
Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

A Proof of the Main Theory

In this section, we will provide a detailed proof for the main theory. We first introduce the resampling version of our
proposed Algorithm 1, which is displayed in Algorithm 3.
Algorithm 3 Gradient Descent with Hard Thresholding (Resampling Version)
1: Input: Number of iterations T , sparsity s1, s2, step size ⌘1, ⌘2

2: Split the Dataset into T Subsets of Size n/T

3: for t = 0 to T � 1 do

4: Update � with the t-th Data Subset:

�(t+0.5) = �(t) � ⌘1r1fn/T

�
�(t)

,⌦(t)
�

�(t+1) = HT(�(t+0.5)
, s1)

5: Update ⌦ with the t-th Data Subset:

⌦(t+0.5) = ⌦(t) � ⌘2r2fn/T

�
�(t)

,⌦(t)
�

⌦(t+1) = HT(⌦(t+0.5)
, s2)

6: end for

7: Output: b� = �(T ), b⌦ = ⌦(T )

Before we begin our proof, we first define BF (�⇤; r) = {� 2 Rd⇥m : k���
⇤
kF  r}. Similarly we define BF (⌦⇤; r) =

{⌦ 2 Rm⇥m : k⌦�⌦
⇤
kF  r}. Now we introduce several lemmas, which are essential to the proof.

Lemma A.1. Under Assumptions 4.1 and 4.2, for any �
0,� 2 BF (�⇤; r), the population loss function f(·,⌦⇤) is 2/(⌫⌧)-

strongly convex and 2⌫⌧ -smooth, i.e.,
1

⌫⌧
k�

0
� �k

2
F  f(�0,⌦⇤)� f(�,⌦⇤)� hr1f(�,⌦

⇤),�0
� �i  ⌫⌧k�0

� �k
2
F .

Lemma A.2. Under Assumptions 4.1 and 4.2, for any ⌦
0,⌦ 2 BF (⌦⇤; r), and if r  1/(2⌫), then the population loss

function f(�⇤, ·) is 1/(4⌫2)-strongly convex and 4⌫2-smooth, i.e.,

1

8⌫2
k⌦

0
�⌦k

2
F  f(�⇤,⌦0)� f(�⇤,⌦)� hr2f(�

⇤,⌦),⌦0
�⌦i  2⌫2k⌦0

�⌦k
2
F .

Lemmas A.1 and A.2 indicate that when one of the two variables (i.e., � or ⌦) is fixed as true variable (i.e., �⇤ or ⌦⇤),
the population function f is both strongly convex and smooth with respect to the other variable. These conclusions ensure
that the standard convex optimization results for strongly convex and smooth objective functions (Nesterov, 2004) can be
applied to function f as long as one of the variables takes its true value.
Lemma A.3. Suppose Assumptions 4.1 and 4.2 hold. For the true parameter ⌦⇤ and any ⌦ 2 BF (⌦⇤; r), the gradient
difference r1f(�,⌦⇤)�r1f(�,⌦) satisfies

kr1f(�,⌦
⇤)�r1f(�,⌦)kF  2⌧r · k⌦⇤

�⌦kF . (A.1)

For true parameter �⇤ and any � 2 BF (�⇤; r), the gradient difference r2f(�⇤,⌦)�r2f(�,⌦) satisfies

kr2f(�
⇤,⌦)�r2f(�,⌦)kF  ⌧r · k�⇤

� �kF . (A.2)

Lemma A.3 suggests the gradients satisfy Lipschitz property with respect to ⌦ and �. Note that this Lipschitz property
only holds between the true parameter (�⇤ or ⌦⇤) and arbitrary parameter in the neighborhood of the true parameter
(� 2 BF (�⇤; r) or ⌦ 2 BF (⌦⇤; r)). Given Lemma A.3, standard convex optimization results can be adapted to analyze
f(·,⌦) for any ⌦ 2 BF (⌦⇤; r) and f(�, ·) for any � 2 BF (�⇤; r).

