
Stein Points

Supplement
This electronic supplement is organised as follows: In Section A proofs for the theoretical results in the main text are
provided. In Section B we provide details for the two existing methods (MED, SVGD) that formed our experimental
benchmark. Then, in Section C, we provide additional numerical results that elaborate on those reported in the main text.

Code Code to reproduce these experiments is available from:

github.com/wilson-ye-chen/stein_points

A. Proof of Theoretical Results in the Main Text
A.1. Proofs of Theorems 1 and 2: Stein Herding and Stein Greedy Convergence

We will show that both Theorem 1 and Theorem 2 follow from the following unified Stein Point convergence result, proved
in Section A.1.3.

Theorem 5 (Stein Point Convergence). Suppose k0 with k0,P = 0 is a P -sub-exponential reproducing kernel. Then there
exist constants c1, c2 > 0 depending only on k and P such that any point sequence {xi}ni=1 satisfying
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A.1.1. PROOF OF THEOREM 1: STEIN HERDING CONVERGENCE

Instantiate the constants c1, c2 > 0 from Theorem 5, and consider any point sequence {xi}ni=1 satisfying
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so the desired conclusion follows from Theorem 5.

A.1.2. PROOF OF THEOREM 2: STEIN GREEDY CONVERGENCE

Instantiate the constants c1, c2 > 0 from Theorem 5, and consider any point sequence {xi}ni=1 satisfying
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so the desired conclusion follows from Theorem 5.
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A.1.3. PROOF OF THEOREM 5: STEIN POINT CONVERGENCE

Our high-level strategy is to show that, when k0 is P -sub-exponential, optimizing over a suitably truncated search space on
each step is sufficient to optimize the discrepancy globally. To obtain an explicit rate of convergence, we adapt the greedy
approximation error analysis of Jones (1992), which applies to uniformly bounded kernels. We begin by fixing any sequence
of truncation levels (Sj)∞j=1 with each Sj ∈ [0,∞), defining the truncation sets Bj = {x ∈X ∶ k0(x,x) ≤ S2

j }, and letting
Mj denote the convex hull of {k0(x, ⋅)}x∈Bj . Next we identify a truncation-optimal hj ∈ arg minf∈Mj

J(f). Now, fix any
point sequence {xi}ni=1 satisfying
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for some approximation level δ ≥ 0 and each 1 ≤ j ≤ n. In the remainder, we will recursively bound the discrepancy of this
point sequence in terms of each Sj and ∥hj∥K0

, bound each ∥hj∥K0
in terms of Sj using the P -sub-exponential tails of k0,

and show that an appropriate setting of each Sj delivers the advertised claim.

Bounding discrepancy For each j, let fj = 1
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where the final two inequalities follow by Cauchy-Schwarz and Jensen’s inequality.

Let Y = k0(Z,Z) for Z ∼ P . We will bound the tail expectation in the final display by considering the biased random
variable Y ∗ = k0(Z∗, Z∗) for Z∗ with density ρ(z∗) = k0(z

∗,z∗)p(z∗)
E[Y ]

. By (Wainwright, 2017, Thm. 2.2), since Y is
sub-exponential, there exists c0 > 0 such that E[eλY ] <∞ for all ∣λ∣ ≤ c0. For any λ ≠ 0 with ∣λ∣ ≤ c0/2, we have, by the
relation x ≤ ex,
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∗
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E[Y ]
= E[λY eλY ]

λE[Y ]
≤ E[e2λY ]
λE[Y ]

<∞.

Hence, by (Wainwright, 2017, Thm. 2.2), Y ∗ is also sub-exponential and satisfies, for some c̃1, c2 > 0, P (Y ∗ ≥ t) ≤ c̃1e−c2t
for all t > 0.

Applying this finding to the bounding of hi, we obtain
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A.2. Proof of Theorem 3: Log Inverse KSD Controls Convergence

Fix any α > 0 and β < 0. Our proof will leverage (Gorham & Mackey, 2017, Thm. 7). This requires demonstrating two
separate properties for the log inverse kernel: first, the log inverse function Φ(z) ≜ (α+ log(1+ ∥z∥22))β has a nonvanishing
generalized Fourier transform, and second, whenever DK0,P (µm) → 0, the measures µm are uniformly tight. We will
repeatedly use the notation γ(r) ≜ (α + log(1 + r))β and φ(r) ≜ γ(r2) throughout the proof. Moveover, we will use f̂ to
denote the (generalized) Fourier transform of a function f , and Vd will represent the volume of the unit Euclidean ball in d
dimensions. Finally, we write f (m) for the m-th derivative of any sufficiently differentiable function f ∶ R→ R.

To demonstrate the first property, we begin with the following lemma.

Lemma 6 (Log Inverse Function Is Completely Monotone). Fix any α > 0 and β < 0. The function γ(r) ≜ (α+ log(1+r))β
is completely monotone, i.e., γ ∈ C∞ and (−1)mγ(m)(r) ≥ 0 for all m ∈ N0 and all r ≥ 0, and hence the function
k2 ∶ Rd ×Rd → R given by k2(x,x′) ≜ γ(∥x − x′∥22) is a kernel function for all dimensions d ∈ N.

Proof. By (Wendland, 2004, Theorem 7.13) we know that Φ is positive semidefinite for all dimensions d ∈ N if and only if
γ is completely monotone. Thus it remains to show that γ is completely monotone.

Since α > 0, γ(r) > 0 for all r ≥ 0. To verify (−1)mγ(m)(r) ≥ 0 for all m ≥ 1, we will proceed by induction. Let us
suppose that for some m ≥ 1,

γ(m)(r) = (−1)m
m

∑
l=1

cl,m(α + log(1 + r))β−l(1 + r)−m (10)

where each cl,m ∈ R is positive. Taking another derivative yields

γ(m+1)(r) = (−1)m+1
m+1

∑
l=1

cl,m+1(α + log(1 + r))β−l(1 + r)−m−1,
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where c1,m+1 ≜mc1,m, cl,m+1 ≜mcl,m + (l − β − 1) cl−1,m for l > 1 and cl,m ≜ 0 for all l >m, completing the induction
step.

As for the base case, notice γ′(r) = β(α + log(1 + r))β−1(1 + r)−1, which establishes the identity for l = 1 by setting
c1,1 ≜ −β. The conclusion of this proof by induction implies (−1)mγ(m)(r) ≥ 0 for all m and all r ≥ 0. By (10), γ ∈ C∞,
establishing the lemma.

