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Abstract

Two fundamental problems in unsupervised learn-
ing are efficient inference for latent-variable mod-
els and robust density estimation based on large
amounts of unlabeled data. Algorithms for the
two tasks, such as normalizing flows and gen-
erative adversarial networks (GANs), are often
developed independently. In this paper, we pro-
pose the concept of continuous-time flows (CTFs),
a family of diffusion-based methods that are able
to asymptotically approach a target distribution.
Distinct from normalizing flows and GANs, CTFs
can be adopted to achieve the above two goals in
one framework, with theoretical guarantees. Our
framework includes distilling knowledge from
a CTF for efficient inference, and learning an
explicit energy-based distribution with CTFs for
density estimation. Both tasks rely on a new tech-
nique for distribution matching within amortized
learning. Experiments on various tasks demon-
strate promising performance of the proposed
CTF framework, compared to related techniques.

1. Introduction

Efficient inference and robust density estimation are two
important goals in unsupervised learning. In fact, they can
be unified from the perspective of learning desired target
distributions. In inference problems, one targets to learn a
tractable distribution for a latent variable that is close to
a given unnormalized distribution (e.g., a posterior distri-
bution in a Bayesian model). In density estimation, one
tries to learn an unknown data distribution only based on
the samples from it. It is also helpful to make a distinction
between two types of representations for learning distribu-
tions: explicit and implicit methods (Mohamed & Laksh-
minarayanan, 2017). Explicit methods provide a prescribed
parametric form for the distribution, while implicit methods
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learn a stochastic procedure to directly generate samples
from the unknown distribution.

Existing deep generative models can easily be identified
from this taxonomy. For example, the standard variational
autoencoder (VAE) (Kingma & Welling, 2014; Rezende
et al., 2014) is an important example of an explicit infer-

ence method. Within the inference arm (encoder) of a VAE,
recent research has focused on improving the accuracy of
the approximation to the posterior distribution on latent
variables (codes) using normalizing flow (NF) (Rezende &
Mohamed, 2015). NF is particularly interesting due to its
ability to approximate the posterior distribution arbitrarily
well, while maintaining explicit parametric forms. On the
other hand, Stein VAE (Feng et al., 2017; Pu et al., 2017)
is an implicit inference method, as it only learns to draw
samples to approximate posteriors, without assuming an
explicit form for the distribution.. For density estimation on
observed data, the generative adversarial network (GAN)
can be regarded as an implicit density estimation method
(Ranganath et al., 2016; Huszár, 2017; Mohamed & Lak-
shminarayanan, 2017), in the sense that one may sample
from the distribution (regarded as a representation of the
unknown distribution), but an explicit form for the distribu-
tion is not estimated. GAN has recently been augmented by
Flow-GAN (Grover et al., 2017) to incorporate a likelihood
term for explicit density estimation. Further, the real-valued
non-volume preserving (real NVP) transformations algo-
rithm (Dinh et al., 2017) was proposed to perform inference
within the implicit density estimation framework.

Some aforementioned methods rely on the concept of flows.
A flow defines a series of transformations for a random
variable (RV), such that the distribution of the RV evolves
from a simple distribution to a more complex distribution.
When the sequence of transformations are indexed on a
discrete-time domain (e.g., indexed with integers) with a
finite number of transformations, this method is referred to
as a normalizing flow (Rezende & Mohamed, 2015). Vari-
ous efficient implementations of NFs have been proposed,
such as the planar, radial (Rezende & Mohamed, 2015),
Householder (Tomczak & Welling, 2016), and inverse au-
toregressive flows (Kingma et al., 2016). One theoretical
limitation of existing normalizing flows is that there is no
guarantee on the approximation accuracy due to the finite
number of transformations.



Continuous-Time Flows

By contrast, little work has explored the applicability of
continuous-time flows (CTFs) in deep generative models,
where a sequence of transformations are indexed on a
continuous-time domain (e.g., indexed with real numbers).
There are at least two reasons encouraging research in this
direction: i) CTFs are more general than traditional normal-
izing flows in terms of modeling flexibility, due to the intrin-
sic infinite number of transformations; ii) CTFs are more
theoretically grounded, in the sense that they are guaran-
teed to approach a target distribution asymptotically (details
provided in Section 2.2).

In this paper, we propose efficient ways to apply CTFs for
the two motivating tasks. Based on the CTF, our framework
learns to drawn samples directly from desired distributions
(e.g., the unknown posterior and data distributions) for both
inference and density estimation tasks via amortization. In
addition, we are able to learn an explicit form of the un-
known data distribution for density estimation⇤. The core
idea of our framework is the amortized learning, where
knowledge in a CTF is distilled sequentially into another
neural network (called inference network in the inference
task, and generator in density estimation). The distilla-
tion relies on the distribution matching technique proposed
recently via adversarial lerning (Li et al., 2017a). We con-
duct various experiments on both synthetic ad real datasets,
demonstrating excellent performance of the proposed frame-
work, relative to representative approaches.

