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Abstract

Recurrent neural networks have gained
widespread use in modeling sequence data
across various domains. While many successful
recurrent architectures employ a notion of
gating, the exact mechanism that enables such
remarkable performance is not well understood.
We develop a theory for signal propagation in
recurrent networks after random initialization
using a combination of mean beld theory and
random matrix theory. To simplify our discussion,
we introduce a new RNN cell with a simple gating
mechanism that we call the minimalRNN and
compare it with vanilla RNNs. Our theory allows
us to debPne a maximum timescale over which
RNNs can remember an input. We show that
this theory predicts trainability for both recurrent
architectures. We show that gated recurrent
networks feature a much broader, more robust,
trainable region than vanilla RNNs, which cor-
roborates recent experimental bndings. Finally,
we develop a closed-form critical initialization
scheme that achieves dynamical isometry in both
vanilla RNNs and minimalRNNs. We show that
this results in signibcantly improved training
dynamics. Finally, we demonstrate that the
minimalRNN achieves comparable performance
to its more complex counterparts, such as LSTMs
or GRUs, on a language modeling task.

1. Introduction
Recurrent Neural Networks (RNNdR¢melhart et a).1986

tion (Graves et a).2013 and recommendation systentsi(
dasi et al. 2015 Wu et al, 2017. However, RNNs as
originally proposed are difbcult to train and are rarely used
in practice. Instead, variants of RNNs - such as Long Short-
Term Memory (LSTM) networksHochreiter & Schmid-
huber 1997 and Gated Recurrent Units (GRUZIung

et al, 2014 - that feature various forms of OgatingO perform
signibcantly better than their vanilla counterparts. Often,
these models must be paired with techniques such as nor-
malization layerslpffe & Szegedy2015h Ba et al, 2016

and gradient clippingRascanu et al2013 to achieve good
performance.

A rigorous explanation for the remarkable success of gated
recurrent networks remains illusivégzefowicz et a).2015
Greff et al, 2017). Recent work Collins et al, 2016 pro-
vides empirical evidence that the benebts of gating are
mostly rooted in improved trainability rather than increased
capacity or expressivity. The problem of disentangling train-
ability from expressivity is widespread in machine learning
since state-of-the-art architectures are nearly always the
result of sparse searches in high dimensional spaces of hy-
perparameters. As a result, we often mistake trainability
for expressivity. Seminal early worlkG(orot & Bengiq
Bertschinger et gl.showed that a major hindrance to train-
ability was the vanishing and exploding of gradients.

Recently, progress has been made in the feed-forward set-
ting (Schoenholz et gl.2017 Pennington et al.2017
Yang & Schoenholz2017 by developing a theory of
both the forward-propagation of signal and the backward-
propagation of gradients. This theory is based on studying
neural networks whose weights and biases are randomly
distributed. This is equivalent to studying the behavior of
neural networks after random initialization or, equivalently,

Elman 1990 have found widespread use across a varito studying the prior over functions induced by a particular

ety of domains from language modelinglikolov et al.,
201Q Kiros et al, 2015 Jozefowicz et a).2016 and ma-
chine translationgahdanau et g12014) to speech recogni-
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choice of hyperparametersde et al, 2017). It was shown
that randomly initialized neural networks are trainable if
three conditions are satisbed: (1) the size of the output of
the network is Pnite for Pnite inputs, (2) the output of the
network is sensitive to changes in the input, and (3) gradi-
ents neither explode nor vanish. Moreover, neural networks
achieving dynamical isometry, i.e. having input-output Ja-

Learning Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 cobian matrices that are well-conditioned, were shown to

by the author(s).
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train orders of magnitude faster than networks that do not.onal throughout the entire learning process either through

re-parametrisation or by constraining the optimization to

In this work, we combine mean pbeld theory and randon}he Stiefel manifold Wisdom et al. 2016. However, as
matrix theory to extend these results to the recurrent settin%\i&IS pointed out ivorontsov et aI(2617) st;ictly enforc;ing

We will be particularly focused on understanding the role : . o . -
. . . ; orthogonality during training may hinder training speed and
that gating plays in trainability. As we will see, there are o . L
neralization performance. While these contributions are

a number of subtleties that must be addressed for (gate milar to our own, in the sense that they attempt to construct

recurrent networks that were not present in thefeed—forvvar& L - .
. . . . . hetworks that feature dynamical isometry, it is worth noting
setting. To clarify the discussion, we will therefore con-

trast vanilla RNNs with a gated RNN cell, that we call the Fhat orthogonal weight matrices do not guarantee dynamical

minimalRNN, which is signibcantly simpler than LSTMs isometry. This is due to the nonlinear nature of deep neu-

and GRUs but implements a similar form of gating. We ral networks as shown iRennington et a(2017). In this