The next lemma characterizes the difference between the gradients of the population and sample loss functions, in terms of
`1,1 norm.
Lemma A.4. For any fixed � 2 BF (�⇤; r) and ⌦ 2 BF (⌦⇤; r) with r  min{M,

p
⌫/⌧}, then with probability at least

1� � we have

kr1f(�,⌦)�r1fn(�,⌦)k1,1  ✏1(n, �). (A.3)

If we choose � = 2/d then we have ✏1(n, �) = CM
p
⌧⌫
p
log(dm)/n. Also with probability at least 1� � we have

kr2f(�,⌦)�r2fn(�,⌦)k1,1  ✏2(n, �). (A.4)

If we choose � = C 00/m then we have ✏2(n, �) = C 0M
p
(logm)/n.
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We further define the gradient descent update for the population loss:

�
(t+0.5) = �

(t)
� ⌘1r1f

�
�
(t),⌦(t)

�
, ⌦(t+0.5) = �

(t)
� ⌘2r2f

�
�
(t),⌦(t)

�
.

Our subsequent two lemmas bridge the gap between population loss update and sample loss update.

Lemma A.5. Under Assumptions 4.1 and 4.2, suppose that � 2 BF (�⇤; r), then Algorithm 3 with step sizes ⌘1 =
⌫⌧/(⌫2⌧2 + 1) satisfies

���(t+0.5)
� �

⇤��
F

⌫2⌧2 � 1

⌫2⌧2 + 1
·
���(t)

� �
⇤��

F
+

2r⌫⌧2

⌫2⌧2 + 1
·
��⌦(t)

�⌦
⇤��

F
.

Similarly, we have the following lemma establishing the result for of k⌦(t+0.5)
�⌦

⇤
kF .

Lemma A.6. Under Assumptions 4.1 and 4.2, suppose that ⌦ 2 BF (⌦⇤; r), then Algorithm 3 with step size ⌘2 =
8⌫2/(16⌫4 + 1) satisfies

��⌦(t+0.5)
�⌦

⇤��
F


16⌫4 � 1

16⌫4 + 1
·
��⌦(t)

�⌦
⇤��

F
+

8⌧⌫2r

16⌫4 + 1
·
���(t)

� �
⇤��

F
.

The next lemma characterizes the effects of hard thresholding.

Lemma A.7 (Li et al. (2016)). Let �⇤ be a sparse vector such that k�⇤
k0  s⇤, and HT be the hard thresholding operator,

which keeps the largest s entries (in magnitude) and sets the other entries equal to zero. Given s � s⇤, for any vector �, we
have,

��HT (�, s)� �⇤��2
2


✓
1 +

2
p
s⇤

p
s� s⇤

◆
·
��� � �⇤��2

2
. (A.5)

The following two lemmas demonstrate the initialization results for �init and ⌦
init.

Lemma A.8. Under Assumption 4.2, if we select the regularization parameter �� in Algorithm 3 as �� =
c0(⌧

p
ds⇤1 log(dm)/n)1/3, then with probability at least 1� c1 exp(�c2dm), it holds that

���init
� �

⇤��
F
 C

�
⌧(ds⇤1)

2
· log(dm)/n

�1/3
. (A.6)

Lemma A.9. Under Assumptions 4.1 and 4.2, suppose the sample size n is large enough such that
���init

� �
⇤
��
F

p
⌫/⌧ , if we select the regularization parameter �⌦ in Algorithm 3 as �⌦ = c0M⌫

p
logm/n + c1M⌫

1
2 ⌧5/6(ds⇤1)

2/3
·

(log dm/n)5/6, then with probability at least 1� c2/m, it holds that

k⌦
init

�⌦
⇤
kF  C 0M⌫

r
ms⇤2 · logm

n
+ C 00M⌫

1
2 ⌧

5
6 (ms⇤2)

1
2 (ds⇤1)

2
3 ·

✓
log dm

n

◆ 5
6

.

Now we have gathered everything we need and we are ready to present the proof of the main theorem.