2. Preliminaries

2.1. Efficient inference and density estimation

Efficient inference with normalizing flows Consider a
probabilistic generative model with observation x 2 RD

and latent variable z 2 RL such that x | z ⇠ p✓(x | z) with
z ⇠ p(z). For efficient inference of z, the VAE (Kingma
& Welling, 2014) introduces the concept of an inference
network (recognition model or encoder), q���(z |x), as a vari-
ational distribution in the VB framework. An inference
network is typically a stochastic (nonlinear) mapping from
the input x to the latent z, with associated parameters ���.
For example, one of the simplest inference networks is de-
fined as q���(z |x) = N (z;µ���(x), diag(�2

���(x))), where the
mean function µ���(x) and the standard-derivation function
����(x) are specified via deep neural networks parameter-
ized by ���. Parameters are learned by minimizing the nega-
tive evidence lower bound (ELBO), i.e., the KL divergence
between p✓(x, z) and q���(z |x): KL (q���(z |x)kp✓(x, z)) ,
Eq���(z |x) [log q���(z |x)� log p✓(x, z)], via stochastic gradient
descent (Bottou, 2012).

One limitation of the VAE framework is that q���(z |x) is
⇤Although the density is represented as an energy-based distri-

bution with an intractable normalizer.

often restricted to simple distributions for feasibility, e.g.,
the normal distribution discussed above, and thus the gap
between q���(z |x) and p✓(z |x) is typically large for com-
plicated posterior distributions. NF is a recently proposed
VB-based technique designed to mitigate this problem
(Rezende & Mohamed, 2015). The idea is to augment z
via a sequence of deterministic invertible transformations
{Tk : RL ! RL}K

k=1, such that: z0 ⇠ q���(·|x), z1 =
T1(z0), · · · , zK = TK(zK�1).

Note the transformations {Tk} are typically endowed with
different parameters, and we absorb them into ���. Because
the transformations are deterministic, the distribution of zK

can be written as q(zK) = q���(z0 |x)
QK

k=1

���det @Tk
@ zk

���
�1

via
the change of variable formula. As a result, the negative
ELBO for normalizing flows becomes:
KL (q���(zK |x)kp✓(x, z)) = Eq���(z0 |x) [log q���(z0 |x)] (1)

� Eq���(z0 |x) [log p✓(x, zK)]� Eq���(z0 |x)[
KX

k=1

log |det
@Tk

@ zk
|].

Typically, transformations Tk of a simple parametric form
are employed to make the computations tractable (Rezende
& Mohamed, 2015). Our method generalizes these discrete-
time transformations to continuous-time ones, ensuring con-
vergence of the transformations to a target distribution.
Related density-estimation methods There exist im-
plicit and explicit density-estimation methods. Implicit
density models such as GAN provide a flexible way to
draw samples directly from unknown data distributions
(via a deep neural network (DNN) called a generator with
stochastic inputs) without explicitly modeling their density
forms; whereas explicit models such as the pixel RNN/CNN
(van den Oord et al., 2016) define and learn explicit forms
of the unknown data distributions. This gives the advantage
that the likelihood for a test data point can be explicitly
evaluated. However, the generation of samples is typically
time-consuming due to the sequential generation nature.

Similar to Wang & Liu (2017), our CTF-based approach in
Section 4 provides an alternative way for this problem, by
simultaneously learning an explicit energy-based data distri-
bution (estimated density) and a generator whose generated
samples match the learned data distribution. This not only
gives us the advantage of explicit density modeling but also
provides an efficient way to generate samples. Note that
our technique differs from that of Wang & Liu (2017) in
that distribution matching is adopted to learn an accurate
generator, which is a key component in our framework.

2.2. Continuous-time flows

We notice two potential limitations with traditional normal-
izing flows: i) given specified transformations {Tk}, there
is no guarantee that the distribution of zK could exactly
match p✓(x, z); ii) the randomness is only introduced in z0

(from the inference network), limiting the representation
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power. We specify CTFs where transformations are indexed
by real numbers, thus they could be considered as consisting
of infinite transformations. Further, we consider stochastic
flows where randomness is injected in a continuous-time
manner. In fact, the concept of CTFs (such as the Hamil-
tonian flow) has been introduced by Rezende & Mohamed
(2015), without further development on efficient inference.

We consider a flow on RL, defined as the mapping† T :
RL ⇥ R ! RL such that‡ we have T (Z, 0) = z and
T (T (Z, t), s) = T (Z, s + t), for all Z 2 RL and s, t 2 R.
A specific form consider here is defined as T (Z, t) = Zt,
where Zt is driven by a diffusion of the form:

dZt = F (Zt)dt + V (Zt)dW . (2)
Here F : RL ! RL, V : RL⇥L ! RL are called
the drift term and diffusion term, respectively; W is the
standard L-dimensional Brownian motion. In the context
of inference, we seek to make the stationary distribution
of Zt approach p✓(z |x). One solution for this is to set
F (Zt) = 1

2rz log p✓(x, z = Zt) and V (Zt) = IL with IL

the L ⇥ L identity matrix. The resulting diffusion is called
Langevin dynamics (Welling & Teh, 2011). Denoting the
distribution of Zt as ⇢t, it is well known (Risken, 1989) that
⇢t is characterized by the Fokker-Planck (FP) equation:

@t⇢t = �rz · (⇢tF (Zt) +rz · (⇢tV (Zt)V
>(Zt))) , (3)

where a ·b , a> b for vectors a and b.