: . aper we continue this trend and show that orthogonality
expect the framework introduced here to be applicable t o o .
. . as little impact on the conditioning of the Jacobian (and so
more complicated gated architectures.

trainability) in gated RNNSs.
The Prst main contribution of this paper is the developmen
of a mean Peld theory for forward propagation of signal

through vanilla RNNs and minimalRNNSs. In doing so, we networks. Bertschinger et al.Glorot & Bengio propose

identify a theory of the maximum timescale over which sig- T
nal can propagate in each case. Next, we produce a ran do%jge—of-chaos initialization schemes that they show leads to
matrix theory for the end-to—en.d JaC(')bian of the minima|_|mproved performance. Additionally, architectural innova-
~ory . : tions such as batch normalizatidoffe & Szegedy 20153,
RNN. As in the feed-forward setting, we establish that the L
duality between the forward propaaation of sianal and theorthogonal matrix initializationQaxe et al.2013, random
y propag 9 v%/alk initialization Sussillo & Abbotf 2014, composition

backward propagation of gradients per_sis_ts in the reC%Jrr.erkernels Daniely et al, 2016, or residual network architec-
setting. We then show that our theory is indeed pred'Ct'Veiures He etal, 2015 é" shar,e a common goal of stabilizing

of trainability in recurrent neural networks by comparing . . : S -
the maximum trainable number of steps of RNNs with thegradlents and improving training dynamics.
timescale predicted by the theory. Overall, we bPnd remarkFhere is a long history of applying mean beld-like ap-
able alignment between theory and practice. Additionallyproaches to understand the behavior of neural networks.
we develop a closed-form initialization procedure for bothindeed several pieces of seminal work used statistical
networks and show that on a variety of tasks RNNs initialphysics Derrida & PomeauSompolinsky et a).1988 and

ized to be dynamically isometric are signibcantly easier tdGaussian Processeddal 2012 to show that neural net-
train than those lacking this property. works exhibit remarkable regularity as the width of the net-
work gets large. Mean beld theory also has long been used
. . . _to study Boltzmann machinesckley et al) and sigmoid
(2019, we show that both signal propagation and dynammali)e"ef networks $aul et al. 1996. More recently, there

isometry in vanilla RNNs is far more precarious than in thehas been a revitalization of mean beld theorv to exolore
case of the minimalRNN. Indeed the vanilla RNN achieves y b

dynamical isometry only if the network is initialized with or- questions of trainability and expressivity in fully-connected

thogonal weights at the boundary between order-and-cha petworks and residual networl@dole et al.2016 Schoen-
gona 9 L y ; . blz et al, 2017 Yang & Schoenholz2017 Schoenholz
a one-dimensional line in parameter space. Owing to its ga

. sgt al, 2017 Karakida et al.2018 Hayou et al.2018 Hanin
a robust multi-dimensional subspace of good initializations Rolnick, 201§ Yang & Schoenhol22018. Our approach

which all enable dynamical isometry. Based on these inWIH closely follow these later contributions and extend many

. . c{f their techniques to the case of recurrent networks with
sights, we conjecture that more complex gated recurrent_,.
neural networks also benebt from the similar effects. gating. Beyond mean Peld theory, there have been several

attempts in understanding signal propagation in RNNs, e.g.,
using Gesggorin circle theorenlly et al., 2016 or time
2. Related Work invariance Tallec & Ollivier, 2018.

II'he notion of Oedge of chaosO initialization has been ex-
plored previously especially in the case of recurrent neural

Corroborating the experimental Pndings@dllins et al.

