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Abstract

Recent advances on the scalability and flexibility
of variational inference have made it successful
at unravelling hidden patterns in complex data.
In this work we propose a new variational bound
formulation, yielding an estimator that extends
beyond the conventional variational bound. It
naturally subsumes the importance-weighted and
Rényi bounds as special cases, and it is provably
sharper than these counterparts. We also present
an improved estimator for variational learning,
and advocate a novel high signal-to-variance ratio
update rule for the variational parameters. We
discuss model-selection issues associated with
existing evidence-lower-bound-based variational
inference procedures, and show how to leverage
the flexibility of our new formulation to address
them. Empirical evidence is provided to validate
our claims.

1. Introduction
One of the key challenges in modern machine learning is
to approximate complex distributions. Due to recent ad-
vances on learning scalability (Hoffman et al., 2013) and
flexibility (Kingma et al., 2016), and the development of
automated inference procedures (Ranganath et al., 2014),
variational inference (VI) has become a popular approach
for general latent variable models (Blei et al., 2017). Vari-
ational inference leverages a posterior approximation to
derive a lower bound on the log-evidence of the observed
samples, which can be efficiently optimized. This bound,
commonly known as the evidence lower bound (ELBO),
serves as a surrogate objective for maximum likelihood
estimation (MLE) of the model parameters. Successful ap-
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plications of VI have been reported in document analysis
(Blei et al., 2003), neuroscience (Friston et al., 2007), gen-
erative modeling (Kingma & Welling, 2014), among many
others.

It has been widely recognized that tightening the varia-
tional bound, in general, significantly improves model per-
formance. Consequently, considerable research has been
directed toward this goal. The most direct approach seeks
to boost the expressive power of the approximate posterior.
Normalizing flows (Rezende & Mohamed, 2015; Kingma
et al., 2016) exploited invertible transformations on latent
codes in latent variable models, Ranganath et al. (2016) and
Gregor et al. (2015) explored the hierarchical structure of the
latent code generation, and Miller et al. (2016) modeled the
posterior as a mixture of Gaussians. Adversarial variational
Bayes (Mescheder et al., 2017) employed a neural gener-
ator to produce posterior samples, and further leveraged a
density ratio estimator to compute the ELBO. Notably, the
matching between the true and approximate posterior can be
made implicit (Pu et al., 2017a) via an application of Stein’s
lemma (Liu & Wang, 2016).

An alternative direction seeks a modification of the vari-
ational objective. The importance-weighted autoencoder
(Burda et al., 2016) showed that the bound can be sharpened
by leveraging multiply-weighted posterior samples. Further,
χ-VI (Dieng et al., 2017), also known as Rényi-VI (Li &
Turner, 2016), derived an alternative bound that is sharper
than the ELBO. More generally, a sandwich formula holds
for the χ bound, thus tightening this gap improves perfor-
mance. Bamler et al. (2017) developed a more general view
on variational bounds and presented a low-variance estima-
tor based on a perturbative argument. It is important to note
that sharpening the variational bound may unexpectedly hurt
learning of the inference arm of the model (approximate
posterior) (Rainforth et al., 2017), thereby compromising
performance.

While most studies have focused on the scalability and flexi-
bility of VI, a less-studied issue is that different models can
be equally plausible in terms of of the mean evidence lower
bound wrt a finite number of samples (Blei et al., 2017).
This is a fundamental problem inherited by VI, associated
with doing an empirical estimation of the expected log like-
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lihood. To make this more clear, recall that variational infer-
ence optimizes a lower bound to the expected log-evidence
EX∼pd(x)[log pα(X)], where pd(x) is the unknown data dis-
tribution and distribution pα(x) is our model parameterized
by α. Consider a set of samples D = {xi}ni=1 drawn from
a ground truth model pd(x). A model pα(x) can achieve
the same empirical expected log-evidence score as that of
pd(x) by yielding lower log-evidence score on an underfit-
ted subset of samples {xi; pα(xi) < pd(xi)}, while com-
pensating its losses on another subset of overfitted samples
{xi; pα(xi) > pd(xi)}. Neither underfitting nor overfitting
are desirable when learning a probabilistic representation of
the data. However, such behavior is not explicitly penalized
by the standard variational objective, and each may be a
consequence of approximating EX∼pd(x)[log pα(X)] with
the finite det of samples in D. Consequently, when doing
MLE or VI with a flexible model family on finite samples,
the maximizer may not be unique (Mäkeläinen et al., 1981;
Dharmadhikari & Joag-Dev, 1985).

This paper addresses model selection issues in variational
inference. Our key contributions are: (i) An extension of
the concept of evidence score and its use as a new model-
selection criterion. (ii) Derivation of novel importance-
weighted evidence bounds, and proof of their theoretical
properties. (iii) Development of a novel variational infer-
ence procedure that favors more plausible models, com-
pared to existing VI-based approaches. (iv) A new low
bias-variance variational estimator with an improved update
rule for optimization.