For simplicity, we consider the flow defined by the Langevin
dynamics specified above, though our results generalize to
other stochastic flows (Dorogovtsev & Nishchenko, 2014).
In fact, CTF has been applied for scalable Bayesian sam-
pling (Ding et al., 2014; Li et al., 2016a; Chen et al., 2016;
Li et al., 2016b; Zhang et al., 2017). In this paper, we gen-
eralize it by specifying an ELBO under a CTF, which can
then be readily solved by a discretized numerical scheme,
based on the results from Jordan et al. (1998). An approx-
imation error bound for the scheme is also derived. We
defer proofs of our theoretical results to the Supplementary
Material (SM) for conciseness.

3. Continuous-Time Flows for Inference

For this task, we adopt the VAE/normalizing-flow frame-
work with an encoder-decoder structure. An important dif-
ference is that instead of feeding data to an encoder and
sampling a latent representation in the output as in VAE, we
concatenate the data with independent noise as input and
directly generate output samples§, constituting an implicit

†We reuse the notation T as transformations from the discrete
case above for simplicity, and use Z instead of z (reserved for
the discrete-time setting) to denote the random variable in the
continuous-time setting.

‡Note we define continuous-time flows in terms of latent vari-
able Z in order to incorporate it into the setting of inference. How-
ever, the same description applies when we define the flow in data
space, which is the setting of density estimation in Section 4.

§Such structure can represent much more complex distributions
than a parametric form, useful for the follow up procedures. In

model. These outputs are then driven by the CTF to ap-
proach the true posterior distribution. In the following, we
first show that directly optimizing the ELBO is infeasible.
We then propose an amortized-learning process that sequen-
tially distills the implicit transformations from the CTF an
inference network by distribution matching in Section 3.2.

3.1. The ELBO and discretized approximation

We first incorporate CTF into the NF framework by writing
out the corresponding ELBO. Note that there are two steps
in the inference process. First, an initial z0 is drawn from
the inference network q���(·|x); second, z0 is evolved via
a diffusion such as (2) for time T (via the transformation
ZT = T (z0, T )). Consequently, the negative ELBO for
CTF can be written as

F(x) = Eq���(z0 |x)E⇢T [log ⇢T � log p✓(x,ZT )

+ log

����det
@ ZT

@ z0

����

�
, Eq���(z0 |x) [F1(x, z0)] . (4)

Note the term F1(x, z0) is intractable to calculate, in that
i) ⇢T does not have an explicit form; ii) the Jacobian @ ZT

@ z0

is generally infeasible. In the following, we propose an
approximate solution for problem i). Learning by avoiding
problem ii) is presented in Section 3.2 via amortization.

For problem i), a reformulation of the results from Jor-
dan et al. (1998) leads to a nice way to approximate ⇢t in
Lemma 1. Note in practice we adopt an implicit method
which uses samples to approximate the solution in Lemma 1
for feasibility, detailed in (6).

Lemma 1 Assume that log p✓(x, z)  C1 is in-

finitely differentiable, and krz log p✓(x, z)k 
C2 (1 + C1 � log p✓(x, z)) (8x, z) for some constants

{C1, C2}. Let T = hK (h is the stepsize and K is the

number of transformations), ⇢0 , q���(z0 |x), and {⇢̃k}K
k=1

be the solution of the functional optimization problem:

⇢̃k = arg min
⇢2K

KL (⇢kp✓(x, z)) +
1

2h
W

2
2 (⇢̃k�1, ⇢) , (5)

with W
2
2 (µ1, µ2) , infp2P(µ1,µ2)

R
kx�yk2

2 p(dx, dy)
the square of 2nd-order Wasserstein distance, and P(µ1, µ2)
the set of joint distributions on {µ1, µ2}. K is the space

of distributions with finite 2nd-order moment. Then ⇢̃K

converges to ⇢T in the limit of h ! 0, i.e., limh!0 ⇢̃K = ⇢T ,

where ⇢T is the solution of the FP equation (3) at time T .

Lemma 1 reveals an interesting way to compute ⇢T via a
sequence of functional optimization problems. By com-
paring it with the objective of the traditional NF, which
minimizes the KL-divergence between ⇢K and p✓(x, z), at
each sub-optimization-problem in Lemma 1, it minimizes
the KL-divergence between ⇢̃k and p✓(x, z), plus a regu-
larization term as the Wasserstein distance between ⇢̃k�1

contrast, we will define an explicit energy-based distribution for
the density in density-estimation tasks.
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and ⇢̃k. The extra Wasserstein-distance term arises naturally
due to the fact that the Langevin diffusion can be explained
as a gradient flow whose geometry is equipped with the
Wasserstein distance (Otto, 1998).