Knowing that γ is a completely monotone function, we can now demonstrate Φ̂ has a nonvanishing generalized Fourier
transform.

Lemma 7 (Log Inverse Function Has Nonvanishing GFT). Consider the function Φ ∶ Rd → R given by Φ(z) = (α+ log(1+
∥z∥22))β for some α > 0 and β < 0. Its generalized Fourier transform Φ̂(w) is radial, nonvanishing, and continuous for
w ≠ 0. Moreover, Φ̂(w)→ 0 as ∥w∥2 →∞.

Proof. We will first use induction to prove an intermediate result that states for any m ∈ N0,

∆mΦ(z) = ∑
(u,v)∈Sm

τu,v ∥z∥2v2 γ(u)(∥z∥22) (11)

where τu,v > 0 are positive reals, Sm = {(u, v) ∈ N2
0 ∣ v ≤ u −m,u ≤ 2m} and γ(r) ≜ (α + log(1 + r))β .

Note for the base case m = 0, the claim above for ∆0Φ = Φ clearly holds. Now suppose it holds from some m ∈ N0. If
A ∶ Rd → R is a function that can decomposed as A(z) ≜ f(∥z∥22) g(∥z∥

2
2) where f, g ∈ C∞([0,∞)), then we have

∆A(z) = [2dg′(∥z∥22) + 4 ∥z∥22 g
′′(∥z∥22)] f(∥z∥

2
2) + [2dg(∥z∥22) + 4 ∥z∥22 g

′(∥z∥22)] f
′(∥z∥22) + 4 ∥z∥22 g(∥z∥

2
2)f

′′(∥z∥22).
(12)

Consider each term in the decomposition of ∆mΦ(z) from the induction hypothesis. If we let g(r) = rv and f(r) = φ(u)(r),
we see that each term from (12) is of the form τ ′u,v ∥z∥

2v′

2 φ(u′)(∥z∥22) where the values for (u′, v′) are (u, v − 1), (u, v −
1), (u + 1, v), (u + 1, v), (u + 2, v + 1) respectively. Notice that when v = 0 or v = 1, the first or second derivative of g will
be zero and these terms may disappear altogether. Thus all these tuples will lie in Sm+1 for any (u, v) ∈ Sm, and so we must
have ∆m+1Φ(z) satisfies the induction hypothesis as well, completing the proof by induction.

Now we can prove the lemma. Suppose 2m ≥ d. Then by the triangle inequality and a radial substitution (Baker, 1999),

∫
Rd

∣∆mΦ(z)∣dz ≤ ∑
(u,v)∈Sm

∫
Rd
τu,v ∥z∥2v2 ∣φ(u)(∥z∥22)∣dz = dVd ∑

(u,v)∈Sm

∫
∞

0
τu,vr

2v+d−1∣φ(u)(r2)∣dr.

Because ∣φ(u)(r)∣ = O(r−u logβ−1(r)) as r → ∞ for u ∈ N by (10), we see that each integrand above is
O(r2(v−u)+d−1 logβ−1(r)). But since v ≤ u −m, this will imply that each integrand is O(r−2m+d−1 logβ−1(r)), which is
integrable for large r yielding ∆mΦ ∈ L1(Rd).

By (Steinwart & Christmann, 2008, Lemma 4.34) and the fact that positive definiteness is preserved by summation, we
have ∆mΦ is a positive definite function. This along with the fact that ∆mΦ ∈ L1(Rd) allows us to invoke (Wendland,
2004, Theorem 6.11) and (Wendland, 2004, Theorem 6.18) to obtain ∆̂mΦ is continuous, radial and nonvanishing.
Moreover, ∆mΦ belonging to L1(Rd) implies its Fourier transform belongs to L∞(Rd). The lemma follows by noticing
∆̂mΦ(w) = ∥w∥2m2 Φ̂(w), i.e., Φ̂(w) = ∥w∥−2m2 ∆̂mΦ(w) for all w ≠ 0.

We now need to demonstrate the second property to complete the proof of Theorem 3, but in order to do so, we first will
establish the lemma below. By Lemma 7, we know Φ̂ is radial and thus can write Φ̂(w) = φ∧(∥w∥2) for some continuous
function φ∧ ∶ (0,∞)→ (0,∞). Our first priority will be to lower bound φ∧ near the origin.

Lemma 8 (Log Inverse GFT Lower Bound). If Φ is the log inverse function on Rd from Lemma 7, then lim infr→0+ r
d(α +

log(1 + 1/r2))−β+1φ∧(r) > 0 where Φ̂(w) = φ∧(∥w∥2) for all w ≠ 0.

Proof. First we will show that φ∧ is strictly decreasing. Since r ↦ (α+ log(1+ r))β was shown to be completely monotone
in Lemma 6, by (Wendland, 2004, Theorem 7.14) we must have Φ(z) = ∫

∞

0 e−t∥z∥
2
2∂v(t) for some finite, non-negative
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Borel measure v on [0,∞) that is not concentrated at zero. Let (ϕm)∞m=1 be a sequence of Schwartz functions (Wendland,
2004, Definition 5.17) defined on Rd. Then, for each m, both ϕ̂m and Φϕ̂m are also Schwartz functions, and thus

∫
Rd

[∫
∞

0
∣e−t∥x∥

2
2 ϕ̂m(x)∣∂v(t)] dx = ∫

Rd
[∫

∞

0
e−t∥x∥

2
2 ∣ϕ̂m(x)∣∂v(t)] dx = ∫

Rd
Φ(x)∣ϕ̂m(x)∣dx <∞,

as all Schwartz functions are integrable. This allows us to use Fubini’s theorem in conjunction with Plancherel’s Theorem to
argue

∫
Rd

Φ̂(w)ϕm(w)dw = ∫
Rd

Φ(x)ϕ̂m(x)dx = ∫
Rd

[∫
∞

0
e−t∥x∥

2
2∂v(t)] ϕ̂m(x)dx

= ∫
Rd
∫

∞

0
e−t∥x∥

2
2 ϕ̂m(x)∂v(t)dx

= ∫
∞

0
∫
Rd
e−t∥x∥

2
2 ϕ̂m(x)dx∂v(t)

= ∫
∞

0
∫
Rd

(2t)d/2e−
1
4t ∥w∥

2
2ϕm(w)dw∂v+(t) + v0ϕm(0),

where we have used the decomposition v ≜ v+ + v0δ0 for v0 ≥ 0 and v+ non-zero and absolutely continuous with respect
to Lebesgue measure on [0,∞). Let B ∶ Rd → R be a bump function, e.g., B(x) ≜ Z−1 exp{−1/(1 − ∥x∥22)}I [∥x∥2 < 1]
where Z is the normalization constant chosen such that ∫Rd B(x)dx = 1. Then let us define ϕm ∶ Rd → R via the mapping
ϕm(w) ≜ mdB(m(w −w0e1)) −mdB(m(w −w1e1)), where 0 < w0 < w1 and e1 ∈ Rd is the first standard basis vector.
Then ∫Rd Φ̂(w)ϕm(w)dw → Φ̂(w0e1) − Φ̂(w1e1) = φ∧(w0) − φ∧(w1) since Φ̂ is a continuous in neighborhoods of w0e1
and w1e1 (Wendland, 2004, Theorem 5.22).