Identity and Orthogonal initialization schemes have been

identibed as a promising approach to improve trainabil3. Theory and Critical Initialization
ity of deep neural networkd € et al, 2015 Mishkin &
Matas 2015. Additionally, Arjovsky et al.(2016; Hyland

& Ratsch(2017); Xie et al.(2017 advocate going beyond
initialization to constrain the transition matrix to be orthog-

We begin by developing a mean Peld theory for vanilla
RNNs and discuss the notion of dynamical isometry. After-
wards, we move on to a simple gated architecture to explain
the role of gating in facilitating signal propagation in RNNSs.
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3.1. Vanilla RNN deriving the recurrence relation of the covariance matrix
g’ from the recurrence oa’ in eq.(1). Using identical
arguments td?oole et al(2016 one can show that,
el=Wh' 1+ Vxi+b ht=1(e". (1) !

t— n2 T n2 t n?2
Herex!! RM isthe inpute! ! RY is the pre-activation, 9 ="y Dgnz!(@)! (@) +",RE+"1. (2

andht! R is the hidden state after applying an arbitrary

activation function : R " R. For the purposes of this wherez =[z;,2,]", and

discussion we sét = tanh . FurthermoreW ! RN*N I I

andV | RY*M gre weight matrices that multiply the D 7 L dze—(=—mD)7d *z=m1) (3

Vanilla RNNs are described by the recurrence relation,

hidden state and inputs respectively &nd R” is a bias. a4 2% al

Next, we apply mean-peld theory to vanilla RNNs following is a Gaussian measure with covariance magriBy sym-

a similar strategy introduced if?oole et al.2016 Schoen- - _ _

holz et al 2017?yAt the level of r(r)1ean-l:>eld theory, vanilla metry, our normghzanon allows us to dgbqiq = %o = O

RNN 'il ' be inti v related to feed ’f q to be the magnitude of the pre-activation hidden state and
s will prove to be intimately related to feed-forward ., gi,/q? to be the cosine similarity between the hidden

ates. We will be particularly concerned with understanding

a more detailed discussion, see these earlier studies. the dynamics of the cosine similarity,

Consider two sequences of inputsi} and{x3%}, de-
scribed by the covariance matfix’ ! R?*2 with R?; =
+7E[Xq ax,], a,b! { 1,2}. To simplify notation, we as-
sume the input sequences have been standardized so t

PO i ) i
Ri; = Ri; = R independent of ime. This allows us to Analyzing the dynamics of for arbitraryX? is therefore

. . 22 " . . .
write R* = R, whereX |s_a matrix whose d|agonal_ challenging, however signibcant insight can be gained by
terms are 1 and whose off-diagonal terms are the Cos'n&udying the off-diagonal entries of efg) for £t = =

similarity between_ the mpu_ts at_tmte Th_ese Sequences independent of time. In the case of time-independgit
are then passed into two identical copies of an RNN to

d di . ast "$ bothg® " g*andct " c* whereg* andc*
pro ucte two corresponding pre-activation seq_uelﬁe@}s are bxed points of the variance of the pre-activation hidden
and{es}. AsinPoole et al(2016 we let the weights and

. ) o N state and the cosine-similarity between pre-activation hidden
E))as#eilb(eoclslal;'\s;lsga nagg'g Izu,ile?:() M;?% #;rl:l q \(/Se cgﬂiiéér states respectively. As was discussed previouBhole

i T ’ ’ by ) et al, 2016 Schoenholz et §l2017), the dynamics offf are
the wide network limitN " $ . As in the fully-connected 4 4 ) y ol

X . . o enerally uninteresting provided is Pnite. We therefore
setting, we would like to invoke the Central Limit Theorem g y ap s

L ) choose to normalize the hidden state such tHat g
(CLT) to conclude that the pre-activations of hidden stateg, pi-h implies that = q* independent of time

are jointly Gaussian distributed. Unfortunately, the CLT is
violated in the recurrent setting 8$~" is correlated with  In this setting it was shown iBchoenholz et a(2017) that
W due to weight sharing between steps of the RNN. in the vicinity of a bxed point, the off-diagonal term in
g.(2) can be expanded to lowest orde@b= c* %c' to
ive the linearized dynamic%h= &, % ! where

!

In feed-forward networks, the inputs dictate the initial value
of the cosine similarityc® and then the evolution af is
determined solely by the network architecture. By contrast
tﬂ‘ﬂfltrecurrent networks, inputs pertuch at each timestep.