The optimization problem in Lemma 1 is, however, difficult
to deal with directly. In practice, we instead approximate
the discretization in an equivalent way by simulation from
the CTF. Starting from z0, each zk (k = 0, · · · , K � 1) is
fed into a transformation Tk (specified below), resulting in
zk+1 whose distribution coincides with ⇢̃k+1 in Lemma 1.
The discretization procedure is illustrated in Figure 1. We
must specify the transformations Tk. For each k, let t = hk;
we can conclude from Lemma 1 that limh!0 ⇢̃k = ⇢t. From
FP theory, ⇢t is obtained by solving the diffusion (2) with
initial condition Z0 = z0. It is thus reasonable to specify the
transformation Tk as the k-th step of a numerical integrator
for (2). Specifically, we specify Tk stochastically:

zk = Tk(zk�1) , zk�1 +F (zk�1)h + V (zk�1)⇣k , (6)

where ⇣k ⇠ N (0, hIL) is drawn from an isotropic normal.
Note the transformation defined here is stochastic, thus we
only get samples from ⇢̃K at the end. A natural way to
approximate ⇢̃K is to use the empirical sample distribution,
i.e., ⇢̃K ⇡ 1

K

PK
k=1 �zk , ⇢̄T with �z a point mass at z.

Afterwards, ⇢̃K (thus ⇢̄T ) will be used to approximate the
true ⇢T from (3).
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Figure 1. Discretized approximation (right) of a continuous-time
flow (left). Densities {⇢̃k} of {zk} evolve via transformations
{Tk}, with ⇢̃k ! ⇢hk when h ! 0 for each k due to Lemma 1.

Better ways to approximate ⇢T might be possible, e.g., by as-
signing more weights to the more recent samples. However,
the problem becomes more challenging in theoretical analy-
sis, an interesting point left for future work. In the following,
we study how well ⇢̄T approximates ⇢T . Following litera-
ture on numerical approximation for Itô diffusions (Vollmer
et al., 2016; Chen et al., 2015), we consider a 1-Lipschitz test
function  : RL ! R, and use the mean square error (MSE)
bound to measure the closeness of ⇢̄T and ⇢T , defined as:
MSE(⇢̄T , ⇢T ; ) , E

�R
 (z)(⇢̃T � ⇢T )(z)d z

�2, where
the expectation is taken over all the randomness in the con-
struction of ⇢̃T . Note that our goal is related but different
from the standard setup as in (Vollmer et al., 2016; Chen
et al., 2015), which studies the closeness of ⇢̄T to p✓(x, z).
We need to adopt the assumptions from Vollmer et al. (2016);
Chen et al. (2015), which are described in the SM. The as-
sumptions are somewhat involved but essentially require

coefficients of the diffusion (2) to be well-behaved. We
derive the following bound for the MSE of the sampled
approximation, ⇢̄T , and the true distribution.

Theorem 2 Under Assumption 1 in the SM, assume thatR
⇢T (z)p�1

✓ (x, z)d z < 1 and there exists a constant C

such that
dW 2

2 (⇢T ,p✓(x,z))
dt � CW

2
2 (⇢T , p✓(x, z)), the MSE

is bounded as

MSE(⇢̄T , ⇢T ; ) = O

✓
1

hK
+ h

2 + e
�2ChK

◆
.

The last assumption in Theorem 2 requires ⇢T to evolve
fast through the FP equation, which is a standard assump-
tion used to establish convergence to equilibrium for FP
equations (Bolley et al., 2012). The MSE bound consists
of three terms, the first two terms come from numerical
approximation of the continuous-time diffusion, whereas
the third term comes from the convergence bound of the
FP equation in terms of the Wasserstein distance (Bolley
et al., 2012). When the time T = hK is large enough, the
third term may be ignored due to its exponential-decay rate.
Moreover, in the infinite-time limit, the bound endows a
bias proportional to h; this, however, can be removed by
adopting a decreasing-step-size scheme in the numerical
method, as in standard stochastic gradient MCMC methods
(Teh et al., 2016; Chen et al., 2015).

Remark 3 To examine the optimal bound in Theorem 2, we

drop out the term e
�2ChK

in the long-time case (when hK

is large enough) for simplicity because it is in a much lower

order term than the other terms. The optimal MSE bound

(over h) decreases at a rate of O
�
K

�2/3
�
, meaning that

O
�
✏
�3/2

�
steps of transformations in Figure 1 (right) are

needed to reach an ✏-accurate approximation, i.e., MSE  ✏.

This is computationally expensive. An efficient way for

inference is thus imperative, developed in the next section.