Because v+ cannot be the zero measure, there must be some finite interval [a0, b0] ⊂ (0,∞) such that v+([a0, b0]) > 0. For
each t > 0 and m > max( 1

w0
, 2
w1−w0

), we have

Am(t) ≜ ∫
Rd

(2t)d/2e−
1
4t ∥w∥

2
2ϕm(w)dw = ∫

Rd
(2t)d/2(e−

1
4t ∥w−w0e1∥

2
2 − e−

1
4t ∥w−w1e1∥

2
2)mdB(mw)dw > 0,

since ∥w −w0e1∥2 < ∥w −w1e1∥2 when ∥w∥2 < min(w0−w1

2
,w0). Using (Wendland, 2004, Theorem 5.22) again, we have

Am(t)→ (2t)d/2(e− 1
4tw

2
0 − e− 1

4tw
2
1) as m→∞ for any t > 0. Moreover, for all t ∈ [a0, b0] and m ≥ 1, we have

∣Am(t)∣ ≤ ∫
Rd

(2t)d/2e−
1
4t ∥w−w0e1∥

2
2mdB(mw)dw ≤ (2b0)d/2 sup

∥w∥2<1

e
− 1

4b0
∥w−w0e1∥

2
2 <∞. (13)

Hence, the dominated convergence theorem allows us to exchange the limit over m and integral over t below to conclude

φ∧(w0) − φ∧(w1) = lim
m→∞

∫
∞

0
Am(t)∂v+(t) + v0ϕm(0) ≥ lim

m→∞
∫

b0

a0
Am(t)∂v+(t) = ∫

b0

a0
lim
m→∞

Am(t)∂v+(t)

= ∫
b0

a0
(2t)d/2(e−

1
4tw

2
0 − e−

1
4tw

2
1)∂v+(t) ≥ v+([a0, b0]) min

t∈[a0,b0]
{(2t)d/2(e−

1
4tw

2
0 − e−

1
4tw

2
1)} > 0,

showing φ∧ is strictly decreasing as claimed.

Suppose ψ ∶ [0,∞) → R is a C∞ function with support [a, b] for 0 < a < b such that ψ(r) > 0 for all r ∈ (a, b) and
∫
∞

0 ψ(r)dr = 1. Then because φ∧ is strictly decreasing, by the mean value theorem we have

φ∧(b/λ) ≤ ∫
∞

0
λφ∧(r)ψ(λr)dr ≤ φ∧(a/λ) (14)

for all λ > 0. If we assign Ψ(w) ≜ ψ(∥w∥2) to be the radial continuation of ψ, by (Baker, 1999) the quantity sandwiched
above becomes

∫
∞

0
λφ∧(r)ψ(λr)dr = ∫

∞

0
φ∧(s/λ)ψ(s)ds =

1

dVd
∫
Rd

Φ̂(w/λ) Ψ(w)
∥w∥d−12

dw.

Next suppose that ξ ∶ [0,∞) → R is a Schwartz function satisfying ξ(k)(0) = 0 for all integral k ≥ 0, and let Ξ ∶ Rd → R
given by Ξ(x) ≜ ξ(∥x∥2) be the radial continuation of ξ. Then by Plancherel’s Theorem, scaling the input of a Fourier
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transform as in (Wendland, 2004, Theorem 5.16), and the change to spherical coordinates in (Baker, 1999), for any λ > 0,
we have

∫
Rd

Φ̂(w/λ)Ξ(w)dw = ∫
Rd

Φ(w)Ξ̂(w/λ)dw = dVd ∫
∞

0
rd−1φ(r)ξ∧(r/λ)dr = dVd λd ∫

∞

0
sd−1φ(λs)ξ∧(s)ds,

(15)

where s = r/λ and ξ∧ is the radial function associated with Ξ̂, i.e., Ξ̂(w) = ξ∧(∥w∥2) for all w.

Let us define ω ∶ [0,∞) → R by the mapping ω(t) ≜ (α + t)β . Then by the mean value theorem and the fact that ω′ is
increasing, we have for all s > 1

−ω′(log(1 + λ2s2)) ≤ −ω(log(1 + λ2s2)) − ω(log(1 + λ2))
log(1 + λ2s2) − log(1 + λ2)

≤ −ω′(log(1 + λ2)).

By rearranging terms, this implies for all λ > 0

(−β)(α + log(1 + λ2s2)
α + log(1 + λ2)

)
β−1

log(1 + λ2s2

1 + λ2
) ≤ −ω(log(1 + λ2s2)) − ω(log(1 + λ2))

ω(log(1 + λ2))(α + log(1 + λ2))−1
≤ (−β) log(1 + λ2s2

1 + λ2
) .

Since log( 1+λ2s2

1+λ2 )→ 2 log s as λ→∞, and the sandwiched term above is −(α + log(1 + λ2))(φ(λs)/φ(λ) − 1), we have
(α + log(1 + λ2))(φ(λs)/φ(λ) − 1)→ 2β log s as λ→∞ for all s > 1. The case for s ∈ (0,1] is analogous and yields the
same asymptotic limit.

With this new asymptotic expansion in hand, we will revisit (15). We have

λ−dφ(λ)−1(α + log(1 + λ2))∫
Rd

Φ̂(w/λ)Ξ(w)dw = dVdφ(λ)−1(α + log(1 + λ2))∫
∞

0
φ(λs)sd−1ξ∧(s)ds

= dVd (α + log(1 + λ2))∫
∞

0

φ(λs)
φ(λ)

sd−1ξ∧(s)ds

= dVd ∫
∞

0
(α + log(1 + λ2)) [φ(λs)

φ(λ)
− 1] sd−1ξ∧(s)ds.

