A  Proof of Lemma 1

Proof. Let us write it = Iy s, (i'71/2) where fi™1/2 is the update vector prior to the projection step.
Denote by (is, ug, 8¢, at, 85, 7;) the sample at iteration ¢. Define the vector At € RP*U to be AL =
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— and AT = 0 for all (i,u) # (is, us). Then the vector 4'+1/2 can be equivalently written
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Recall that ¥ = argmingcy, ||P0 — v*||o and ft = argmmueuH(I),u\IJT — p*|l1,1. We obtain that
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where we let Z = Zil 25:1 ﬁﬁﬁu . exp(ﬁAf:Zl). According to the definition of V, we have |®4.0"| < 2t
for all state s. Combining with our choice of M = 4¢,,;, + 1, we have A;‘Zl <Oforalli=1,...,D and
u=1,...,U. Consequently, applying the inequalities e* <14 x + %a:Q for all x <0 and log(1 4+ z) <z for
all z > —1, we have
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Combining the above results, we have
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In order to prove Lemma 1, we now show that E[At+1 | ] = Y 0en Ya,u®,(Py = OO + 7, — M - 1g)
and that 7 S0 it [(Aﬁj}) | 1] < 100DUt2

mZ{L’
dimension S. Recall that (i;,u;) is sampled from !, s; is sampled from ¢;,, a; is sampled from 1), and s}

We use 1g to denote the all one column vector with



is sampled from Py, (s¢, ). Hence, for all (i,u), we have
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It remains to prove that ZZ 1 E g UE[(AHI) | 7] < 100DUt2,, . Expanding the expectation, we have
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where the first inequality uses the relation that |®g, 0" + rq(s) — Pt — M| < 8tpmie + 2, the third equality
is due to that Za 5.5’ Uyu Do Puls,s’) =1 and the last inequality is because t,,;,; > 1. Substituting the
above abounds in equation (A.1), we obtain that
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where the last inequality is due to that
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Recall that '+t = Il xp, (i*F1/?) = argmin weuDrr (i [|it+1/2) and U is a convex set. By the property of
information projection with regard to KL dlvergence (see [1] Theorem 11.6.1 on page 367), we have

E[Dgr(illi'*) | Fi] < E[Dgr(alla™+/?) | F]-
Combining the above inequalities, we conclude that
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Finally, observe that
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the proof of Lemma 1. O
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where the last inequality is due to that fi;, < 1 and thus log(f; ) < 0 for all 7, u. To this point, we complete

B Proof of Lemma 2

Proof. Let (i¢,us, ¢, at, 8y, 7¢) be the sample at iteration t. Throughout the proof, we use the shorthand
AL £ (I);Z* — ®/ .. According to the update of Algorithm 1, we have o' = IIy,(¢" — aA'™). By using
the nonexpansize property of II,, we obtain that
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= 9" = 0[5 = 2aE[(A™) " | FJ(D" — 0) + " E[JAT 3 | F].

Recall that (i¢,u;) is sampled from jif, a; is sampled from 1),,, s; is sampled from ¢;, and s, is sampled from
Py, (st,-). We can expand the expectation of E[(A!*!) | 7] to obtain that
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Next we prove that B[[|A"™|3 | F,] < ||®[|3 .- A straightforward calculation yields that
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where the last equality is due to that g, ¥, and ¢; are distributions and Zi,u,a,s,s’ v, uuz uwPs.iPa(s,s) =1
Substituting the above bounds into equation (B.1), we get the first part of Lemma 2.
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It remains to show that ||[o! — /|3 = ||0]|3 < %. Let ' £ ®5. Multiply v/ by ®" and we get
® Ty’ = &7 ®v. Hence, by Assumption 1 that ®T® is invertible, we have
o= (T®) 1oy
By our definition of ¥ and V, we have |[v'||oo < 2tmiz. Using the relation that Apay((®7T®)71) =
where Anax and Agi, denotes the largest and the smallest eigenvalue, we obtain
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As a result, we have |72 < M

@ a) Recall that every column of ® is a distribution and thus ||®||; = 1.

Using this relationship, we obtain that |]|3 < % m

C Proof of Theorem 4

Proof. All the norms used in the proof of Theorem 4 are matrix norms. For a matrix ® of size m x n, the
matrix p-norm for 1 < p < oo is defined as ||®||, = max{||®v||, : v € R™ with ||v|, = 1}. Especially, ||®||; is
the maximum absolute column sum and ||®|| is the maximum absolute row sum.

We begin by analyzing the behavior of the duality gap in Theorem 2. By some algebra, we can rewrite
the LFS of equation (9) as
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where p¥, is the a-th column of p*. Next, we bound (i), (ii), (iii) respectively.
Analysis of (i): Recall that the stationary distribution p* satisfies the condition Y, ,(ui,) (I — Py) =
0s. So we can bound (i) by
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where the first inequality is due to that ||®1P2]/cc < [[P1]/oc||P2]/oc for two matrices ®; and P, the second
inequality is due to that ||®0%||oc < 2, for all ¢ (see Lemma 1 in [2]). In the third inequality, we
use the fact that the matrix oo-norm of a row vector is the sum of its components. And thus we have
S @AY, — )Tl = 80T — 1.

Analysis of (ii): Using the inequality that [|®1®s|oc < [|®1]|oc[|P2]lec for two matrices @1, P2, we have

) < D 1(@aw ], — i) Tlsollralloo < [|@pTT —
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where the last inequality is due to that all the rewards are bounded between 0 and 1.

Analysis of (iii): We note that for any iteration ¢, > . (®a'W¥), )T and ZGGA(@M\PT )T P, are two
row vectors that both sum to 1. Recall that the matrix co-norm of a row vector is the sum of its components.
Thus, we have || >, c 4 (PA'W )T =3 c /(@AW )T Pylloe < 2. As a result, we have
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By Theorem 2, we have the relation that (C.1) = O (tmm (C.:p + \/Ulog(DU)) ./%) . By equation (13),

the first two terms of (C.1) is larger than 1(v* — E[5"]). Combining the above results and the bounds on
(i), (ii) and (iii), we draw the conclusion of Theorem 4. O
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