3.2. Efficient inference via amortization

Even though we approximate ⇢T with ⇢̄T , it is still infeasible

to directly apply it to the ELBO in (4) as ⇢̄T is discrete. To
deal with this problem, we adopt the idea of “amortized
learning” (Gershman & Goodman, 2014) for inference, by
alternatively optimizing the two sets of parameters ��� and ✓.

Updating��� To explain the idea, first note that the negative
ELBO can be equivalently written as
F(x) = E⇢0,q���(z0 |x)E⇢T [log ⇢0 � log p✓(x,ZT )] . (7)

When ⇢0 = ⇢T , it is easy to see that: F(x) =
E⇢0 [log ⇢0 � log p✓(ZT |x)]+log p(x) = log p(x), which
essentially makes the gap between q���(z0 |x) and p✓(ZT |x)
vanished. As a result, our goal is to learn ��� such that
q���(z0 |x) approaches p✓(ZT |x). This is a distribution
matching problem (Li et al., 2017a). As mentioned previ-
ously, we will learn an implicit distribution of q���(z0 |x)
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Figure 2. Amortized learning of CTFs. From left to right: the initial architecture with K-step transformations; For each step k, q���(·) is
trained to match the distributin of zk in CTFs; In the end, the CTF is distilled into q���(·) with distribution matching as in (8).

(i.e., learn how to draw samples from q���(z0 |x) instead of
its explicit form), as it allows us to chose a candidate dis-
tribution from a much larger distribution space, compared
to explicitly defining q���

¶. Consequently, q���(z0 |x) is im-
plemented by a stochastic generator (a DNN parameterized
by ���) Q���(x,!) with input as the concatenation of x and
!, where ! is a sample from an isotropic Gaussian dis-
tribution q0(!). Our goal is now translated to update the
parameter ��� of Q���(x,!) to ���0 such that the distribution of
{z0

0 = Q���0(x,!)} with ! ⇠ q0(!) matches that of z1 in
the original generating process with ��� in Figure 1. In this
way, the generating process of z1 via T1 is distilled into the
parameterized generator Q���(·), eliminating the need to do
a specific transformation via T1 in testing, and thus is very
efficient. Specifically, we update ���0 such that

���
0 = arg min

���
D({z0(i)

0 }, {z(i)
1 }) , (8)

where {z0(i)
0 }S

i=1 are a set of samples generated from
q���0(z0

0 |x) via Q�(·), and {z(i)
1 }S

i=1 are samples drawn by
!

i ⇠ q0(!), z̃i
0 = Q���(x,!

i), z(i)
1 ⇠ T1(z̃

i
0); D(·, ·) is a

metric between samples specified below. We call this proce-
dure distilling knowledge from T1 to Q���(·). In practice, one
can choose to distill knowledge for several steps (e.g., Tk)
instead of one step (e.g., T1) to Q���(·) each time. Note the
distillation idea is related to Bayesian dark knowledge (Ko-
rattikara et al., 2015), but with different goal and approach.

After distilling knowledge from T1, we apply the same pro-
cedure for other transformations Tk(k > 1) sequentially.
The final inference network, represented by q���(·|x), can
then well approximate the CTF, e.g., the distribution of
z0 ⇠ q���(·|x) is close to ⇢T from the CTF. This concept
is illustrated in Figure 2. We note choosing an appropriate
D in (8) is important in order to make Theorem 2 applica-
ble. Amortized SVGD (Wang & Liu, 2017) defines D as
standard Euclidean distance between samples. We show in
Proposition 4 that this would induce a large error in terms
of approximation accuracy.

Proposition 4 Fix ✓. If D in (8) is defined as the summa-

tion of pairwise Euclidean distance between samples, then

samples generated from Q��� converge to local modes of

log p✓(z |x).

¶This is distinct from our density-estimation framework de-
scribed in the next section, where an explicit form is assumed at
the beginning for practical needs.

Consequently, it is crucial to impose more general distance
for D. As GAN has been interpreted as distribution match-
ing (Li et al., 2017a), we define D using the Wasserstein
distance, implemented as a discriminator parameterized by
a neural network. Specifically, we adopt the ALICE frame-
work (Li et al., 2017a), and use {(x, z0(i)

0 )} as fake data and
{(z(i)

1 ,xi ⇠ p✓(·| z(i)
1 ))} as real data to train a discriminator.

More details are discussed in Section C of the SM.

Updating ✓ Given ���, ✓ can be updated by simply opti-
mizing the ELBO in (7), where ⇢T is approximated by ⇢̄T
from the discretized CTF. Specifically, the expectation w.r.t.
⇢T in (7) is approximated by a sample average from:

z0 ⇠ q���(z0 |x), z1 ⇠ T1(z0), z2 ⇠ T2(z1), · · · , zK ⇠ TK(zK�1)

To sum up, there are three steps to learn a CTF-based VAE:

1. Generate (z0, · · · , zK) according to q���(z0 |x) and the
discretized flow with transformations {Tk};

2. Update ��� according to (8);
3. Optimize ✓ by minimizing the ELBO (7) with the gen-

erated sample path.