Notice that final integrand converges to 2βsd−1(log s)ξ∧(s) pointwise for all s ≥ 0 as λ → ∞. Since ξ∧ is a Schwartz
function on [0,∞), we can utilize the fact that s ↦ log s is integrable near the origin to reason that sd−1(log s)ξ∧(s) is a
Schwartz function as well, and thus integrable. Hence by the dominated convergence theorem, we have the integral above
converges to 2β dVd ∫

∞

0 sd−1(log s)ξ∧(s)ds as λ→∞.

Now suppose we choose Ξ(x) ≜ ∥x∥1−d2 Ψ(x). By (14) we have

lim
λ→∞

λ−dφ(λ)−1(α + log(1 + λ2))φ∧(b/λ) ≤ 2β ∫
∞

0
sd−1(log s)ξ∧(s)ds ≤ lim

λ→∞
λ−dφ(λ)−1(α + log(1 + λ2))φ∧(a/λ).

By Lemma 7, we know φ∧(r) > 0 for all r > 0, and thus the left-hand side above must be non-negative. Hence if we can
show for some choice of ψ that the sandwiched term is non-zero, then the proof of the lemma will follow from choosing
r = a/λ.

Let us define L(x) = log ∥x∥2 with generalized Fourier transform L̂. As usual, let l ∶ [0,∞) → R and l∧ ∶ [0,∞) → R be
the radial functions associated with L and L̂. Notice that again by Plancherel’s Theorem

∫
∞

0
sd−1(log s)ξ∧(s)ds =

1

dVd
∫
Rd

Ξ̂(w)L(w)dw = 1

dVd
∫
Rd

Ξ(x)L̂(x)dx = 1

dVd
∫
Rd

Ψ(x)
∥x∥d−12

L̂(x)dx

= ∫
∞

0
ψ(r)l∧(r)dr. (16)

Since we are free to choose ψ to be any Schwartz function with support [a, b], if we could not find a function ψ such that the
quantity in (16) is non-zero, this would imply the support of l∧ is a subset of {0}. But this would mean l∧ is some multiple
of a point mass at zero, which would imply l is a constant function, a contradiction. Thus we must be able to find some ψ
such that the integral above is non-zero, completing the lemma.
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Fix any a0 > 0 and α0 ∈ (0, 1
2
). Our strategy for showing the KSD controls tightness will mimic (Gorham & Mackey, 2017,

Lem. 16): we will show that a bandlimited approximation of the function gj(x) = 2α0xj(a20 + ∥x∥22)α0−1 belongs to the
inverse log RKHS and thus enforces tightness.

First note that in the proof of (Gorham & Mackey, 2017, Lem. 16), it was shown h = TP g was a coercive, Lipschitz, and
bounded-below function for P ∈ P . Moreover, in the proof of (Gorham & Mackey, 2017, Lem. 12), a random vector Y with
density ρ(y) is constructed such that the support of ρ̂ belongs to [−4,4]d and also ∥Y ∥2 is integrable. Consider the new
function g○(x) ≜ E [g(x + Y )] for all x ∈ Rd. By the convolution theorem, ĝ○j = ĝj ρ̂ and so g○j is bandlimited for all j. In
the proof of (Gorham & Mackey, 2017, Lem. 16), ĝj was shown to grow asymptotically at the rate (iwj) ∥w∥−d−2α0

2 as
∥w∥2 → 0. Thus

d

∑
j=1
∫
Rd

ĝ○j(w)ĝ○j(w)
Φ̂(w)

dw =
d

∑
j=1
∫
[−4,4]d

ĝj(w)ĝj(w)ρ̂(w)2

Φ̂(w)
dw ≤ κ0 ∫

[−4,4]d

∥w∥−2d−4α0+2
2

Φ̂(w)
dw

≤ κ1 ∫
4
√
d

0
r−4α0+1 log−β+1(1 + r−2)dr,

for some constants κ0, κ1 > 0 where we used Lemma 8 in the final inequality. This integral is finite for all α0 ∈ (0, 1
2
) and

any β < 0, which implies g○ is in the log inverse RKHS by (Wendland, 2004, Theorem 10.21).

Finally, notice that via the argument proving (Gorham & Mackey, 2017, Lemma 12),

sup
x∈Rd

∣TP g○(x) − h(x)∣ ≤
3d log 2

π
(sup
x∈Rd

∥∇h(x)∥2 + sup
x∈Rd

∥∇2 log p(x)∥
op
⋅ sup
x∈Rd

∥g(x)∥2) <∞.

Since h is bounded below and coercive, these properties are inherited by TP g○. This allows us to apply (Gorham & Mackey,
2017, Lemma 17) to argue DK0,P (µm)→ 0 implies the measures µm are uniformly tight. Combining this with Lemma 7
allows us to utilize (Gorham & Mackey, 2017, Theorem 7) for the log inverse kernel, thereby concluding the proof.

A.3. Proof of Theorem 4: IMQ Score KSD Convergence Control

For b = ∇ log p, introduce the alias kb = k3, let Kb denote the RKHS of kb, and let Cc represent the set of continuous
compactly supported functions on X . Since P ∈ P , the proof of Thm. 13 in (Gorham & Mackey, 2017) shows that if, for
each h ∈ C1 ∩Cc and ε > 0, there exists hε ∈ Kb such that supx∈X ∣(TPh)(x) − (TPhε)(x)∣ ≤ ε, then µm ⇒ P whenever
DK0,P (µm) → 0 and (µm)∞m=1 is uniformly tight. Hence, to establish our result, it suffices to show (1) that, for each
h ∈ C1 ∩Cc and ε > 0, there exists hε ∈ Kb such that supx∈X max(∥∇(h − hε)(x)∥2 , ∥b(x)(h − hε)(x)∥2) ≤ ε and (2) that
DK0,P (µm)→ 0 implies (µm)∞m=1 is uniformly tight.

A.3.1. APPROXIMATING C1 ∩Cc WITH Kb

Fix any f ∈ C1 ∩Cc and ε > 0, and let K denote the RKHS of k(x, y) = (c2 + ∥x − y∥22)β . Since p is strictly log-concave, b
is invertible with det(∇b(x)) never zero. Since P ∈ P , b is Lipschitz. By the following theorem, proved in Section A.4, it
therefore suffices to show that there exists fε ∈ K such that supx∈X max(∥∇(f − fε)(x)∥2 , ∥x(f − fε)(x)∥2) ≤ ε.
Theorem 9 (Composition Kernel Approximation). For b ∶X →X invertible and k a reproducing kernel on X with induced
RKHSK, define the composition kernel kb(x, y) = k(b(x), b(y)) with induced RKHSKb. Suppose that, for each f ∈ C1∩Cc
and ε > 0, there exists fε ∈ K such that

sup
x∈X

max(∥∇(f − fε)(x)∥2 , ∥x(f − fε)(x)∥2) ≤ ε.