A.1 Proof of Theorem 4.3

Proof of Theorem 4.3. We first prove that the estimation error can be controlled by R in each step, by induction. Since
the initialization estimator already satisfies max{k�(0)

� �
⇤
kF , k⌦(0)

� ⌦
⇤
kF }  R, We only need to prove that the

estimation error in any iterate t also satisfies the above condition given the information about (t� 1)-th iteration.

Define I
⇤
1 = supp(�⇤), I(t)

1 = supp(�(t)), I(t+1)
1 = supp(�(t+1)) and I1 = I

⇤
1 [ I

(t)
1 [ I

(t+1)
1 . It is easy to verify that

�
(t+1) = HT (�(t+0.5), s1) = HT (�(t)

� ⌘1[r1fn/T
�
�,⌦

�
]I1 , s1).

Since we already have that �(0)
2 BF (�⇤;R), ⌦(0)

2 BF (⌦⇤;R) by definition, now we consider expanding this using
mathematical induction. Suppose that �(t�1)

2 BF (�⇤;R), ⌦(t�1)
2 BF (⌦⇤;R). Consider the estimation error of t-th
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iteration, by Lemma A.7, we have
���(t+1)

� �
⇤��

F
=
���(t)

� ⌘1
⇥
r1fn/T (�,⌦)

⇤
I1

� �
⇤��

F



✓
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2
p
ds⇤1p

s1 � ds⇤1

◆1/2���(t)
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⇥
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⇤
I1

� �
⇤��

F



✓
1 +

2
p
ds⇤1p

s1 � ds⇤1

◆1/2���(t+0.5)
� �

⇤��
F
+ ⌘1

✓
1 +

2
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��
F
,

(A.7)

where the last inequality holds due to triangle inequality. Notice that by Lemma A.4 we have
��⇥r1f(�,⌦)�r1fn/T (�,⌦)

⇤
I1

��
F


p
|I1|

��r1f(�,⌦)�r1fn/T (�,⌦)
��
1,1 

p
ds⇤1 + 2s1 · ✏1(n/T, �/T ).

Therefore, (A.7) can be further written as:
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⇤��

F
+
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F
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✓
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2
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◆1/2

·
p
⌫⌧
q
(ds⇤1 + 2s1) log(dmT ) · T/n, (A.8)

where the last inequality is due to Lemma A.5 and choosing � = 2/d for ✏1(n/T, �/T ) in Lemma A.4. Similarly, we can
also define I

⇤
2 = supp(⌦⇤), I(t)

2 = supp(⌦(t)), I(t+1)
2 = supp(⌦(t+1)), I2 = I

⇤
2 [ I

(t)
2 [ I

(t+1)
2 , and then establish the

bound for k⌦(t+1)
�⌦

⇤
kF as:

k⌦
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kF 

✓
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2
p
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◆1/2
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·
��⌦(t)

�⌦
⇤��

F
+

8⌧⌫2R

16⌫4 + 1
·
���(t)
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F

�

+ C 0M⌘2

✓
1 +

2
p

ms⇤2p
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◆1/2

·

q
(ms⇤2 + 2s2) log(mT ) · T/n. (A.9)

Now we define

⇢ = max

⇢
⌫2⌧2 � 1

⌫2⌧2 + 1
+

2R⌫⌧2

⌫2⌧2 + 1
,
16⌫4 � 1

16⌫4 + 1
+

8⌧⌫2R

16⌫4 + 1

�

= max

⇢
1�

2� 2R⌫⌧2

⌫2⌧2 + 1
, 1�

2� 8⌧⌫2R

16⌫4 + 1

�
.

Note that by our assumptions s1 �
�
1 + 4/(1/⇢� 1)2

�
ds⇤1 and s2 �

�
1 + 4/(1/⇢� 1)2

�
ms⇤2, we have
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(✓
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2
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,

✓
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2
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1
p
⇢
.