To make progress, we proceed by developing the theory 03
signal propagation for RNNs withintiedweights. This al-
lows for several simplibcations, including the application of "o , ,
the CLT to conclude that, are jointly Gaussian distributed, & =", Dgz!(z1)!"(22)- (4)
t ot 1T t i 4 A4
[ el #N (o a#,), 1) 1 Laaan) These dynamics have the solutigh= &'~ % where
where the covariance matrgf ! R?*? is independent t, is the time whert! is close enough to* for the linear
of neuron indexj. We explore the ramiPcations of this approximation to be valid. & < 1 it follows thatc'
approximation by comparing simulations of RNNs with tied approaches* exponentially quickly over a timescale=
and untied weights. Overall, we will see that while ignoring %1/ log & andc* is called a stable bxed point. When
weight tying leads to quantitative differences between theoryjets too close ta* to be distinguished from it to within
and experiment, it does not change the qualitative pictur@umerical precision, information about the initial inputs has
that emerges. See Pgsand2 for veribcation. been lost. Thus, sets the maximum timescale over which
we expect the RNN to be able to remember information.
If & > 1thenc! gets exponentially farther frowmt over
time andc* is an unstable bxed point. In this case, for the
lin practice we will sett, = 0 for vanillaRNN. activation function considered here, another bxed point that

With this approximation in mind, we will now quantify how
the pre-activation hidden statée} and{el} evolve by
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is stable will emerge. Note th&t is independent oE and is then described by the recurrence relation,
so the dynamics of’ nearc* do not depend oix. . 1 . . .
ee=Wh " +VX'+Db ut="(e) 5
In vanilla fully-connected networks* = 1 is always a 6 _ 1 oni iy o ot
Pxed point ofc!, but it is not always stable. Indeed, it h=u"&h™ +(1%u’) &x
was shown that these networks exhibit a phase transitiognereet | R¥ is the pre-activation to the gating func-
wherec® = 1 goes from being a stable Pxed point to antjon, yt 1 RN the update gate art’ ! RY the hidden
unstable one as a function of the networkOs hyperparametejgte. The minimalRNN retains the most essential gate in
This is known as the order-to-chaos transition and it occurg STMs (Jozefowicz et a).2015 Greff et al, 2017 and
exactly when&, = 1. Since’ = %1/ log(&), signal can  achieves competitive performance. The simplibed update

propagate inbnitely far at the boundary between order ang this cell on the other hand, enables us to pinpoint the role
chaos. Comparing the diagonal and off-diagonal entries ofy gating in a more controlled setting.

eq.(2), we see that in recurrent networks,= 1 is a bxed i ) ) .

identical to the feed-forward setting. When, < 1,itis  Puts to the network{X{} and{X5}. We takeW;; #

easy to see that < 1since ifc’ = 1 at some timé then N (0," /N ), Vi; #N (0," 2N ) andb; # N (" 7). By
ct1=1%"2R(1%! 1,)/q* < 1. We see that in recurrent analogy to the vanilla case, we can make the mean beld
networks noise from the inputs destroys the ordered phas@PProximation that the{, are jointly Gaussian distributed
and there is no ordered-to-chaos critical point. As a result waVith covariance matrixj#; ! R**2. Here,

should expect the maximum timescale over which memory g = "2Q" 1+ "2R?+ " 2| ©6)
may be stored in vanilla RNNs to be fundamentally limited v v b
by noise from the inputs. where we have debne@’ as the second-moment matrix

with Q%, = E[h!,h},]. ® As in the vanilla caseR ! is the

The end-to-end Jacobian of a vanilla RNN with untied _ . 1 ore <o
covariance between inputs so tiRff, = +E[X, aX;].

weights is in fact formally identical to the input-output
Jacobian of a feedforward network, and thus the resultgve note thaR* is bxed by the input, but it remains for us
from (Pennington et 812017 regarding conditions for dy- to work outQ*. We bnd that (see Sl secti@®),

namical isometry apply directly. In particular, dynamical !

isometry is achieved with orthogonal state-to-state transi- Q! = Q! Dgez " (2)" (z)T )
tion matricesWV , tanh non-linearities, and small values of I
g*. Perhaps surprisingly, these conclusions continue to be +RY Dz (1%" (2))(1 %" )7

valid if the assumption of untied weights is relaxed. To

un_derstand why this is th_e case, consider the example Cf—|fere we assume that the expectation factorizes sdthat
a linear network. For #ntled weights, the end-to-end Ja:

SR “ . . : andu’ are approximately independent. We believe this
cobian is given byP = i1 W, while for tied weights approximatioapbecomes Zxact irF:INe" $ limit.
the Jacobian is given by = W 7. It turns out that as
N "$ thereis sufbcient self-averaging to overcome thé/Ve choose to normalize the data in a similar manner to
dependencies induced by weight tying and the asymptotithe vanilla case so th&’, = R%, = R independent of
singular value distributions dPandJ are actually identical ~time. An immediate consequence of this normalization is