In testing, we use only the finally learned q���(z0 |x) for
inference (into which the CTF has been distilled), and hence
testing is like the standard VAE. Since the discretized-CTF
model is essentially a Markov chain, we call our model
Markov-chain-based VAE (MacVAE).

4. CTFs for Energy-based Density Estimation

We assume that the density of the observation x is charac-
terized by a parametric Gibbsian-style probability model
p✓(x) = 1

Z(✓) p̃✓(x) , 1
Z(✓)e

U(x;✓), where p̃✓(x) is an un-
normalized version of p✓(x) with parameter ✓, U(x;✓) ,
log p̃✓(x) is called the energy function (Zhao et al., 2017),
and Z(✓) ,

R
p̃✓(x)dx is the normalizer. Note this form

of distributions constitutes a very large class of distribu-
tions as long as the capacity of the energy function is large
enough. This can be easily achieved by adopting a DNN to
implement U(x;✓), the setting we considered in this paper.
Note our model can be placed in between existing implicit
and explicit density estimation methods, because we model
the data density with an explicit distribution form up to an
intractable normalizer. Such distributions have been proved
to be useful in real applications, e.g., (Haarnoja et al., 2017)
used them to model policies in deep reinforcement learning.
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Figure 3. Learning a generator with CTF. The goal is to match the
samples x0 from q��� to those after a CTF (xT ).
Our goal is to learn ✓ given {xi}N

i=1, which can be achieved
via standard maximum likelihood estimation (MLE): ✓ =
arg max✓

PN
i=1 log p✓(xi) , arg max✓ M({xi};✓).

The optimization can be achieved by standard stochastic gra-
dient descent (SGD), with the following gradient formula:

@M
@✓

=
1
N

NX

i=1

@U(xi;✓)
@✓

� Ep✓(x)


@U(x;✓)

@✓

�
(9)

The above formula requires an integration over the model
distribution p✓(x), which can be approximated by Monte
Carlo integration with samples. Here we adopt the idea of
CTFs and propose to use a DNN guided by a CTF, which we
call a generator, to generate approximate samples from the
original model p✓(x). Specifically, we require that samples
from the generator should well approximate the target p✓(x).
This can be done by adopting the CTF idea above, i.e., dis-
tilling knowledge of a CTF (which approaches p✓(x)) to
the generator. In testing, instead of generating samples
from p✓(x) via MCMC (which is complicated and time con-
suming), we generate samples from the generator directly.
Furthermore, when evaluating the likelihood for test data,
the constant Z(✓) can also be approximated by Monte Carlo
integration with samples drawn from the generator.

Note the first term on the RHS of (9) is a model fit to ob-
served data, and the second term is a model fit to synthetic
data drawn from p✓(x); this is similar to the discriminator
in GANs (Arjovsky et al., 2017), but derived directly from
the MLE. More connections are discussed below.

4.1. Learning via Amortization

Our goal is to learn a generator whose generated samples
match those from the original model p✓(x).Similar to infer-
ence setting, the generator is learned implicitly. However,
we also learn an explicit density model for the data by SGD,
with samples from the implicit generator to estimate gra-
dients in (9). Note that in this case, the CTF is performed
directly on the data space, instead of on latent-variable space
as in previous sections. Specifically, the sampling procedure
from the generator plus a CTF are written as:

x0 ⇠ q���(x0),xT ⇠ T (x0, T ) .

Here T (·, ·) is the continuous-time flow; a sample x0 from
q���(·) is implemented by a deep neural network (generator)
G���(!) with input ! ⇠ q0(!), where q0 is a simple distribu-
tion for a noise random variable, e.g., the isotropic normal
distribution. The procedure is illustrated in Figure 3.

Specifically, denote the parameters in the k-th step with
subscript “(k)”. For efficient sample generation, in the k-th
step, we again adopt the amortization idea from Section 3.2
to update ���(k�1) of the generator network G���(·), such that
samples from the updated generator match those from the
current generator followed by a one-step transformation
T1(·). After that, ✓ is updated by drawing samples from
q���(·) to estimate the expectation in (9). The algorithm is
presented in Algorithm 1 in Section E of the SM.

4.2. Connections to WGAN and MLE

There is an interesting relation between our model and the
WGAN framework (Arjovsky et al., 2017). To see this,
let pr be the data distribution. Substituting p✓(x) with
q���(x) for the expectation in the gradient formula (9) and
integrating out ✓, we have that our objective is

maxEx⇠pr [U(x;✓)]� Ex⇠q��� [U(x;✓)] (10)

This is an instance of the integral probability metrics (Ar-
jovsky & Bottou, 2017). When U is chosen to be 1-Lipschitz
functions, it recovers WGAN. This connection motivates us
to introduce weight clipping (Arjovsky et al., 2017) or alter-
native regularizers (Gulrajani et al., 2017) when updating ✓
for a better theoretical property. For this reason, we call our
model Markov-chain-based GAN (MacGAN).