If b is Lipschitz and det(∇b(x)) is never zero, then, for each h ∈ C1 ∩Cc and ε > 0, there exists hε ∈ Kb such that

sup
x∈X

max(∥∇(h − hε)(x)∥2 , ∥b(x)(h − hε)(x)∥2) ≤ ε.

Since the identity map x↦ x is Lipschitz and f ∈ L2 because it is continuous and compactly supported, (Gorham & Mackey,
2017, Lem. 12) provides an explicit construction of fε ∈ K satisfying our desired property whenever k(x, y) = Φ(x − y) for
Φ ∈ C2 with non-vanishing Fourier transform. Our choice of IMQ k satisfies these properties by (Wendland, 2004, Thm.
8.15).
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A.3.2. CONTROLLING TIGHTNESS

Since P is distantly dissipative,

− ∥b(x)∥2 ∥x∥2 ≤ ⟨b(x), x⟩ ≤ −κ ∥x∥22 +C + ⟨b(0), x⟩ ≤ −κ ∥x∥22 +C + ∥b(0)∥2 ∥x∥2

by Cauchy-Schwarz. Hence, b is norm-coercive, i.e., ∥b(x)∥2 →∞ whenever ∥x∥2 →∞. Since ∇b is bounded, our desired
result follows from the following lemma which guarantees tightness control on b under weaker conditions.

Lemma 10 (Coercive Score Kernel KSDs Control Tightness). If b ∶ X → X is norm coercive and differentiable, and
∇jbj(x) = o(∥b(x)∥22) as ∥x∥2 →∞, then lim supmDK0,P (µm) <∞ implies (µm)∞m=1 is tight.

Proof. Fix any a > c/2 and α ∈ (0, 1
2
(β + 1)). The proof of (Gorham & Mackey, 2017, Lem. 16) showed that the function

gj(x) = 2αxj(a2 + ∥x∥22)α−1 ∈ K for each j ∈ {1, . . . , d}. Hence gb,j(x) ≜ gj(b(x)) ∈ Kb for each j ∈ {1, . . . , d} by
Lemma 12. By our assumptions on ∇b, we have

(TP gb)(x) = 2α(∥b(x)∥22 (a
2 + ∥b(x)∥22)

α−1 +
d

∑
j=1

∇jbj(x)(a2 + ∥b(x)∥22)
α−1 + bj(x)22(α − 1)(a2 + ∥b(x)∥22)

α−2∇jbj(x))

= 2α ∥b(x)∥22 (a
2 + ∥b(x)∥22)

α−1 + o(∥b(x)∥2α2 ),

so TP gb is coercive, and the proof of (Gorham & Mackey, 2017, Lem. 17) therefore gives the result (µm)∞m=1 is uniformly
tight whenever lim supmDK0,P (µm) finite.

A.4. Proof of Theorem 9: Composition Kernel Approximation

Let c = b−1 represent the inverse of b, and for any function f on X , let fc(y) = f(c(y)) denote the composition of f and c
so that fc(b(x)) = f(x). The following lemma shows that fc inherits many of the properties of f under suitable restrictions
on b.

Lemma 11 (Composition Properties). For any function f on X and invertible function b on X , define fc(y) = f(c(y)) for
c = b−1. The following properties hold.

1. If f has compact support and b is continuous, then fc has compact support.

2. If f ∈ C1, b ∈ C1, and det(∇b(x)) is never zero, then fc ∈ C1.

Proof. We prove each claim in turn.

1. If f is compactly supported and b is continuous, then supp(fc) = b(supp(f)) is also compact, since continuous
functions are compact-preserving (Joshi, 1983, Prop. 1.8).

2. If f ∈ C1, b ∈ C1, and det(∇b(x)) is never zero, then c is continuous by the inverse function theorem (Spivak, 1965,
Thm. 2-11), x↦ (∇b(x))−1 is continuous, and hence ∇fc(y) = (∇c(y))(∇f)(c(y)) = ((∇b)(c(y)))−1(∇f)(c(y))
is continuous.

Our next lemma exposes an important relationship between the RKHSes K and Kb.
Lemma 12. Suppose f is in the RKHS K of a reproducing kernel k on X and b ∶ X → X is invertible. Then fb is in the
RKHS Kb of kb for fb(x) = f(b(x)) and kb(x, y) = k(b(x), b(y)).

Proof. Since f ∈ K, there exist fm = ∑Jmj=1 am,jk(xm,j , ⋅) for m ∈ N, am,j ∈ R, and xm,j ∈ X such that
limm→∞ ∥fm − f∥K = 0 and limm→∞ fm(x) = f(x) for all x ∈X . Now let c = b−1, and define

fm,b(x) = fm(b(x)) =
Jm

∑
j=1

am,jk(xm,j , b(x)) =
Jm

∑
j=1

am,jkb(c(xm,j), x).
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Since Kb = {∑Jj=1 ajkb(yj , ⋅) ∶ J ∈ N, aj ∈ R, yj ∈X}, each fm,b ∈ Kb. Since (fm)∞m=1 is a Cauchy sequence, and
⟨fm,b, fm′,b⟩2Kb = ∑Jmj=1 am,j∑

Jm′
j′=1 am′,j′kb(c(xm,j), c(xm′,j′)) = ⟨fm, fm′⟩K so that ∥fm,b − fm′,b∥Kb = ∥fm − fm′∥K

for all m,m′, the sequence (fm,b)∞m=1 is also Cauchy and converges in ∥⋅∥Kb to its pointwise limit fb. Since an RKHS is
complete, fb ∈ Kb.