Thus by combining (A.8) together with (A.9), we get

max
�
k�

(t+1)
� �

⇤
kF , k⌦

(t+1)
�⌦

⇤
kF

 


p
⇢ ·max

�
k�

(t)
� �

⇤
kF , k⌦

(t)
�⌦

⇤
kF
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�
↵1,↵2

 
, (A.10)

where ↵1 and ↵2 are defined as

↵1 = C 0M
p
⌫⌧ ·

s
ds⇤1 log(dmT )

n/T
, ↵2 = C 00M ·

s
ms⇤2 log(mT )

n/T
. (A.11)
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For simplicity, if we denote P (t) = max
�
k�

(t)
� �

⇤
kF , k⌦(t)

�⌦
⇤
kF

 
, ⇣ = max{↵1,↵2} and take one step back from

iteration t+ 1 to t, then (A.10) can be rewritten as:

P (t)


p
⇢ · P (t�1) + ⇣. (A.12)

Since we have �
(t�1)

2 BF (�⇤;R), ⌦(t�1)
2 BF (⌦⇤;R), by (A.12), it immediately implies that

P (t�1) = max
�
k�

(t�1)
� �

⇤
kF , k⌦

(t�1)
�⌦

⇤
kF

 
 R.

Given the theorem condition (4.1), we can easily derive that

⇣ 
�
1�

p
⇢
�
R.

Thus we have

P (t)


p
⇢ · P (t�1) + ⇣ 

p
⇢ ·R+ r(1�

p
⇢)  R.

Therefore we proved that for all t � 1, �(t)
2 BF (�⇤;R), ⌦(t)

2 BF (⌦⇤;R).
Next we prove the bound in the theorem. Consider

P (t)


p
⇢ · P (t�1) + ⇣  ⇢ · P (t�2) +

p
⇢ · ⇣ + ⇣  ...

 ⇢t/2 · P (0) + ⇢(t�1)/2
· ⇣ + ...+ ⇣

 ⇢t/2 · P (0) +
1

1�
p
⇢
⇣,

where the last inequality holds for series summation rule when t ! 1. Since P (0) = r  R, we rewrite the above inequality
as

max
�
k�

(t)
� �

⇤
kF , k⌦

(t)
�⌦

⇤
kF

 
 ⇢t/2 ·R+

1

1�
p
⇢
⇣, for all t 2 [T ].

This completes the proof.

A.2 Proof of Theorem 4.7

In this section, we present the analysis of our initialization algorithm (Algorithm 2). The main idea in this analysis is
inspired from Yang et al. (2014a;b) for elementary Gaussian graphical models. However, in our initialization estimator, we
use ridge type graphical model estimator rather than performing diagonal enhancement operator on the sample covariance
matrix as in Yang et al. (2014b). Therefore, for the self-containedness of our paper, we choose to present the proof here.

Proof of Theorem 4.7. According to Lemma A.8, we have that

k�
init

� �
⇤
kF  Cm

�
⌧(ds⇤1)

2
· log(dm)/n

�1/3

Thus according to the theorem condition on the sample size n, we can easily get

k�
init

� �
⇤
kF  R/2.

The same argument applies to the initial estimator ⌦init. According to Lemma A.9, we have that

k⌦
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⇤
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1
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5
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2
3 ·

✓
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◆ 5
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.

Therefore, according to theorem condition on the sample size n, we can easily have

k⌦
init

�⌦
⇤
kF  R/2.
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By Lemma A.7, for any s1 � 4ds⇤1 we have

���(0)
� �

⇤��
F


✓
1 +

2
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s1 � ds⇤1
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◆1/2R

2
 R.

Similarly, we can prove that for ⌦, we have k⌦(0)
�⌦

⇤
kF  R. Thus we prove that by initialization, the initial estimation

error satisfies

max{k�(0)
� �

⇤
kF , k⌦

(0)
�⌦

⇤
kF }  R.