(Haagerup & Larser2000. thatQl;, = Q% = Qt andgi; = ¢, = g'. We then write
C! = Qi,/Qtandc! = ¢f,/q! as the cosine similarities be-
3.2. MinimalRNN tween the hidden states and the pre-activations respectively.
With this normalization, we can work out the mean-peld
3.2.1. MEAN-FIELD THEORY recurrence relation characterizing the covariance matrix for

To study the role of gating, we introduce the minimalRNN the minimalRNN. This analysis can be done by deriving
which is simpler than other gated RNN architectures buth€ recurrence relation for eith@” or q*. We will choose
nonetheless features the same gating mechanism. A d@-study the dynamics af, however the two are trivially
quence of inputs’ ! RM, is brst mapped to the hidden related t_>y eq(6). In Sl_sectlonC, we analyze th_e dynamics
space througl? = "( x*)2. From here on, we refer to of the dlagonal term in the recurrence relation and prove
%t1 RY as the inputs to minimalRNN. The minimalRNN that there is always a pxed point at sogieln S| sectiorD,

we compute the depth scale over whighapproaches®.

?I( -) here can be any highly Bexible functions such as aHowever, as in the case of the vanillaRNN, the dynamics of
feed-forward network. In our experiments, we tdke) to be g* are generally uninteresting.
a fully connected layer withanh activation, that is)( x') =
t
tanh(Wyxx"). ®h' will be centered under mean beld approximatiom‘fis
initialized with mean zero.
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We now turn our attention to the dynamics of the cosineminimalRNN overall. In gl (e) we plot the timescale for
similarity between the pre-activatiors, As in the case of signal propagation for 1, = 1,0.99, andO0 for the mini-
vanilla RNNs, we note thaf’ approacheg* quickly relative ~ malRNN with identical choices of hyperparameters. We see
to the dynamics o€?. We therefore choose to normalize that while' " $ asy, gets large independent bf;,, a

the hidden state of the RNN so th@f = Q* in which case critical point atp, = 0 is only observed wheh ;5 = 1.
bothQ! = Q* andq’ = ¢* independent of time. From

eq.(6) and (7) it follows that the cosine similarity of the 3.2.2. DrNAMICAL ISOMETRY

re-activation evolves as, . . . .
P In the previous subsection, we derived a quarifythat

P ) . . debPnes the boundary between the ordered and the chaotic
c= ¢ (" % ( Dgr1z " (21)" (22) phases of forward propagation. Here we show that it also
! debnes the boundary between exploding and vanishing gra-
%2"2(""1 Dgeaz"(zi)+ "2("M+"2(" (8)  dients. To see this, consider the Jacobian of the state-to-state
transition operator,

where we have debnéd = R! {,/q*. Asin the case of the hitt

vanilla RNN, we can study the behavior dfin the vicinity J, = )

of a bxed pointc*. By expanding eq(8) to lowest order ) ht

in %= c* %c’ we arrive at a linearized recurrence relation\yhereD ,, denotes a diagonal matrix with along its di-

that has an exponential solutiét* = & %where here,  agonal. We can compute the expected norm-squared of
! back-propagated error signals, which measures the growth

=Dyt DU#(et)Q(ht! 1,zt)W ) (10)

& = Dgz"(z1)"(z2) (9)  orshrinkage of gradients. It is equal to the mean-squared
& . singular value of the JacobiaRdole et al.2016 Schoen-
g ("% )Rl Dy 2" (21)"(22). holz et al, 2017 or the Prst moment of ;.J [,

1 " . _
The discussion above in the vanilla case carries over directhE[tr( Jed )= E[u))’T+ " 2E["'(e])*(hi~! %21)?],

to the minimalRNN with the appropriate replacement of (1D
&. . Unlike in the case of the vanilla RNN, here we see thatwhere we have used the fact that the elementstoh?
&, itself depends oh ;5. andz® are i.i.d. Since we assume convergence to the bxed

A . . point, these distributions are independent ahd it is easy
Againc* = 1 is a bxed point of the dynamics only when {0 see tha%E[tr(JtJ 7)] = &. The variance of back-

I 19 = 1. In this case, the minimalRNN experiences an ; . )
order-to-chaos phase transition whgn= 1 at which point propagated error signals througttime steps is therefore
LE[tr(JJ )] = &T. As such, the constrai®; = 1 de-

the maximum timescale over which signal can propagat .
goes to inbnity. Similar to the vanilla RNN, when, < 1, (gnes the boundary between phases of exponentially explod-