With our lemmata in hand, we now prove the advertised claim. Suppose b is Lipschitz, det(∇b(x)) is never zero, and
for each f ∈ C1 ∩ Cc and ε > 0 there exists fε ∈ K such that supx∈X max(∥∇(f − fε)(x)∥2 , ∥x(f − fε)(x)∥2) ≤ ε.
Select any h ∈ C1 ∩ Cc and any ε > 0. By Lemma 11, hc ∈ C1 ∩ Cc, and hence there exists hc,ε ∈ K such that
supy∈X max(∥∇(hc − hc,ε)(y)∥2 , ∥y(hc − hc,ε)(y)∥2) ≤ ε/max(1,M1(b)). Now define hε(x) = hc,ε(b(x)) so that
hε ∈ Kb by Lemma 12. We have supx∈X ∥b(x)(hε − h)(x)∥2 ≤ supy∈X ∥y(hc,ε − hc)(y)∥2 ≤ ε, and

sup
x∈X

∥∇hε(x) −∇h(x)∥2 = sup
x∈X

∥(∇b(x))((∇hc,ε)(b(x)) − (∇hc)(b(x)))∥2 ≤M1(b)ε/max(1,M1(b)) ≤ ε.

B. Implementational Detail
B.1. Benchmark Methods

In this section we briefly describe the MED and SVGD methods used as our empirical benchmark, as well as the (block)
coordinate descent method that was used in conjunction with Stein Points.

B.1.1. MINIMUM ENERGY DESIGNS

The first class of method that we consider is due to (Joseph et al., 2015). That work restricted attention to X = [0,1]d and
constructed an energy functional:

Eδ,P ({xi}ni=1) ∶= ∑
i≠j

⎡⎢⎢⎢⎣

p(xi)−
1
2d p(xj)−

1
2d

∥xi − xj∥2

⎤⎥⎥⎥⎦

δ

for some tuning parameter δ ∈ [1,∞) to be specified. In (Joseph et al., 2017) the rule-of-thumb δ = 4d was recommended. A
heuristic argument in (Joseph et al., 2015) suggests that the points {xi}ni=1 that minimise Eδ,P ({xi}ni=1) form an empirical
approximation that converges weakly to P . The argument was recently made rigorous in (Joseph et al., 2017).

Minimisation of Eδ,P does not require knowledge of how p is normalised. However, the actual minimisation of Eδ,P can be
difficult. In (Joseph et al., 2015) an extensible (greedy) method was considered, wherein the first point is selected as

x1 ∈ arg max
x∈X

p(x)

and subsequent points are selected as

xn ∈ arg min
x∈X

p(x)−
δ
2d

n−1

∑
i=1

p(xi)−
δ
2d

∥xi − x∥δ2
.

However, alternative approaches could easily be envisioned. For instance, if n were fixed then one could consider e.g.
applying the Newton method for optimisation over the points {xi}ni=1.

Remark: There is a connection between certain minimum energy methods and discrepancy measures in RKHS; see
(Sejdinovic et al., 2013).

Remark: Several potential modifications to Eδ,P were suggested in (Joseph et al., 2017), but that report appeared after this
work was completed. These could be explored in future work.

Remark: The MED objective function is typically numerically unstable due to the fact that the values of the density p(⋅) can
be very small. In contrast, our proposed methods operate on log p(⋅) and its gradient, which is more numerically robust.

B.1.2. STEIN VARIATIONAL GRADIENT DESCENT

The second method that we considered was due to (Liu & Wang, 2016; Liu, 2017) and recently generalised in (Liu &
Zhu, 2017). The idea starts by formulating a continuous version of gradient descent on P(X) with the Kullback-Leibler
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divergence KL(⋅∣∣P ) as a target. To this end, restrict attention to X = Rd and consider the dynamics

Sf(x) = x + εf(x)

parametrised by a function f ∈ Kd. For infinitesimal values of ε we can lift Sf to a pushforward map on P(X); i.e.
Q↦ SfQ. It was then shown in (Liu & Wang, 2016) that

− d

dε
KL(SfQ∣∣P )∣

ε=0
= ∫ TP f dQ (17)

where TP is the Langevin Stein operator in Eqn. 5. Recall that this operator can be decomposed as TP f = ∑dj=1 TP,jfj with
TP,j = ∇j +∇j log p, where ∇j denotes differentiation with respect to the jth coordinate in X . Then the direction of fastest
descent

f∗(⋅) ∶= arg max
f∈B(Kd)

− d

dε
KL(SfQ∣∣P )∣

ε=0

has a closed-form, with jth coordinate

f∗j (⋅;Q) = ∫ TP,jk(x, ⋅) dQ(x).

The algorithm proposed in (Liu & Wang, 2016) discretises this dynamics in both space X , through the use of n points,
and in time, through the use of a positive step size ε > 0, leading to a sequence of empirical measures based on point sets
{xmi }ni=1 for m ∈ N. Thus, given an initialisation {x0i }ni=1 of the points, at iteration m ≥ 1 of the algorithm we update

xmi = xm−1
i + εf∗(xm−1

i ;Qmn )

in parallel, where

Qmn = 1

n

n

∑
i=1

δxm−1
i

is the empirical measure, at a computational cost of O(n). The output is the empirical measure Qmn .

Remark: The step size ε is a tuning parameter of the method.

Remark: At present there are not theoretical guarantees for this method. Initial steps toward this goal are presented in (Liu,
2017).

B.1.3. BLOCK COORDINATE DESCENT

The Stein Point methods developed in the main text can be adapted to return a fixed number n of points for a given finite
computational budget by first iteratively generating a size n point set, as described in the main text, and then performing
(block) coordinate descent on this point set. The (block) coordinate descent procedure is now described:

Fix an initial configuration {x0i }ni=1. Then at iteration m ≥ 1 of the algorithm, perform the following sequence of operations:

∀i xmi ← xm−1
i then:

for i = 1, . . . , n xmi ← arg min
x∈X

DK0,P ({xmj }j≠i ∪ {x})

The output is the point set {xmi }ni=1.

Remark: The block coordinate descent method can equally be applied to MED; this was not considered in our empirical
work.

Remark: Any numerical optimisation method can be used to solve the global optimisation problem in the inner loop. In
this work we considered the same three candidates in the main text; Monte Carlo, Nelder-Mead and grid search. These are
described next.
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B.2. Numerical Optimisation Methods

Computation of the nth term in the proposed Stein Point sequences, given the previous n − 1 terms, requires that a global
optimisation is performed over xn ∈X . The same is true for both MED and KSD in the coordinate descent context. For all
experiments reported in the main text, three different numerical methods were considered for this task, denoted NM, MC, GS
in the main text. In this section we provide full details for how these methods were implemented.

