8 deconv, 128 5 ⇥ 5 kernels, ReLU, strike 2, BN
3 ⇥ 32 ⇥ 32 128 ⇥ 16 ⇥ 16 deconv, 3 5 ⇥ 5 kernels, Tanh, strike 2

Figure 9. Generated images for MNIST datasets with MacGAN (top) and SteinGAN (bottom).

Continuous-Time Flows

Figure 10. Generated images for CelebA datasets with MacGAN.

Continuous-Time Flows

Figure 11. Generated images for CIFAR-10 datasets with MacGAN.

Continuous-Time Flows

Figure 12. Generated images for CelebA datasets with SteinGAN.

Continuous-Time Flows

Figure 13. Generated images for CIFAR-10 datasets with SteinGAN.

Continuous-Time Flows

Figure 14. Generated images with a random walk on the ! space for CelebA datasets with MacGAN, !t = !t�1 + 0.02⇥ rand([�1, 1]).