Furthermore, it can be shown by Jensen’s inequality that the
MLE is bounded by (detailed derivations are provided in
Section F of the SM)

max
1
N

NX

i=1

log p✓(xi) (11)

 maxEx⇠pr [U(x;✓)]� Ex⇠q��� [U(x;✓)]� Ex⇠q��� [log q���] .

By inspecting (10) and (11), it is clear that: i) when learn-
ing the energy-based model parameters ✓, the objective
can be interpreted as maximizing an upper bound of the
MLE shown in (11); ii) when optimizing the parameter ���
of the inference network, we adopt the amortized learn-
ing procedure presented in Algorithm 1, whose objective
is min��� KL (q���kp✓), coinciding with the last two terms in
(11). In other words, both ✓ and ��� are optimized by max-
imizing the same upper bound of the MLE, guaranteeing
convergence of the algorithm, although previous work has
pointed out maximizing an upper bound is not a well-posed
problem in general (Salakhutdinov & Hinton, 2012).

Proposition 5 The optimal solution of MacGAN is the max-

imum likelihood estimator.

Note another difference between MacGAN and standard
GAN framework is the way of learning the generator q���.
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We adopt the amortization idea, which directly guides q��� to
approach p✓; whereas in GAN, the generator is optimized
via a min-max procedure to make it approach the empirical
data distribution pr. By explicitly learning p✓ , MacGAN is
able to evaluate likelihood for test data up to a constant.

5. Related Work

Our framework extends the idea of normalizing flows
(Rezende & Mohamed, 2015) and gradient flows (Altieri &
Duvenaud, 2015) to continuous-time flows, by developing
theoretical properties on the convergence behavior. Infer-
ence based on CTFs has been studied in (Sohl-Dickstein
et al., 2015) based on maximum likelihood and (Salimans
et al., 2015) based on the auxiliary-variable technique. How-
ever, they directly uses discrete approximations for the flow,
and the approximation accuracy is unclear. Moreover, the
inference network requires simulating a long Markov chain
for the auxiliary model, thus is less efficient than ours. Fi-
nally, the inference network is implemented as a parametric
distribution (e.g., the Gaussian distribution), limiting the rep-
resentation power, a common setting in existing auxiliary-
variable based models (Tran et al., 2016). The idea of amor-
tization (Gershman & Goodman, 2014) has recently been
explored in various research topics for Bayesian inference
such as in variational inference (Kingma & Welling, 2014;
Rezende et al., 2014) and Markov chain Monte Carlo (Wang
& Liu, 2017; Li et al., 2017b; Pu et al., 2017). Both (Wang
& Liu, 2017) and (Pu et al., 2017) extend the idea of Stein
variational gradient descent (Liu & Wang, 2016) with amor-
tized inference for a GAN-based and a VAE-based model,
respectively, which resemble our proposed MacVAE and
MacGAN in concept. Li et al. (2017b) applies amortization
to distill knowledge from MCMC to learn a student network.
The ideas in (Li et al., 2017b) are similar to ours, but the
motivation and underlying theory are different from that
developed here. Remarkably, the authors endowed standard
Euclidean distance in (8) for distribution matching, which
is inappropriate as will be shown in our experiments.

6. Experiments

We conduct experiments to test our CTF-based framework
for efficient inference and density estimation problems, and
compared them with related methods. Some experiments are
based on the excellent code for SteinGANk (Wang & Liu,
2017), where their default parameter setting are adopted.
The discretization stepsize h is robust as long as it is set in
a reasonable range, e.g., we set it the same as the stepsize
in SGD. More experimental results are given in the SM,
including a sensitiveness experiment on model parameters
in Section G.4.

khttps://github.com/DartML/SteinGAN

6.1. CTFs for inference

Synthetic experiment We examine our amortized learn-
ing framework with three toy experiments. Particularly, we
want to verify the necessity of distribution matching defined
in (8), i.e., we test D implemented as a discriminator for
Wasserstein distance (adversarial-CTF) against that imple-
mented with standard Euclidean distance (`2-CTF), which
can be considered as an instance of the amortized MCMC
(Li et al., 2017b) with a Langevin-dynamic transition func-
tion and a Euclidean-distance-based divergence measure
for samples. Two 2D distributions similar to (Rezende &
Mohamed, 2015) are considered, defined in Section D of
the SM. The inference network q��� is defined to be a 2-layer
MLP with isotropic normal random variables as input. Fig-
ure 4 plots the densities estimated with the samples from
transformations {TK=100} (before optimizing ���), as well as
with samples generated directly from q��� (after optimizing
���). It is clear that the amortized learning with Wasserstein
distance is able to distill knowledge from the CTF to the
inference network, while the algorithm fails when Euclidean
distance is adopted.