B.2.1. NELDER-MEAD

The Nelder-Mead (NM) method (Nelder & Mead, 1965) proceeds as in Algorithm 1. The function NM takes the following
inputs: f is the objective function; t is the iteration count; ninit is the number of initial points to be drawn from a
proposal distribution; ndelay is the number of iterations after which the proposal distribution becomes adaptive; µ0

and Σ0 are the mean vector and the covariance matrix of the initial proposal distribution; {xcurrj }ncurr

j=1 is the set of
existing points; λ is the variance of each mixture component of the adaptive proposal distribution; l and u are the
lower- and upper-bounds of the search space. The non-adaptive initial proposal distribution is a truncated multivariate
Gaussian N (µ0,Σ0) whose support is bounded by the hypercube [l, u]. The adaptive proposal distribution is a truncated
Gaussian mixture Π({xcurrj }ncurr

j=1 , λ) ∶= 1
ncurr−1

∑ncurr−1
j=1 N (xcurrj , λI) with λ > 0 and support [l, u]. The expression

NelderMeadx [f(x), xiniti , l, u] denotes the standard Nelder-Mead procedure for objective function f , initial point xiniti ,
and bound constraint x ∈ [l, u]. We use the symbol¢ to denote the assignment of a realised independent draw. The operator
truncul [⋅] bounds the support of a distribution by the hypercube [l, u].

Algorithm 1 Nelder-Mead

input f , t, ninit, ndelay, µ0, Σ0, {xcurrj }ncurr

j=1 , λ, l, u
output x∗

1: function NM
2: for i← 1 ∶ ninit do
3: if t ≤ ndelay then
4: xiniti ¢ truncul [N (µ0,Σ0)]
5: else
6: xiniti ¢ truncul [Π({xcurrj }ncurr

j=1 , λ)]
7: end if
8: xlocali ← NelderMeadx [f(x), xiniti , l, u]
9: end for

10: i∗ ← arg mini∈{1...ninit}
f(xlocali )

11: x∗ ← xlocali∗

12: end function

B.2.2. MONTE CARLO

The Monte Carlo (MC) optimisation method proceeds as in Algorithm 2. The function MC takes the following inputs:
f is the objective function; t is the iteration count; ntest is the number of test points to be drawn from a proposal
distribution; ndelay is the number of iterations after which the proposal distribution becomes adaptive; µ0 and Σ0 are
the mean vector and the covariance matrix of the initial proposal distribution; {xcurrj }ncurr

j=1 is the set of existing points;
λ is the variance of each mixture component of the adaptive proposal distribution; l and u are the lower- and upper-
bounds of the search space. The non-adaptive initial proposal distribution is a truncated multivariate Gaussian N (µ0,Σ0)
whose support is bounded by the hypercube [l, u]. The adaptive proposal distribution is a truncated Gaussian mixture
Π({xcurrj }ncurr

j=1 , λ) ∶= 1
ncurr−1

∑ncurr−1
j=1 N (xcurrj , λI) with λ > 0 and support [l, u].
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Algorithm 2 Monte Carlo

input f , t, ntest, ndelay, µ0, Σ0, {xcurrj }ncurr

j=1 , λ, l, u
output x∗

1: function MC
2: if t ≤ ndelay then
3: {xtesti }ntest

i=1 ¢ truncul [N (µ0,Σ0)]
4: else
5: {xtesti }ntest

i=1 ¢ truncul [Π({xcurrj }ncurr

j=1 , λ)]
6: end if
7: i∗ ← arg mini∈{1...ntest}

f(xtesti )
8: x∗ ← xtesti∗

9: end function

B.2.3. GRID SEARCH

The grid search (GS) optimisation method proceeds as in Algorithm 3. The function GS takes the following inputs: f is the
objective function; t is the iteration count; l and u are the lower- and upper-bounds of the grid; n0 is the initial grid size.

Algorithm 3 Grid Search

input f , t, l, u, n0
output x∗

1: function GS
2: ngrid ← n0 +Round(

√
t)

3: δgrid ← (u − l)/(ngrid − 1)
4: Xgrid ← {l, l + δgrid, . . . , u}d
5: x∗ ← arg minx∈Xgrid

f(x)
6: end function

B.3. Remark on Application to a Reference Point Set

It is interesting to comment on the behaviour of our proposed methods in the case where X is a finite set or the global
optimisation over X is replaced by a discrete optimisation over a pre-determined fixed set Y = {yi}Ni=1 ⊆X . In this case it
can be shown that:

• The algorithm after n iterations will have selected n points {yπ(i)}ni=1 with replacement from Y . (Here π(i) indexes
the point that was selected at iteration i of the algorithm.)

• The empirical measure 1
n ∑

n
i=1 δyπ(i) can be expressed as ∑Ni=1wiyi for some weights wi.

• The weights wi converge to

(∗) = arg min
w≥0

w1+⋅⋅⋅+wN=1

¿
ÁÁÀ 1

N2

N

∑
i,j=1

wiwjk0(yi, yj).

• At iteration n, it holds that DK0,P ({yπ(i)}ni=1) = (∗) +O(
√

log(n)/n).

Thus in this scenario the algorithms that we have proposed act to ensure that these points are optimally weighted in the
sense just described.

C. Experimental Protocol and Additional Numerical Results
This section contains additional numerical results that elaborate on the three experiments reported in the main text.
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C.1. Gaussian Mixture Test

Recall from the main text that the kernels k1, k2 and k3 contain either one or two hyper-parameters that must be selected.
For each of the methods (a)-(f) reported in Figure 2 in the main text we optimised these parameters over a discrete set, with
respect to an objective function of WP based on a point set of size n = 100 and the Nelder-Mead optimisation method. The
set of possible values for α was {0.1η,0.5η, η,2η,4η,8η}, where η is a problem dependent “base scale” and chosen to be 1
for the Gaussian mixture test. The set of possible values for β was {−0.1,−0.3,−0.5,−0.7,−0.9}. The sensitivity of the
reported results to the variation in hyper-parameters is shown, for the Gaussian mixture test, in Figure 5. Point sets obtained
under representatives of each method class are shown in Figure 6.

For all the global optimisation methods we imposed a bounding box (−5,5) × (−5,5); for the Nelder-Mead method, we
set ninit = 3, ndelay = 20, µ0 = (0,0), Σ0 = 25I , and λ = 1; for the Monte Carlo method, we set ntest = 20, ndelay = 20,
µ0 = (0,0), Σ0 = 25I , and λ = 1; for the grid search, we set n0 = 100.

For MED the tuning parameter δ was considered for δ = 4, δ = 8 or δ = 16, with δ = 4d = 8 being the recommendation in
(Joseph et al., 2017).