2. ELBO and Variational Inference
Let pd(x) be the true and unknown data-generating distribu-
tion, which we seek to model with pα(x) =

∫
pα(x, z)dz

where pα(x, z) = pα(x|z)p(z). Here z ∈ Rd represents
latent variables responsible for x ∈ Rp, p(z) is a specified
prior on z, and pα(x|z) is the conditional distribution of the
data with model parameters α. The joint distribution may
also be expressed pα(x, z) = pα(x)pα(z|x), where pα(z|x)
is the model conditional distribution of latent z given x. The
posterior pα(z|x) is typically difficult to compute, and there-
fore in variational inference it is approximated by qβ(z|x),
a distribution with parameters β. The evidence lower bound
(ELBO) is defined

ELBO(pα(x, z), qβ(z|x)) = Eqβ(z|x) log
[pα(x, z)
qβ(z|x)

]
. (1)

It is well known that ELBO(pα(x, z), qβ(z|x)) =
log pα(x) − KL(qβ(z|x)‖pα(z|x)) ≤ log pα(x), where
KL(p‖q) is the Kullback-Leibler divergence between dis-
tributions p and q. Hence, the ELBO, characterized by
cumulative parameters θ = (α, β), serves as a lower bound
on evidence log pα(x).

When learning, we seek to maximize the ELBO wrt

parameters θ. One may also readily show that
KL(pd‖pα) = −h(pd)−Ex∼pd [KL(qβ(z|x)‖pα(z|x))]−
Ex∼pd [ELBO(pα(x, z), qβ(z|x))], where the differential
entropy h(pd) is an unknown constant. Hence, min-
imization of KL(pα‖pd) corresponds to maximizing
Ex∼pd [ELBO(pα(x, z), qβ(z|x))], which has the commen-
surate goal of pushing Ex∼pd [KL(qβ(z|x)‖pα(z|x))]→ 0.
In practice, variational inference (VI) learns the “best”
model by optimizing θ wrt the expected ELBO.

A variational model is defined by pα(x, z) and qβ(z|x), with
θ = (α, β). For notational convenience, the correspond-
ing model is denoted Mθ. In the context of variational
auto-encoder, α and β are also respectively known as the
generator and inference parameters.

3. Generalized Evidence Bound
To motivate our formal development below, we first provide
some intuitions. Our key observation is that existing bounds
are almost exclusively based on the Jensen inequality, which
implies the variational gap can be improved with a less
convex transform. On the other hand, it is desirable to
prioritize underfitted samples when adjusting the model.
We now describe a principled framework to address these
two points.

Let φ(u) : R+ → R be a non-decreasing function defined
on the non-negative real line, referred to as the evidence
function. Further, assume (i) φ(u) is concave, (ii) ψ(u) is
a convex and monotonically increasing function, and (iii)
h(u) , ψ(φ(u)) is concave. For notational clarity, we omit
dependence on φ(u), ψ(u), pα(x, z) and qβ(z|x) when the
context is clear. We will refer to φ(pα(x)) as the φ-evidence
score of sample x wrt model pα(x).

Definition 1. The K-sample Generalized Evidence Lower
Bound (GLBO) is defined as

GLBO(x;K) ,

ψ−1

(
EZ1:K∼qβ

[
h

(
1

K

K∑
k=1

pα(x, Zk)

qβ(Zk|x)

)])
,

(2)

where Z1:K = {Zk}Kk=1 are K iid samples from qβ(z|x).

Note that (2) is closely related to importance sampling
(Liu, 2008), where the approximate posterior qβ(z|x)
is understood as the proposal distribution and the term
1
K

∑K
k=1

pα(x,Zk)
qβ(Zk|x) is theK-sample importance-weighted es-

timate of pα(x). When qβ(z|x) equals pα(z|x), the GLBO
exactly recovers the φ-evidence score.

Concerning intuitions for the above assumptions, the con-
cavity of φ(u) in (i) reflects that, in general, we want to use
a φ(u) that is monotonically increasing. Importantly, we
also want φ(u) to saturate for large values of u, to reduce
the influence of the high-evidence region (well-fit samples)
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in the objective, allowing the model to focus on less-well-fit
samples (the saturation also minimizes the desire to over-fit
when learning). Assumption (ii) from above introduces
a convex auxiliary function ψ(u), and (iii) states that the
concavity of φ(u) dominates the convexity of ψ(u). As dis-
cussed below, the additional convexity from ψ(u) generally
improves our variational bound.

Theorem 2. Under assumptions (i)-(iii),

GLBO(x; 1) ≤ GLBO(x; 2) ≤ · · · K→∞−→ φ(pα(x)).