- . ing and exponentially vanishing gradient norm (variance).
we expect that the phase transition will be destroyed and thRIgte that upnlike in th)é case of f%rgward signal prf)pagation)
maximum duration of signal propagation will be severely '

limited. However, in a signiPcant departure from the vanillaIn the case of backpropagation this is independent of

case, whem, "$ we noticethat' (z+ ) " 1,and  Asargued inPennington et gl2017 2018, controlling the
"/(z+ W) " Oforall z. Considering eq(9) we notice that  variance of back-propagated gradients is necessary but not
in this regime&, " 1independent of |5. In other words, sufbcient to guarantee trainability, especially for very deep
gating allows for arbitrarily long term signal propagation in networks. Beyond the Prst moment, the entire distribution
recurrent neural networks independent af. of eigenvalues o8J T (or of singular values ol ) is rele-

We explore agreement between our theory and MC sim yant. Indeed, it was found irPennington et al2017 201§

lations of the minimalRNN in Pdl. In this set of experi- hat_enablmg dynamical isometry, ngmely the con.dltlon. that
L _ all singular values of are close to unity, can drastically im-

ments, we consider inputs such tht, =0 fort < 10and rove training speed for very deep feed-forward networks

1, =1fort' 10 Fig.1 (a,c,d) show excellent quanti- P gsp y P '

tative agreement between our theory and MC simulation$:ollowing (Pennington et al.2017 2018, we use tools

In bg.1 (a,b) we compare the MC simulations of the mini- from free probability theory to compute the variaﬁcﬁeﬂ
malRNN with and without weight tying. While we observe of the limiting spectral density afJ 7; however, unlike
that for many choices of hyperparameters the untied weighprevious work, in our case the relevant matrices are not
approximation is quite good (particularly wheh (1), symmetric and therefore we must invoke tools from non-
deeper into the chaotic phase the quantitative agreement kdermitian free probability, se€Cakmak 2012 for a review.
tween breaks down. Nonetheless, we observe that the untigsk in previous section, we make the simplifying assumption
approximation describes the qualitative behavior of the reathat the weights are untied, relying on the same motivations
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Figure 1.Numerical veribcation of mean beld results on the minimalRNNAIl experiments were done with Pxdd, = 6.88,

I'v =1.39,R =0.46, andy, € [—4, 8]. These hyperparameters are chosen so that the minimalRNN has an order-to-chaos critical point
aty, = 0. MC simulations were averaged over 1000 minimalRNNs with hidden dimension 8192. (a) Cosine similarity for theory (white
dashed) compared with MC simulations of a minimalRNN with untied weights (solid). (b) Cosine similarity for tied weights (dashed)
compared with untied weights (solid). (c) Comparisort'ofor theory (white dashed), MC with untied weights (solid black), tied weights
(dashed grey). (d) Comparison of linearized dynamics. Dashed lines/s#iov  and solid lines show the result of simulations with
untied weights. (e) Comparison of the timescale for signal propagation for different valuigs.of

given in sectior8.1 Using these tools, an un-illuminating and bias variances, implying that trainability can occur for

calculation reveals that,

a higher-dimensional, more robust, slice of parameter space.

( 2y %S, )y + "2+ " 5) Moreover, the value of; has no effect on the capacity of the
2= g2 14 TSRS ;2 1~ 2 (12) minimalRNN to achieve dynamical isometry. We believe
1 these are fundamental reasons why gated cells such as the
where, minimalRNN perform well in practice.
&1 = Hi+ (13)  Algorithm 1 describes the procedure to Phfj," > and" ?
' ) to achieve&; condition for minimalRNN. Giveri 2," 2," 2,
= Dz"?2( gz+ W) we then construct the weight matrices and biases accord-
! ) ingly. Q* is used to initialize thé@° to avoid transient phase.
"t=omi+ Dz Tz )

!
"2(Q +R) Dz['(

w

)

Tz+ W)l Algorithm 1 Critical initialization for minimalRNNs
) Require: g*,4p, R )

=
O
1

"3= s+ "L(Q)2+ R Dz[''(C gz + W)l 1: Eu2]*  Dzt2( gz+ )