For SVGD we set the initial point-set to be an equally spaced rectangular grid over the bounding box. Following (Liu &
Wang, 2016), the step-size ε for SVGD was determined by AdaGrad with a master step-size of 0.1 and a momentum factor
of 0.9.
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Figure 5: Kernel parameter selection results for the Gaussian mixture test. Parameters α,β in the kernels k1, k2, k3 were
optimised over a discrete set with respect to the Wasserstein distance WP for a point set of size n = 100. The values logWP

(y-axis) are shown for all different configurations of parameters (x-axis) considered. Optimal parameter configurations are
circled and detailed in the legend.

C.2. Gaussian Process Test

For the Gaussian process test, the base scale η is also set to 1. The sensitivity of results to the selection of kernel parameters
was reported in Figure 7. Point sets obtained under representatives of each method class are shown in Figures 8 and 9.
Detailed results for each method considered are contained in Figure 10.

For all the global optimisation methods we imposed a bounding box of (−5,5)×(−13,−7); for the Nelder-Mead method, we
set ninit = 3, ndelay = 20, µ0 = (0,−10), Σ0 = 25I , and λ = 1; for the Monte Carlo method, we set ntest = 20, ndelay = 20,
µ0 = (0,−10), Σ0 = 25I , and λ = 1; for the grid search, we set n0 = 100.

For SVGD we set the initial point-set to be an equally spaced rectangular grid over the bounding box. Following (Liu &
Wang, 2016), the step-size ε for SVGD was determined by AdaGrad with a master step-size of 0.1 and a momentum factor
of 0.9.

C.3. IGARCH Test

For the IGARCH test, we choose the base scale η to be 1e-5. The sensitivity of results to the selection of kernel parameters
was reported in Figure 11. Point sets obtained under representatives of each method class are shown in Figures 12 and 13.
Detailed results for each method considered are contained in Figure 14.

For all the global optimisation methods we impose a bounding box of (0.002,0.04) × (0.05,0.2); for the Nelder-Mead



Stein Points

method, we set ninit = 3, ndelay = 20, µ0 = (0.021,0.125), Σ0 = diag[(1e-4,1e-3)], and λ = 1e-5; for the Monte Carlo
method, we set ntest = 20, ndelay = 20, µ0 = (0.021,0.125), Σ0 = diag[(1e-4,1e-3)], and λ = 1e-5; for the grid search, we
set n0 = 100.

For SVGD we set the initial point-set to be an equally spaced rectangular grid over the bounding box. Following (Liu &
Wang, 2016), the step-size ε for SVGD was determined by AdaGrad with a master step-size of 1e-3 and a momentum factor
of 0.9.
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Figure 6: Typical point sets obtained in the Gaussian mixture test, where the budget-constrained methods Stein Greedy-100
(Stn Grdy-100) and Stein Herding-100 (Stn Hrd-100) are considered. [Here each row corresponds to an algorithm, and each
column corresponds to a chosen level of computational cost. The left border of each sub-plot is aligned to the exact value of
logneval spent to obtain each point-set.]
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Figure 7: Kernel parameter selection results for the Gaussian process test. Parameters α,β in the kernels k1, k2, k3 were
optimised over a discrete set with respect to the Wasserstein distance WP for a point set of size n = 100. The values logWP

(y-axis) are shown for all different configurations of parameters (x-axis) considered. Optimal parameter configurations are
circled and detailed in the legend.
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Figure 8: Typical point sets obtained in the Gaussian process test. [Here each row corresponds to an algorithm, and each
column corresponds to a chosen level of computational cost. The left border of each sub-plot is aligned to the exact value of
logneval spent to obtain each point-set. MCMC represents a random-walk Metropolis algorithm with a proposal distribution
optimised according to acceptance rate.]
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Figure 9: Typical point sets obtained in the Gaussian process test, where the budget-constrained methods Stein Greedy-100
(Stn Grdy-100) and Stein Herding-100 (Stn Hrd-100) are considered. [Here each row corresponds to an algorithm, and each
column corresponds to a chosen level of computational cost. The left border of each sub-plot is aligned to the exact value of
logneval spent to obtain each point-set. MCMC represents a random-walk Metropolis algorithm with a proposal distribution
optimised according to acceptance rate.]
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(c) Stein Points (Herding)

0 5 10
log n

eval

-1.5

-1

-0.5

0

0.5

1

1.5

lo
g 

W
P

k1
k2

(d) SVGD

Figure 10: Results for the Gaussian process test. [Here n = 100. x-axis: log of the number neval of model evaluations
that were used. y-axis: log of the Wasserstein distance WP ({xi}ni=1) obtained. Kernel parameters α, β were optimised
according to WP . In sub-figure 10a, MCMC represents a random-walk Metropolis algorithm with a proposal distribution
optimised according to acceptance rate. MCMC-Thin represents a thinned chain by taking every 100th observation.]
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Figure 11: Kernel parameter selection results for the IGARCH test. Parameters α,β in the kernels k1, k2, k3 were optimised
over a discrete set with respect to the Wasserstein distance WP for a point set of size n = 100. The values logWP (y-axis)
are shown for all different configurations of parameters (x-axis) considered. Optimal parameter configurations are circled
and detailed in the legend.
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Figure 12: Typical point sets obtained in the IGARCH test. [Here each row corresponds to an algorithm, and each column
corresponds to a chosen level of computational cost. The left border of each sub-plot is aligned to the exact value of
logneval spent to obtain each point-set. MCMC represents a random-walk Metropolis algorithm with a proposal distribution
optimised according to acceptance rate.]
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Figure 13: Typical point sets obtained in the IGARCH test, where the budget-constrained methods Stein Greedy-100 (Stn
Grdy-100) and Stein Herding-100 (Stn Hrd-100) are considered. [Here each row corresponds to an algorithm, and each
column corresponds to a chosen level of computational cost. The left border of each sub-plot is aligned to the exact value of
logneval spent to obtain each point-set. MCMC represents a random-walk Metropolis algorithm with a proposal distribution
optimised according to acceptance rate.]
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(a) Monte Carlo
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Figure 14: Results for the IGARCH test. [Here n = 100. x-axis: log of the number neval of model evaluations that were used.
y-axis: log of the Wasserstein distance WP ({xi}ni=1) obtained. Kernel parameters α, β were optimised according to WP . In
sub-figure 14a, MCMC represents a random-walk Metropolis algorithm with a proposal distribution optimised according to
acceptance rate. MCMC-Thin represents a thinned chain by taking every 100th observation.]