All proofs are provided in the Supplementary Material (SM).
We denote

NLBO(x;K) , GLBO(x;ψ(u) = u)

= EZ1:K∼qβ

[
φ

(
1

K

K∑
k=1

pα(x, Zk)

qβ(Zk|x)

)]
,

as the naı̈ve bound for the K-sample φ-evidence score. The
following theorem shows the concavity introduced via ψ(u)
in GLBO improves the NLBO bound.

Theorem 3. Under assumptions (i)-(iii),

NLBO(x;K) ≤ GLBO(x;K).

As a particular case, recall the K-sample importance-
weighted log-evidence lower bound (ELBO) is defined as

ELBO(x;K) ,

EZ1:K∼qβ

[
log
(

1
K

∑
k
pα(x,Zk)
qβ(Zk|x)

)]
,

(3)

which is the variational objective proposed by Burda
et al. (2016). The K-sample GLBO in (2) recovers the
importance-weighted ELBO in (3), when (ψ(u), φ(u))→
(u, log(u)). From Theorems 2 and 3, GLBO is generally a
tighter bound relative to the importance-weighted ELBO.
This is formalized in the following corollary.

Corollary 4. Under assumptions (i)-(iii),

ELBO(x;K) ≤ GLBO(x;K,φ = log(u)) ≤ log pα(x).

Note this is for the special case where φ = log(u).

3.1. χ-evidence bounds
We now consider a few concrete examples. Letting T ≥
1 be a temperature parameter, we define the K-sample
χ-Evidence Lower Bound (CLBO) to be

CLBO(x;K,T ) ,

GLBO(x;K,φ = log(u), ψ = exp(T−1u)).
(4)

CLBO recovers the χ-evidence bound (Dieng et al., 2017),
or Rényi variational bound (RVB) (Li & Turner, 2016)
when K = 1. Further, our K-sample CLBO is superior
to the K-sample bound used in (Dieng et al., 2017; Li &
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Figure 1: Comparison of theoretical bounds on a toy distribution.
We compare the results in the original scale of p(x) so all evidence
bounds are exponentially transformed, see Section 7.1 for details.

Turner, 2016). Specifically, our lower bound is guaranteed
to be sharper than RVB (see Section 5.1, Theorem 8), and
our upper bound is guaranteed to be an upper bound (see
SM), while for RVB this property only holds in the asymp-
totic limit. See additional discussion in Section 5.1 and
experimental results in Figure 1.

Stronger results can be established for the CLBO in (4).
The following theorem proves that CLBO(x;K,T ) is non-
increasing wrt T .

Theorem 5. Let 1 ≤ T1 ≤ T2, then

CLBO(x;K,T2) ≤ CLBO(x;K,T1).

While in theory as T → 1 the bound gets sharper, we
note that in practice the empirical estimator becomes more
unstable as the bound gets sharper. See SM for details on the
effects of T related to empirical performance. We further
establish asymptotic results for CLBO, as follows.

Theorem 6. The following asymptotic results hold for
CLBO:

lim
T→1

CLBO(x;K,T )→ log pα(x),

lim
T→∞

CLBO(x;K,T )→ ELBO(x;K).

This implies that asymptotically,

ELBO(x;K) ≤ CLBO(x;K,T ) ≤ log pα(x),

for T ∈ (1,∞). Further, for K = 1 it can be shown that
Corollary 7. When T is sufficiently large,

CLBO(x; 1, T ) ≈ ELBO +
1

2T
varZ∼qβ(z|x)[f(x, Z)],

where f(x, z) = log pα(x, z)− log qβ(z|x).

4. Model Selection with φ-evidence Score
Conventional VI picks a variational modelMθ that max-
imizes the expected ELBO wrt data. As discussed in the
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Introduction, when choosing from a flexible family of varia-
tional models, the maximizer may not be unique. Therefore,
we need to be more specific about what is a good model to
select from these candidate models, which all maximize the
variational objective.

A straightforward strategy is to employ the minimax crite-
ria: select a modelM∗θ that has highest value for its worst
evidence bound wrt the data samples, i.e.

M∗θ = argmax
Mθ∈C

{min
x∈D
{ELBO(pα(x, z), qβ(z|x))}}, (5)

where C denotes the collection of all models that maximizes
the variational objective. Intuitively, this ensures that the
selected model gives a reasonable explanation for the sample
least consistent with it.

Unfortunately (5) does not readily translate into a differen-
tiable objective wrt the variational parameters θ, and there-
fore cannot be directly optimized within stochastic gradient
descent framework. Instead, we can relax (5) by reweight-
ing the data with a weight function w(x), and optimize the
ELBO wrt the weighted distribution. Following the spirit
of minimax criteria, we want our model to improve its fit
on the low evidence (underfitted) samples, and thus we put
larger weights on those low evidence samples.