B Proof of Technical Lemmas in Section A

In the following, we will give detailed proof of the technical lemmas used in Section A. First let us denote ✏i = yi ��
⇤>

xi

for the rest of this section. Note that from the CGGM model we can obtain that ✏i ⇠ N(0,⌦⇤�1).

B.1 Proof of Lemma A.1

Proof. Recall that

fn(�,⌦) = � log |⌦|+
1

n

nX

i=1

�
(yi � �

>
xi)

>
⌦(yi � �

>
xi)

�

= � log |⌦|+
1

n

nX

i=1

�
(�⇤>

xi � �
>
xi + ✏i)

>
⌦(�⇤>

xi � �
>
xi + ✏i)

�
. (B.1)

Based on the above equality we compute the population version of f function:

f(�,⌦) = E
⇥
fn(�,⌦)

⇤

= E

� log |⌦|+

1

n

nX

i=1

�
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��

= � log |⌦|+ E

1

n

nX

i=1

x
>
i (�

⇤
� �)⌦(�⇤

� �)>xi

�
+ tr(⌦⌦

⇤�1)

= � log |⌦|+ tr
�
(�⇤

� �)⌦(�⇤
� �)>⌃⇤

X

�
+ tr(⌦⌦

⇤�1). (B.2)

Thus, we get

r1f(�,⌦) = �2⌃⇤
X(�⇤

� �)⌦. (B.3)

Apply vectorization and use the property of Kronecker product that vec(ABC) = (C>
⌦A)vec(B), we obtain

r
2
1f(�,⌦

⇤) = ⌦
⇤
⌦ 2⌃⇤

X .

For function f(·,⌦⇤), according to Taylor expansion, we have

f(�0,⌦⇤) = f(�,⌦⇤) + hr1f(�,⌦
⇤),�0

� �i

+
1

2
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Then (B.4) further implies
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2
F .



Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

Recall that r2
1f(�,⌦

⇤) = 2⌦⇤
⌦ b⌃X and k⌦

⇤
k2  ⌫, k⌃⇤

Xk2  ⌧ by Assumptions 4.1 and 4.2, we have

�max(r
2
1f(�,⌦

⇤))  2⌫⌧.

Similarly, we have

�min(r
2
1f(�,⌦

⇤)) �
2

⌫⌧
.

Therefore, function f(·,⌦⇤) is 2/(⌫⌧)-strongly convex and 2⌫⌧ -smooth function:

1
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� �k
2
F .

This completes the proof.

B.2 Proof of Lemma A.2

Proof. From (B.2), we have

r
2
2f(�

⇤,⌦) = ⌦
�1

⌦⌦
�1.

According to Mean Value Theorem, we have
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0
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where the first inequality holds due to triangle inequality, the second inequality holds for k⌦�⌦
⇤
k2  k⌦�⌦

⇤
kF  r

and k⌦
0
�⌦

⇤
k2  k⌦

0
�⌦

⇤
kF  r and the last inequality follows from condition r  1/(2⌫)  ⌫/2. Similarly, we have

�max(r
2
2f(�

⇤,Z)) = �max(Z
�1

⌦ Z
�1) = �max(Z

�1)2 = �min(Z)
�2.

Note that Z = t⌦0 + (1� t)⌦ = ⌦+ t�, and for any kxk2 = 1 we have

x
>(⌦+ t�)x = x

>�
⌦

⇤ + (1� t)(⌦�⌦
⇤) + t(⌦0

�⌦
⇤)
�
x

� x
>
⌦

⇤
x� (1� t)|x>(⌦�⌦

⇤)x|� t|x>(⌦0
�⌦

⇤)x|,

where the inequality holds since t 2 [0, 1]. Taking minimization on both sides we have

�min(Z) � �min(⌦
⇤)� (1� t)|�max(⌦�⌦

⇤)|� t|�max(⌦
0
�⌦

⇤)|
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⇤)� (1� t)k⌦�⌦

⇤
k2 � tk⌦0

�⌦
⇤
k2

�
1

⌫
� r,

where the second inequality follows from k⌦�⌦
⇤
k2  k⌦�⌦

⇤
kF  r and k⌦

0
�⌦

⇤
k2  k⌦

0
�⌦

⇤
kF  r. Since

r  1/(2⌫), therefore,

�max(r
2
2f(�

⇤,Z))  4⌫2.