2: E[(1%u)4* Dz (1%"( qz+ W)’
ands; is the prst term in the Taylor expansion of the S- 3. Q** RA&E[(1%W)?)/ (1 %E[u?]) (eq.())
transform of the eigenvalue distribution W W?” (Pen- 4. E[u2* Dz["'( Gz + w)?
nington et al.2018. For example, for Gaussian matrices, s. "2 % (L%E[])/ (Q* + RY E[U?] (eq.03)
s; = %l and for orthogonal matrice = 0. 6:"2% 0

"2 %

Some remarks are in order about etp)( First, we note  7- "2 * (4" %Q*" % %" })/IR

the duality between the forward and backward signal prop-

agation (eq.9) and eq. {3)). For critical initializations,

& =1,s0" ?NT does not grow exponentially, but it still

grows linearly withT . This situation is entirely analogous 4 Experiments

to the feed-forward analysis oPénnington et gl.2017

2018. In the case of the vanilla RNN, the coefbcient of the Having established a theory for the behavior of random
linear term is proportion tg*, and can only be reduced by vanilla RNNs and minimalRNNs, we now discuss the con-
taking the weight and bias variandgs},,"2) " (1,0). A nection between our theory and trainability in practice.
crucial difference in the minimalRNN is that the coefbcientWe begin by corroborating the claim that the maximum
of the linear term can be made arbitrarily small by simplytimescale over which memory can be stored in a RNN is
adjusting the bias mean, to be positive, which will send controlled by the timescaleidentibed in the previous sec-
Mo " Oandu; " 1independent of . Therefore the con- tion. We will then investigate the role of dynamical isometry
ditions for dynamical isometry decouple from the weightin speeding up learning.
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Figure 2.Relationship between theory and trainability. We plot the training accuracy (higher accuracies in red) overlayed with
theoretical timescalé, (shown in white). The top row of Pgures shows the results with untied weights and the bottom row shows the
results with weight tying. (a-b) Vanilla RNN with,, € [0.5,1.5]. (c-d) MinimalRNN withu, € [—4, 8]. (e-f) MinimalRNN with

I'w €[0.5,10]andpy = 4. (g-h) MinimalRNN with! , € [0.5, 10]andp, = 6.

4.1. Trainability varyingp, ! [964, 8]with ", = 6.88 shown in bg2 (c-d),

2) varying" ,, ! [0.5, 10]with p, = 4 shown in bg2 (e-f),

3) varying" ., ! [0.5, 10]with y, = 6 shown in bg2 (g-h).
omparing bg2(a,b) with bg2(c,d, g,h), the minimalRNN

"hith large depthT is trainable over a much wider range of
hyperparameters than the vanillaRNN despite the fact that

the network was trained for an order of magnitude less time.

Dataset. To verify the results of our theoretical calculation,
we consider a task that is re3ective of the theory abov
To that end, we constructed a sequence dataset for traini
RNNs from MNIST (eCun et al. 1998. Each of the
28+ 28digit image is Rattened into a vector 684 pixels
and sent as the prst input to a RNN. We then sSemdndom
inputsx® #N (0,"2),0<t<T intothe RNN varyingl e
between 10 and 1000 steps. As the only salient informatiorﬁ1 -2. Critical initialization
about the digit is in the Prst layer, the network will need Dataset. To study the impact of critical initialization on

to propagate information through layers to accurately training speed, we constructed a more realistic sequence
identify the MNIST digit. The random inputs are drawn dataset from MNIST. We unroll the pixels into a sequence of
independently for each example and so this is a regim& inputs, each containing84'T pixels. We tested = 196
where! * =0 forallt> 0. andT = 784 to vary the difpculty of the tasks.

We then performed a series of experiments on this task tplote that we are more interested in the training speed of
make connection with our theory. In each case we experthese networks under different initialization conditions than
mented with both tied and untied weights. The result arghe test accuracy. We compare the convergence speed of
shown in bg2. In the case of untied weights, we observevanilla RNN and minimalRNN under four initialization con-
strong quantitative agreement between our theoretical preitions: 1) critical initialization with orthogonal weights
diction for* and the maximum depfh where the network (solid blue); 2) critical initialization with Gaussian dis-

is still trainable. When the weights of the network are tied tributed weights (sold red); 3) off-critical initialization with

we observe quantitative deviations between our thoery andrthogonal weights (dotted green); 4) off-critical initializa-
experiments, but the overall qualitative picture remains. tion with Gaussian distributed weights (dotted black).