Now we show optimizing a reweighted ELBO objective is
equivalent to optimizing GLBO, with the weighting strategy
implicitly implied by φ(u). First consider the gradient of
φ-evidence wrt model parameters α

∇αφ(pα(x)) = φ′(pα(x))pα(x)︸ ︷︷ ︸
(a)

∇α log pα(x)︸ ︷︷ ︸
(b)

,

where φ′(u) denotes the derivative of φ(u). Here term
(a) can be identified as the weight wα(x) to term (b), the
gradient of the log-evidence. So each gradient update can
be considered as an infinitesimal attempt to improve match
wrt the reweighted data distribution p̃d(x) ∝ wα(x)pd(x),
where the weight is determined by the current model pα(x).

To assign larger weights to the low evidence samples, we can
specify a φ(u) with faster growth rate in the low evidence
region and saturation in the high evidence region, which we
call a saturating φ-evidence function. Figure 2 compares the
standard log-evidence function with an example saturating
φ-evidence function (on the log-scale). With a saturating
score function, the model update strives to improve its fit on
the samples that are less consistent with the current model.
This also helps to prevent the optimization from entering a
state of greedy improvement of already well-fitted samples,
that may result in overfitting, thus in overoptimistic evidence
scores.

Note that optimizing the GLBO objective with an evidence
function other than log(u) is framed as a model regular-
izer, rather than a primary objective for model fitting. The

Log-evidence

Evidence function

ϕ(u) = log(u)
ϕ(u) = log(log(u) − c)

Log-evidence

Gradient of evidence function

Figure 2: Model selection with φ-evidence score.

GLBO does not compromise the primary objective, such as
maximizing the expected log-evidence bound, in the model
selection phase. Second, a saturating φ(u) encourages a
low variance evidence distribution. This closely connects to
the maximal entropy principle for model selection (Jaynes,
2003), and we provide an informal argument in the SM to
support this view.

5. Related work
χ2 / Rényi variational inference The Rényi variational
bound proposed by Li & Turner (2016) is a special case
of the GLBO. The authors also investigated a K-sample
importance-weighted variational objective of the form

RVB(x;K,T ) ,

EZ1:K∼q

[
T log

(
1

K

K∑
k=1

(
pα(x, Zk)

qβ(Zk|x)

)1/T
)]

.
(6)

However, RVB(x;K,T ) is problematic because: (i) it is
a loose lower bound when T > 1, (ii) when T < 1 it ap-
proaches the upper bound from below as K grows, which
means that it may not hold as upper bound until K is suf-
ficiently large (see Figure 2(a) of Li & Turner (2016)). In
fact, Li & Turner (2016) maximized a K-sample estimate
of an upper bound in their experiments, while with their
particular choice of K, the upper bound estimator turns out
to be a lower bound. The following theorem states that our
CLBO is guaranteed to be sharper than RVB.

Theorem 8. When T ≥ 1,

RVB(x;K,T ) ≤ CLBO(x;K,T ) ≤ log pα(x).

Webb & Teh (2016) hypothesized a better form of
importance-weighted estimator for the Rényi variational
bound in (6) and validated their hypothesis with some em-
pirical experiments. However, they were unable to provide
a theoretical justification for their estimator, thus they left it
as future work, which we address here.

Motivated by the issue of the posterior variance under-
estimation suffered by ELBO-based VI procedures, Dieng
et al. (2017) proposed to minimize the variational upper
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bound rather than the lower bound, which in turn over esti-
mates the posterior variance. The authors focused on the χ2

variational bound, a special case of GLBO’s upper bound
(see the SM for more details). They proved the equivalence
between the χ2 variational upper bound minimization and
the minimization of χ2-divergence between the true and ap-
proximate posteriors. However, we note that optimization of
variational upper bounds is considerably more numerically
unstable relative to its lower bound counterpart. Conse-
quently, χ2-VI is more appropriate for relatively simple
problems. The estimator they proposed is essentially the
exponential of the estimator used in Rényi variational infer-
ence (Li & Turner, 2016). However, this estimator cannot
be used to construct a variational auto-encoder. A minimal
variance argument was made to establish a connection to
importance sampling. However, Dieng et al. (2017) did not
consider using importance sampling technique to improve
their estimator.

Efficiency of importance-weighted VI Rainforth et al.
(2017) recently analyzed the trade-off of using an
importance-weighted estimator in VI. In particular, the au-
thors considered the signal-to-noise ratio (SNR) of a gradi-
ent estimator as defined by

SNR(∇̂`(θ)) , E[∇̂`(θ)]√
var(∇̂`(θ))

, (7)

where ∇̂`(θ) is the gradient of the variational objective `(θ)
wrt θ, and E[·] and var(·) are approximated with samples.
Rainforth et al. (2017) showed that (7) converges with rates
O(
√
K) and O(1/

√
K) for the generator parameters α and

inference parameters β, respectively. This raises the concern
that the gains in the improved bound by increasing K may
not be feasible due to unstable updates for β.