Combining the above results, we have
1

8⌫2
k⌦

0
�⌦k

2
F  f(�⇤,⌦0)� f(�⇤,⌦)�r2f(�

⇤,⌦)>(⌦0
�⌦)  2⌫2k⌦0

�⌦k
2
F .

This completes the proof.
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B.3 Proof of Lemma A.3

Proof. First, we bound
��r1f(�,⌦⇤)�r1f(�,⌦)

��
F

in (A.1). From (B.3) we have

r1f(�,⌦) = �2⌃⇤
X(�⇤

� �)⌦, r1f(�,⌦
⇤) = �2⌃⇤

X(�⇤
� �)⌦⇤.

Thus we get
��r1f(�,⌦

⇤)�r1f(�,⌦)
��
F
=
��2⌃⇤

X(�⇤
� �)(⌦⇤

�⌦)
��
F
 2

��⌃⇤
X

��
2
· k�

⇤
� �kF · k⌦

⇤
�⌦kF . (B.5)

Note that we have �max

�
⌃

⇤
X

�
 ⌧ by Assumption 4.2, and recall the fact that k�� �

⇤
kF  r. Therefore, (B.5) can be

further bounded as
��r1f(�,⌦

⇤)�r1f(�,⌦)
��
F
 2⌧r · k⌦⇤

�⌦kF .

Now consider
��r2f(�⇤,⌦)�r2f(�,⌦)

��
F

in (A.2). From (B.2), we have

r2f(�,⌦) = �⌦
�1 +⌦

⇤�1 + (�⇤
� �)>⌃⇤

X(�⇤
� �), r2f(�

⇤,⌦) = �⌦
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Thus, we obtain
��r2f(�

⇤,⌦)�r2f(�,⌦)
��
F
=

����(�
⇤
� �)>⌃⇤

X(�⇤
� �)

����
F


��⌃⇤

Xk2 · k�
⇤
� �k

2
F ,

where the inequality follows from Cauchy-Schwartz inequality. Following similar proof procedure in (B.5), we can further
bound the above inequality as

��r2f(�
⇤,⌦)�r2f(�,⌦)

��
F
 ⌧k�⇤

� �k
2
F  ⌧r · k�⇤

� �kF .

This completes the proof.

B.4 Proof of Lemma A.4

Proof. Part I: Proof of the bound in (A.3).

Since ✏i ⇠ N(0,⌦⇤�1), we have maxij k✏ijk2 2
 C1�max(⌦⇤�1)  C1⌫. From (B.1), we get

r1fn(�,⌦) = �
2

n

nX

i=1
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>
i � x

>
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xi✏
>
i ⌦. (B.6)

From (B.2) we have

r1f(�,⌦) = �2⌃⇤
X(�⇤

� �)⌦. (B.7)

Combining (B.6) and (B.7) we obtain

r1f(�,⌦)�r1fn(�,⌦) =
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Then we have
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. (B.9)
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In the following, let A(i) = xi✏>i , B(i) =
�
xix

>
i �⌃

⇤
X

�
· (�⇤

� �) · (⌦�⌦
⇤), F = ⌦�⌦

⇤. For term I1, consider the
 1 norm of each element in A

(i)
F:

k[A(i)F ]jkk 1 =

����
mX

`=1

Aj`F`k

����
 1

=

����
mX

`=1

xij✏i`F`k

����
 1

. (B.10)

From Assumption 4.1 and Assumption 4.2 we have maxij k✏ijk2 2
 C1⌫, maxij kxijk

2
 2

 C2⌧ , (B.10) can be further
bounded as:

k[A(i)F ]jkk 1 =

����xij

mX

`=1

✏i`F`k

����
 1

 2kxijk 2 ·

����
mX
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 2
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p
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vuutC3

mX
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F 2
`k  2

p
⌫⌧
p
C1C2C3

��F
��
F
, (B.11)

where the first inequality follows from Lemma D.2 and the second inequality follows from Lemma D.1. Note that��F
��
F
= k⌦�⌦

⇤
kF  r, (B.11) can be further bounded by

k[A(i)F ]jkk 1  2
p
⌫⌧
p
C1C2C3r.