Next, we test MacVAE on a VAE setting on a simple syn-
thetic dataset containing 4 data points, each is a 4D one-hot
vector, with the non-zero elements at different positions.
The prior of latent code is a 2D standard Normal. Figure 5
plots the distribution of the learned latent code for VAE,
adversarial-CTF and `2-CTF. Each color means the codes
for one particular observation. It is observed that VAE di-
vides the space into a mixture of 4 Gaussians (consistent
with VAE theory), the adversarial-CTF learns complex pos-
teriors, while the `2-CTF converges to the mode of each
posterior (consistent with Proposition 4).

MacVAE on MNIST Following (Rezende & Mohamed,
2015; Tomczak & Welling, 2016), we define the inference
network as a deep neural network with two fully connected
layers of size 300 with softplus activation functions. We
compare MacVAE with the standard VAE and the VAE with
normalizing flow, where testing ELBOs are reported (Sec-
tion G.1 of the SM describes how to calculate the ELBO).
We do not compare with other state-of-the-art methods such
as the inverse autoregressive flow (Kingma et al., 2016),
because they typically endowed more complicated inference
networks (with more parameters), unfair for comparison.
We use the same inference network architecture for all the
models. Figure 7 (left) plots the testing ELBO versus train-
ing epochs. MacVAE outperforms VAE and normalizing
flows with a better ELBO (around -85.62).

6.2. CTFs for density estimation

We test MacGAN on three datasets: MNIST, CIFAR-10
and CelabA. Following GAN-related methods, the model is
evaluated by observing its ability to draw samples from the
learned data distribution. Inspiring by (Wang & Liu, 2017),

https://github.com/DartML/SteinGAN
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Figure 4. Illustration of CTF on toy distributions. Each row is
a distribution case. 1st column: true distributions; 2nd column:
MCMC results; 3rd column: approximations via adversarial-CTF;
4th column: approximations via `2-CTF.

(a) Standard VAE (b) Adversarial CTF (c) L2 CTFFigure 5. Comparison of the learned latent space with standard
VAE (left), adversarial-CTF (middle) and `2-CTF (right).

we define a parametric form of the energy-based model
as p✓(x) / exp{� kx�DEC✓ (ENC✓(x))k2}, where
ENC✓(·) and DEC✓(·) are encoder and decoder defined
by using deep convolutional neural networks and deconvo-
lutional neural networks, respectively, parameterized by ✓.
For simplicity, we adopt the popular DCGAN architecture
(Radford et al., 2016) for the encoder and decoder. The
generator G��� is defined as a 3-layer CNN with the ReLU
activation function (except for the top layer which uses tanh
as the activation function, see SM G for details). Follow-
ing (Wang & Liu, 2017), the stepsizes are set to (me�e)⇥lr

me�50 ,
where e indexes the epoch, me is the total number of epochs,
lr = 1e-4 when updating ✓, and lr = 1e-3 when updating
���. The stepsize in L1 is set to 1e-3.

We compare MacGAN with DCGAN (Radford et al., 2016),
the improved WGAN (WGAN-I) (Gulrajani et al., 2017)
and SteinGAN (Wang & Liu, 2017). We plot images gener-
ated with MacGAN and its most related method SteinGAN
in Figure 6 for CelebA and CIFAR-10 datasets. More re-
sults are provided in SM Section G. We observe that visually
MacGAN is able to generate clear-looking images. Follow-
ing (Wang & Liu, 2017), we also plot the images generated
by a random walk in the ! space in Figure 6.

Qualitatively evaluating a GAN-like model is challenging.
We follow literature and use the inception score (Salimans
et al., 2016) to measure the quantity of the generated images.
Figure 7 (right) plots inception scores vs epochs for different
models. MacGAN obtains competitive inception scores with
the popular DCGAN model. Quantitatively, we get a final
inception score of 6.49 for MacGAN, compared to 6.35 for

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

!

Figure 6. Generated images for CIFAR-10 (top) and CelebA (mid-
dle) datasets with MacGAN (left) and SteinGAN (right). The
bottom are images generated by a random walk on the ! space for
the generator of MacGAN, i.e., !t = !t�1+0.03⇥rand([�1, 1]).
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Figure 7. ELBO on MNIST vs epochs (left), and Inception score
versus epochs (right) for different models. VAE with 80-layer NF
is not included because it has much more parameters.

SteinGAN, 6.25 for WGAN-I and 6.58 for DCGAN.

7. Conclusion

We study the problem of applying CTFs for efficient in-
ference and explicit density estimation in deep generative
models, two important tasks in unsupervised learning. Com-
pared to discrete-time NFs, CTFs are more general and
flexible due to the fact that their stationary distributions can
be controlled without extra flow parameters. We develop
theory on the approximation accuracy when adopting a CTF
to approximate a target distribution. We apply CTFs on two
classes of deep generative models, a variational autoencoder
for efficient inference, and a GAN-like density estimator
for explicit density estimation and efficient data generation.
Experiments show encouraging results of our framework in
both models compared to existing techniques. One inter-
esting direction of future work is to explore more efficient
learning algorithms for the proposed CTF-based framework.
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