While also using an importance-weighted estimator, our
GLBO explores some orthogonal directions. We consider
the problem of deriving variational bounds for more gen-
eralized φ-evidence functions, which can be designed to
encourage desirable properties of a solution. Additionally,
in our framework the improvement for the bound also comes
from the ψ-transformation. We also advocate a new update
rule for the parameters to mitigate the SNR issue; see Sec-
tion 6.2 for details.

Regularized variational inference While not directly
motivated from a model-selection perspective, recent de-
velopments in regularized variational inference shares sim-
ilarities with our approach. In generative modeling, tra-
ditional VI has been criticized for producing unrealistic
samples. This issue traces back to the fact that the ag-
gregated approximate posterior does not match the prior
(Makhzani et al., 2016), as ELBO based inference tend
to underestimate posterior variance (Pu et al., 2018). A
number of solutions have been proposed to alleviate this

problem, most notably, adversarially regularized solutions
(Dumoulin et al., 2016; Pu et al., 2017b; Li et al., 2017).
These methods introduced an adversarial loss, penalizing
the mismatch between the marginal latent distributions p(z)
and qβ(z) =

∫
pd(x)qβ(z|x) dx, or the joint distributions

pα(x, z) and qβ(x, z) = pd(x)qβ(z|x). These regulariza-
tion approaches favor models that output more realistic sam-
ples.

Robust variational inference Our work also comple-
ments recent developments in robust variational inference
(Wang et al., 2017; Figurnov et al., 2016). In Wang et al.
(2017), the authors hypothesized that the cause of instability
in VI comes from the presence of “bad” observations. To ad-
dress this, they proposed to dynamically reweight samples,
constrained by a prior distribution on the weight vector. This
effectively down-weights “bad” observations and relieves
the learner from modeling nonconforming examples. How-
ever, this method does not follow a standard probabilistic
approach, and the results are sensitive to the choice of prior
and other hyper parameters. In the work of Figurnov et al.
(2016) the authors heuristically applied a soft-thresholded
log(u) as the evidence function in ELBO. Similar to the
reweighting strategy, this effectively eliminates any signal
from low evidence samples during training.

6. Optimization of GLBO
In this section we first describe an easy-to-implement low-
variance estimator that improves GLBO training, then dis-
cuss a new update rule based on theoretical insights. We
also detail the state-of-the-art VI models we tested with, the
fact that GLBO improves upon these models demonstrates
its wide applicability (see Section 7).

6.1. Improving the bound with moving average

A naı̈ve estimator for the GLBO in the stochastic gradient
descent setting is

VL,K(x, {Zl,k};α, β) =

ψ−1

(
1

L

L∑
l=1

h

(
1

K

K∑
k=1

pα(x, Zl,k)

qβ(Zl,k|x)

))
,

(8)

where the expectation over Z1:K ∼ qβ(z|x) is replaced with
the average of L empirical samples {Zl,1:K}Ll=1 drawn from
qβ(z|x). However, this potentially introduces a negative
bias, as one can readily derive from the Jensen’s inequality
that E{Zl,k}∼qβ(z|x) [VL,K(x, {Zl,k})] ≤ GLBO(x;K). To
reduce this bias, we note that our stochastic objective can be
rewritten in a more general form as ψ−1(ĥ(x, p, q)), where
ĥ(x, p, q) is an estimator for the term E[h] in the definition
of the GLBO. Interestingly, this bias can be ameliorated by
reducing the variance of estimator ĥ(x, p, q). We provide
an asymptotic argument to support this claim in the SM.
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Given the insights from above, we propose to replace the
naı̈ve estimator ĥ with a moving average estimator ĥema,
which in principle should reduce the variance and provide
tighter estimate for the bound. Specifically, our empirical
estimator for GLBO at iteration t is computed as

V ema
K (x, t) = ψ−1(ĥema(x, t)),

ĥema(x, t) = (1− wt)ĥema(x, t− 1)

+ wth

(
1

K

K∑
k=1

pα(x, Zt,k)

qβ(Zt,k|x)

)
,

where Zt,1:K ∼ qβ(z|x) are approximate posterior samples
and 0 ≤ wt ≤ 1 is the update weight for the averaging
estimator. At iteration t, the historical estimate ĥema(x, t−
1) is treated as a constant baseline and the gradients are
only propagated through the evaluation on current posterior
samples Zt,1:K .

6.2. A high SNR update rule

The GLBO estimator is also vulnerable to the SNR issue
associated with importance-weighted estimators analyzed
by Rainforth et al. (2017) (see discussion in Section 5
above). Motivated by their theoretical insights, we pro-
pose to update the generator parameter α and inference
parameter β with objective functions based on estimators of
different variational bounds. Consider the naive estimator
VL,K(x, {Zl,k}; θ) in (8), and assume we have a budget of
S posterior samples for each parameter update. In the SGD
setting, we propose to update the parameters with

αt+1 ← αt + ηt∇αVS,1(xt, {Zl,k};αt, βt),
βt+1 ← βt + ηt∇βV1,S(xt, {Zl,k};αt, βt),

(9)

where xt is the data sampled at iteration t and ηt is the
learning rate. This combines the best of two worlds, as
α and β are respectively updated by a high SNR gradient
estimator. Generalization to the moving average estimator
discussed above is straightforward. We note that the extra
computational cost for using (9) instead of vanilla update
rule θt+1 ← θt + ηt∇θV (xt; θt) is neglectable in the way
modern differentiable learning algorithms are implemented.