By Bernstein-type inequality in Theorem D.4, we have

P
✓����
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[A(i)F ]jk

���� > t

◆
 exp

⇣
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16C1C2C3⌫⌧r2

⌘
.

Applying union bound to all possible pairs of j 2 [d], k 2 [m], we get

P
n����

2

n
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xi✏
>
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⌘
.

Choose t = 2
p
⌫⌧r

p
C1C2C3/C4

p
(2 log d+ logm)/n, C = 2

p
C1C2C3/C4 and with probability at least 1� 1/d we

have
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>
i (⌦�⌦

⇤)

����
1,1

 C
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r
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. (B.12)

For term I2, first notice that
����
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>
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1,1



����
2

n

nX

i=1

xi✏
>
i

����
1,1

·
��⌦⇤��

1  M ·

����
2

n

nX

i=1

xi✏
>
i

����
1,1

,

where the last inequality holds due to Assumption 4.1. Now consider the  1 norm of each element in A
(i):

kA
(i)
jk k 1 = kxij✏ikk 1  2kxijk 2 · k✏ikk 2  2

p
C1C2⌫⌧ , (B.13)

where the first inequality follows from Lemma D.2 and the last inequality follows from Assumption 4.1 and Assumption 4.2.
By Bernstein-type inequality in Theorem D.4, we have
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.

Applying union bound to all possible pairs of j 2 [d], k 2 [m], we get
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⌘
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Choose t = 2
p
⌫⌧
p
C1C2/C4

p
(2 log d+ logm)/n, C = 2

p
C1C2/C4 and with probability at least 1� 1/d we have
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For term I3, denote (�⇤
� �)(⌦�⌦

⇤) as G,
�
xix

>
i �⌃

⇤
X

�
as �, note that
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Since from Assumption 4.2 we have maxij kxijk 2  C5
p
⌧ , (B.15) can be further bounded as:
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where the first inequality follows from Lemma D.3, the second inequality holds due to Lemma D.2 and the third inequality
follows from Lemma D.1. Note that

��G
��
F

���⇤
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F
·
��⌦�⌦
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 r2, (B.16) can be further bounded by
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By Bernstein-type inequality in Theorem D.4, we have

P
✓����

2

n

nX

i=1

B(i)
jk

���� > t

◆
 exp

⇣
�

C7nt2

64C4
5⌧

2C6r4

⌘
.

Applying union bound to all possible pairs of j 2 [d], k 2 [m], we get
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Choose t = 8⌧r2
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For term I4, we have
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Using similar technique as we have for term I3, with probability at least 1� 1/d we have that
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Note that from lemma conditions we have r  min{M,
p
⌫/⌧}, submit (B.12), (B.17), (B.14) and (B.18) into (B.9) and

apply union bound, we have with probability at least 1� 2/d that
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Thus we have the conclusion in (A.3).
Part II: Proof of the bound in (A.4).
We have
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1
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From (B.2) we obtain
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Thus we get
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Then we have
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In the following proof, let C(i) = (�⇤
� �)>xi✏>i , D(i) = ✏ix>
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⇤
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For term I2, following the proof procedure for term I1 in Part I, consider each element in the matrix, i.e., C(i)
jk , we can easily

have

����C
(i)
jk

����
 1

= 2
p
C1C2⌫⌧

vuutC3

dX

`=1

(W ⇤
`k �W`k)2

 2
p
⌫⌧
p
C1C2C3

���� �
⇤��

F
 2

p
⌫⌧
p
C1C2C3 · r

where the last inequality is due to k�� �
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Apply union bound to all possible pairs of j 2 [m], k 2 [m], we get
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Choose t = r
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For term I3, since D
(i) = C

