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Supplemental material
A. MinimalRNN Architecture

Figure Supp.1. Model architecture of minimalRNN.

B. Diagonal Recurrence Relation
Here we analyze the mean field dynamics of the minimalRNN. The minimalRNN features a hidden state ht

2 RN and
inputs xt. The inputs are transformed via a fully-connected network zt = �(xt) 2 RM before being fed into the network.
The RNN cell is then described by the equations,
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Here i denotes the (pre)-activation and a denotes an input to the network.Thus, ut
i acts as a gate on the t’th step. We take
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where we have defined Qt
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where we have assumed that the expectation factorizes so that ht�1
i;a and ut

i;a are approximately independent.

We choose to normalize the data so that Rt
aa = Rt

bb = R independent of time. An immediate consequence of this
normalization is that Qt

aa = Qt
bb = Qt and qt

aa = qt
bb = qt. We then write Rt

ab = R⌃t, Qt
ab = QtCt and qt

ab = qtct where
⌃t, Ct, and ct are cosine similarities between the inputs, the hidden states, and the vt

a,b respectively. With this normalization,
we can work out the mean-field recurrence relation characterizing the covariance matrix for the minimalRNN.
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We begin by considering the diagonal recurrence relations. We find that the dynamics are described by the equation,
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As expected, the first and second integrands determine how much of the update of the random network is controlled by the
norm of the hidden state and how much is determined by the norm of the input. Since �(z) = 1 � �(�z) it follows that
when µb = 0 the first and second term will be equal and so,
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In general, µb will therefore control the degree to which the hidden state of the random minimalRNN is updated based on
the previous hidden state or based on the inputs with µb = 0 implying parity between the two. This is reflected in eq. (23).

C. Existence of a Q⇤ Fixed Point
In the event that the norm of the inputs is time-independent, Rt = R for all t, then the minimalRNN will have a fixed point
provided there exists a Q⇤ that satisfies a transcendental equation, namely that
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It is easy to see that such a solution always exists. When Q⇤
! 1 the first term of F(Q⇤) approaches 1 while the magnitude

of the second increases without bound and so F(Q⇤) < 0. Conversely, when Q⇤
! 0 the first term is positive while

Q⇤/R ! 0 and so F(Q⇤) > 0. The existence of a Q⇤ satisfying the transcendental equation then follows directly from the
intermediate value theorem.

D. Q⇤ Dynamics
We can now investigate the dynamics of the norm of the hidden state in the vicinity of Q⇤. To do this suppose that
Qt = Q⇤ + ✏t with ✏ ⌧ 1. Our goal is then to expand eq.(21) about Q⇤. First, we note that,
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It follows that qt
! q⇤ as,
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as expected.

E. Off-Diagonal Recurrence Relation
We now turn our attention to the off-diagonal term. From eq. (7) it follows that,
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By expanding eq (37) as ct = c⇤ + ✏t we find ✏t+1 = �c⇤✏t where,
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We note that when c⇤ = 1 it follows that �c⇤ = �1.

F. Additional Hyperparameter Ranges
We tune the learning hyper-parameters in the following ranges for all the models:

• learning rate: {0.1, 0.2, 0.3, 0.5, 1, 2}
• max-epoch: {4, 7, 11}
• decay: {0.5, 0.65, 0.8}
• dropout: {0.0, 0.2, 0.3, 0.5}