6.3. Local ELBO with flexible posterior approximation

To allow for more flexible posterior representation, we con-
sider nonparametric posterior qβ(z|x) implicitly defined by
a latent code generator z = G(x, ξ;β), where ξ ∼ q(ξ) is a
simple of randomness for the posterior, e.g., Gaussian.

Tractable posterior approximation If G(x, ξ;β) is in-
vertible wrt ξ, then qβ(z|x) = q(ξ)|det(∇ξG−1(x, ξ;β))|.
A well known example of such invertible generators is the
normalizing flow (NF) (Tabak et al., 2010; Rezende & Mo-
hamed, 2015), which considers G(x, ξ;β) = zM recur-
sively defined by zm = fm(zm−1, x;β),∀m = 1, · · · ,M .

Here z0 = ξ and {fm(z, x;β)}Mm=1 is a chain of trans-
formations invertible wrt to z parameterized by β. This
allows a flexible posterior approximation log qβ(z|x), with
a tractable log density that can be explicitly computed by
back tracing the Jacobians of {fm}, e.g. log qβ(z|x) =

log q(ξ)−
∑M
m=1 log

∣∣det(∇zm−1
fm)

∣∣.
Intractable posterior approximation Using an uncon-
strained transformation G(x, ξ;β) allows more expressive
posterior approximation at the cost of no explicit expres-
sion for qβ(z|x). To overcome this difficulty, we use the
adversarial approach proposed by Mescheder et al. (2017).
Specifically, we can decompose the local ELBO into the
sum of a tractable log-likelihood term and an intractable
log-likelihood ratio term (also known as the local KL)
log f(x, z) = log pα(x|z) + log p(z)

qβ(z|x) . Here we learn

rβ(x, z) , log p(z)
qβ(z|x) by training an optimal discriminator

σ(r(x, z)) between samples drawn from p(z) and qβ(z|x)
rβ(x, z) = argmax

r(x,z;φ)

{EZ∼p(z)[log σ(r(x, Z;φ))] +

EZ′∼qβ(z|x)[log(1− σ(r(x, Z ′;φ)))]},

where σ(u) = (1+ e−u)−1 is the sigmoid function. To cir-
cumvent the numerical difficulties associated with vanishing
likelihood ratios, we further leverage the adaptive contrast
(AC) technique proposed in Mescheder et al. (2017), intro-
ducing an auxiliary distribution to improve the estimate of
rβ(x, z). See the SM for details.

7. Experiments
To compare the performance of our new bound and its
predecessors, we empirically evaluate the sharpness of
these bounds on a toy distribution, and benchmark them
on a series of VI tasks. In all K-sample experiments we
use the K-sample ELBO estimator to make the compar-
isons fair wrt computational cost, and report the vanilla
ELBO as the log-evidence bound for all models in quan-
titative evaluations. We use the proposed moving aver-
age estimator except for the Bayesian regression experi-
ment. Details of the experimental setup are in the SM, and
source code is available (upon publication) from https:
//www.github.com/LiqunChen0606/glbo.

7.1. Bound sharpness

We consider the following toy distribution to quantitatively
evaluate the performance of different bounds X = sin(Z)+
N (0, 0.01), Z ∼ U [0, π], where N (µ, σ2) denotes a Gaus-
sian with mean µ and variance σ2, and U [a, b] to denote
a uniform distribution on interval [a, b]. This specifies a
simple two-dimensional distribution p(x, z), and we spec-
ify a simple unit variance Gaussian q(z|x) = N (π/2, 1)
centered at π/2 as our posterior approximation to estimate
a bound on marginal p(x) (See Figure SM-1(a-b)). The
ground truth p(x) is estimated using a naive Monte Carlo

https://www.github.com/LiqunChen0606/glbo
https://www.github.com/LiqunChen0606/glbo
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Table 1: Average test log-likelihood for variational auto-encoder.
† Results collected from Burda et al. (2016); Li & Turner (2016).

Dataset L K VAE† IW-VAE† RVB† CLBO

Frey Face 1 5 1322.96 1380.30 1377.40 1381.23

Caltech 101 1 5 -119.69 -117.89 -118.01 -117.90
Silhouettes 50 -119.61 -117.21 -117.10 -116.95

MNIST 1 5 -86.47 -85.41 -85.42 -84.71
50 -86.35 -84.80 -84.81 -84.30

2 5 -85.01 -83.92 -84.04 -83.45
50 -84.75 -83.12 -83.44 -82.94

OMNIGLOT 1 5 -107.62 -106.30 -106.33 -106.31
50 -107.80 -104.68 -105.05 -104.58

2 5 -106.31 -104.64 -104.71 -104.52
50 -106.30 -103.25 -103.72 -103.30

estimator p̂(x) = 1
S

∑S
s=1 p(x, zl), z1:S ∼ U [0, π], where

we set S = 10, 000.