We train vanilla RNNs forl0® steps (around 10 epochs) We bx" 2 to zero in all settings. Under critical initialization,
varying",, ! [0.5, 1.5] while pxing", = 0.025 The "2 and"? are carefully chosen to achiegg = 1 as de-
results of this experiment are shown in Pg(a-b). We  bned in eqn4) for vanilla RNN and eqni(3) (detailed in
train minimalRNNs forl0” steps (around 1 epoch) Pxing algorithm1) for minimalRNN respectively. When testing
", = 1.39. We perform three different experiments here: 1)networks off criticality, we employ a common initialization
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Figure 3.Learning dynamics, measured by accuracy on the test set, for vanillaRNNs and minimalRNNSs trained with depth 196 (a, b) and
784 (c, d) under four different initialization conditions. Drastic difference in terms of convergence speed was observed between critical
and off-critical initialization in both models. Well-trained models reach an accuracy of 0.98 on the test set.

procedure in which; 2 =1.0and"2 = 1.0. 5M-t | 20M-v | 20M-t
. . . . . VanillaRNN (Jozefowicz et aj.2015 | 122.8 103.0 97.7
Figure3 summarizes our Pndings: there is a clear difference GRU (ozefowicz et 412013 | 108.2 955| 917
in training speed between models trained with critical initial- LSTM Uozefowicz etal2019 | 109.7 83.3 78.8
ization compared with models initialized far from criticality.
We observe two orders of magnitude difference in training LSTM 95.4 87.5| 83.8
speed between a critical and off-critical initialization for GRU 99.5 93.9 89.8
vanilla RNNs. While a critically initialized model reaches a minimalRNN 1014 94.4| 899

test accuracy 030%after 750 optimization steps, the off-

critical nework takes over 16,000 updates. A similar trendlable 1.Perplexities on the PTB. minimalRNN achieves compa-
was observed for the minimalRNN. This difference is evenrable performance to the more complex gated RNN architectures
more pronounced in the case of the longer sequence witfieSPIte its simplicity.

T = 784. Both vanilla RNNs and minimalRNNs initialized

off-criticality failed at task. The well-conditioned minimal- follow the learning schedule afaremba et al(2014 and
RNN trains a factor of three faster than the vanilla RNN. As(Jozefowicz et a).2015. We review additional hyperparam-
predicted above, the difference in training speed between ogter ranges in sectidhof the supplementary material.
thogonal and Gaussian initialization schemes is signibcant i )

for vanilla RNNs but is insignibcant for the minimalRNN. Table1 summarizes our _result§. We _bnd that single layer
This is corroborated in P@ (b,d) where the distribution of RNNs perform on par with their multi-layer counterparts.

the weights has no impact on the training speed. Despite being a signibcantly simpler model, the minimal-
RNN performs comparably to GRUs. Given the closed-form

. critical initialization developed here that signibcantly boosts
5. Language modeling convergence speed, the minimalRNN might be a favorable

We compare the minimalRNN against more complex gatedternative to GRUs. There is a gap in perplexity between
RNNs such as LSTM and GRU on the Penn Tree-Bank cort-he performance of LSTMs and minimalRNNs. We hypoth-

pus Marcus et al.1993. Language modeling is a difbcult esize that this is due to the removal of an independent gate
task, and competitive performance is often achieved by mor&" the input. The same strategy |s'employed in GRUs and
complicated RNN cells. We show that the minimalRNN MY cause a conBict between keeping longer-range memory

achieves competitive performance despite its simplicity. 2nd updating new information as was originally pointed out
by Hochreiter & Schmidhubg1997).
We follow the precise setup of Mikolov et al, 201Q

Zaremba et a,I2§)14), and train RNNs of two sizes: a smalll 6. Discussion

conbguration with 5M parameters and a medium-sized con-

Pguration with 20M parametefs We report the perplexity We have developed a theory of signal propagation for ran-

on the validation and test sets. We focus our comparisodom vanilla RNNs and a simple gated RNNs. We demon-

on single layer RNNs, however we also report perplexitiesstrate rigorously that the theory predicts trainability of these

for multi-layer RNNs from the literature for reference. We networks and gating mechanisms allow for a signibcantly
“The hidden layer size of these networks are adjusted a(:corclf’-irger frainable relglon.dWe are pllcl':mnlng tﬁ extend the .tr;]e-

ingly to reach the target model size. ory t_o more complicated RNN cells as well as RNNs wit

multiple layers.
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