Figure 1(c,d) summarize the estimated GLBO with growing
K and decreasing T , respectively. As our theory predicts,
GLBO gets sharpened as K increases or as T decreases.
Vanilla ELBO does not provide a reasonable bound in this
experiment. Figure 1(a-c) compare the K-sample RVB,
ELBO and CLBO. Our results verify that RVB does not
necessarily improve importance-weighted ELBO, which is
consistent with the empirical results reported by the original
RVI paper (Li & Turner, 2016). GLBO on the other hand,
is guaranteed to improve its ELBO counterpart. Notably,
the performance boost is especially significant in the low-
sample regime (K < 5) under our experimental conditions.

7.2. Variational autoencoder

Our next experiment considers applying GLBO to varia-
tional autoencoders for unsupervised learning. To make
comparisons fair, we focus on modifying publicly available
implementations with our GLBO objective1. All experimen-
tal results are produced with the recommended settings from
the original implementations.

We first compare GLBO with the vanilla variational au-
toencoder, importance-weighted VAE and RVB under the
experimental setups from Li & Turner (2016) 2, on the
MNIST dataset. The encoders and decoders are imple-
mented with L ∈ {1, 2} neural network layers and leverag-
ingK ∈ {5, 50} posterior samples. We choose the VR-Max
estimator for RVB and set GLBO to CLBO(x;T,K) with
T = 200. To evaluate performance, we estimate the true
log-likelihood with S = 5, 000 importance-weighted poste-
rior samples, and report the average of test set log-likelihood
in Table 1. Our GLBO consistently improves performance,
and the gain is more pronounced in the low posterior sample
regime. We have also observed that our GLBO leads to

1
In this work we use the results reported by the original papers, and we are able to reproduce

these results with the publicly available code.
2
https://github.com/YingzhenLi/vae_renyi_divergence

Table 2: ELBO, AIS and reconstruction error on MNIST for
different models. ‡ Results collected from Mescheder et al. (2017).

Model ELBO AIS Recon. Err.

AVB+GLBO -79.97 ± 0.15 -81.2 57.2 ± 0.12
AVB‡ -82.7 ± 0.2 -81.7 57. ± 0.2
VAE‡ -85.7 ± 0.2 -81.9 59.4 ± 0.2
AuxiliaryVAE ‡ -85.6 ± 0.2 -81.6 59.6 ± 0.2
VAE/IAF ‡ -85.5 ± 0.2 -82.1 59.6 ± 0.2

faster convergence (not shown). We have varied our experi-
mental settings and the results are qualitatively similar.

We also examined if GLBO can enhance models with more
flexible posterior distribution. We follow the experimen-
tal setup used in AVB (Mescheder et al., 2017) 3. In the
MNIST experiment, we compare a GLBO version AVB with
vanilla VAE, inverse autoregressive flow (IAF) (Kingma
et al., 2016), auxiliary VAE (Maaløe et al., 2016) and AVB.
No importance sampling is used, as in the original imple-
mentation, and we choose the best performing adaptive
contrast AVB for comparison. We summarize the ELBO,
AIS score (Wu et al., 2017) and reconstruction error in Table
2. Both GLBO and AVB achieved better reconstruction than
other competitors, and our GLBO leads the performance on
ELBO and AIS by a large margin.

We further evaluate GLBO on the more complex CelebA
face dataset (Liu et al., 2015). We benchmark K-sample
CLBO-VAE against ELBO, IW-ELBO and Rényi VAEs,
using a convolutional neural net encoder and deconvolution-
layer based decoder as our architecture (Radford et al.,
2016). The training and testing set log-evidence bounds
as a function of training epochs are shown in Figure 4.
CLBO-VAE showed both better evidence score and more
stable training dynamics compared with its counterparts. In
Figure 4 we also show the learning curves of each model
augmented with NF posterior approximation, trained on
the MNIST data. All models except for ELBO performed
similarly, possibly because of the highly expressive NF ap-
proximation. Additionally, the high SNR update rule failed
to improve the vanilla ELBO-VAE on CelebA, but provided
slightly better performance compared with all other methods
on MNIST+NF.

For the last experiment on VAE, we explore the idea of
instantiating model-selection with GLBO. We first train
the regular log-evidence objective to convergence with the
AVB model on MNIST, and then switch to optimize φ-
evidence with GLBO to prioritize more plausible mod-
els. Here we use the shifted log-log function φ(u) =
log (log(u)− `lower) as our evidence function, so that we
can vary `lower to manipulate the shape of φ (see SM for de-
tails of our choice). Figure 3 compares the log-evidence dis-

3
https://github.com/LMescheder/AdversarialVariationalBayes

https://github.com/YingzhenLi/vae_renyi_divergence
https://github.com/LMescheder/AdversarialVariationalBayes
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Table 3: Test RMSE and log-likelihood results for Bayesian neural net regression.

Test RMSE (lower is better) Test log-likelihood (higher is better)

Dataset VI PBP Rényi CLBO VI PBP Rényi CLBO

Boston 4.32 ± .29 3.01 ± .18 2.86 ± .40 2.71± .29 -2.90 ± .07 -2.57 ± .09 -2.46 ± .16 −2.40± .09
Concrete 7.19 ± .12 5.67 ± .09 5.15 ± .25 5.04± .27 -3.39 ± .02 -3.16 ± .02 -3.04 ± .07 −3.02± .05
Energy 2.65 ± .08 1.80 ± .05 1.00 ± .18 0.95± .15 -2.39 ± .03 -2.04 ± .02 -1.67 ± .05 −1.65± .04
Kin8nm 0.10 ± .00 0.10 ± .00 0.08± .00 0.08± .00 0.90 ± .01 0.90 ± .01 1.14± .02 1.14± .02
Naval 0.01 ± .00 0.01 ± .00 0.00± .00 0.00± .00 3.73 ± .12 3.73 ± .01 4.11 ± .11 4.17± .10
CCPP 4.33 ± .04 4.12 ± .03 4.13 ± .04 4.03± .06 -2.89 ± .02 -2.85 ± .05 -2.84 ± .04 −2.81± .02

Winequality 0.65 ± .01 0.64 ± .02 0.62 ± .03 0.61± .03 -0.98 ± .01 -0.97 ± .01 -0.94 ± .04 −0.93± .04
Yacht 6.89 ± .67 1.02 ± .05 0.94 ± .23 0.87± .18 -3.43 ± .16 -1.63 ± .02 -1.61± .00 −1.52± .00

Protein 4.84 ± .03 4.73 ± .01 4.65 ± .07 4.43± .05 -2.99 ± .01 -2.97 ± .00 -2.93 ± .00 −2.89± .01
Year 9.03 ± NA 8.88 ± NA 8.80 ± NA 8.78±NA -3.62 ± NA -3.60 ± NA -3.60 ± NA −3.57±NA

Figure 3: Model-selection result on MNIST. log-evidence his-
togram plot (left), box plot of mean and quantile (right) for a
converged and refined AVB model.

tribution with and without model-selection on the MNIST
dataset. The refinement phase improves performance on
both the training and testing set, and the boost in generaliza-
tion is more pronounced (testing +1.47 vs training +0.58
nats). This validates our hypothesis that applying the maxi-
mum entropy heuristic favors more plausible models.

8. Bayesian Neural Net Regression
Finally we consider the problem of Bayesian regression
with neural nets. We use ten datasets from the UCI Ma-
chine Learning Repository (Lichman, 2013) and followed
the experimental setup from Li & Turner (2016); see SM
for details. We use a random 90%/10% split for training
and testing, and use test root mean squared error (RMSE)
and log-likelihood (LL) for evaluation.

We compared CLBO with ELBO, IW-ELBO, Rényi-VI and
probabilistic backpropagation (PBP) (Hernández-Lobato &
Adams, 2015) in this experiment. For CLBO and Rényi we
fixed T = 2. The results are summarized in Table 3.4 The
proposed CLBO in general improves over its counterparts.
This provides evidence that CLBO learns a better model

4The results for IW-ELBO is quantitatively similar to those of
Rényi-VI, we therefore report it in the SM to save space.

Figure 4: log-evidence bound evolution wrt training epochs on
CelebA (upper panel) and MNIST (lower panel). Low evidence
scores rescaled for better visualization. Normalizing flow is used
for the MNIST variational models. ALTER denotes CLBO learned
with the high SNR update rule proposed in Sec 6.2.

rather than simply bumping up the evidence bound.

9. Conclusion
We have considered generalization of the evidence score,
and have proposed a new family of evidence bounds and
improved estimators. Our work subsumes many existing
bounds as special cases, while also being provably sharper.
We carried out experiments to validate our claims, and the
results are consistent with our theoretical predictions. We
provided empirical evidence that our method improves state-
of-the-art approaches. We also investigated the issue of
model-selection in variational inference, and proved, em-
pirically, that our theoretically-inspired strategy leads to an
improvement in generalization performance.

In future work, we intend to build on automated inference
procedures with generalized evidence bounds. This involves
further understanding of φ-evidence bounds, and designing
principled strategies that are guaranteed to achieve desired
optimality conditions. Adaptive hyper-parameter tuning is
also desirable to simplify φ-evidence based VI.
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