(i)>, it holds the same conclusion for term I3 that with probability at least 1� 1/m we have
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For term I4, denote �
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Since from Assumption 4.2 we have maxij kxijk 2  C5
p
⌧ we have
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where the first inequality follows from Lemma D.3, the second inequality holds due to Lemma D.2 and the third inequality
follows from Lemma D.1. Note that
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By Bernstein-type inequality in Theorem D.4, we have
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Applying union bound to all possible pairs of j 2 [m], k 2 [m], we get
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Note that from lemma conditions we have r 

p
⌫/⌧ , submit (B.22), (B.23), (B.24) and (B.27) into (B.21) and apply union

bound, we have with probability at least 1� (C 00 + 3)/m that
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where the last inequality follows from the fact that ⌫ = k⌦
⇤
k2  k⌦

⇤
k1 = M . This completes the proof.
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B.5 Proof of Lemma A.5

In order to prove Lemma A.5, we need the following auxiliary lemma.

Lemma B.1 ((Nesterov, 2004)). Under Assumptions 4.1 and 4.2, let ⌘ = 2/(L1 + µ1), suppose �
+ is obtained by the

following gradient descent update form

�
+ = �� ⌘r1f

�
�,⌦⇤�.

We have

k�
+
� �

⇤
kF 

L1 � µ1

L1 + µ1

���� �
⇤��

F
. (B.28)

Proof of Lemma A.5. For notation simplicity, let �+ stands for �(t+0.5), � stands for �(t) and ⌦ stands for ⌦(t).
���+

� �
⇤��

F
=
���� ⌘1r1f

�
�,⌦

�
� �

⇤��
F


���� ⌘1r1f

�
�,⌦⇤�

� �
⇤��

F
+ ⌘1

��r1f
�
�,⌦

�
�r1f

�
�,⌦⇤���

F
, (B.29)

where the inequality holds due to triangle inequality. Submit the conclusion (B.28) in Lemma B.1 into the above equality,
we obtain

���+
� �

⇤��
F


L1 � µ1

L1 + µ1

���� �
⇤��

F
+

2�1
L1 + µ1

·
��⌦�⌦

⇤��
F
, (B.30)

where the last term on the right side of the above inequality follows from Lemma A.3, in which we obtain kr1f(�,⌦⇤)�
r1f(�,⌦)kF  �1 · k⌦⇤

�⌦kF . By submitting the definition of L1, µ1, ⌘1 and �1 back into (B.30) we complete the
proof.

B.6 Proof of Lemma A.6

We omit the proof since it is similar to the proof of Lemma A.5.

B.7 Proof of Lemma A.8

Proof of Lemma A.8. Consider �init computed in Algorithm 3, in fact, each row of �init is equal to [�init]i⇤ = ST
�
(X>

X+
✏�I)�1

X
>
yi,��

�
, which can be verified as the closed form solution for the following optimization problem:

min
�

k�k1, s.t. k� � (X>
X+ ✏�I)

�1
X

>
yik1  ��.

This is exactly the form of an elementary estimator for high-dimensional linear regression. By Corollary 1 in Yang et al.
(2014a) we immediately obtain the the conclusion.

B.8 Proof of Lemma A.9

In order to prove Lemma A.9, we need the following auxiliary lemma.

Lemma B.2. Under Assumptions 4.1 and 4.2, if
��b�� �

⇤
��
F


p
⌫/⌧ , with probability at least 1� c0/m, we have

kS�⌦
⇤�1

k1,1  C⌫

r
logm

n
+ C 0⌫

1
2 ⌧

5
6 d

2
3 s⇤1

2
3 ·

✓
log dm

n

◆ 5
6

.

Proof of Lemma A.9. This proof this inspired by Yang et al. (2014b). Consider ⌦init computed in Algorithm 3, it can be
verified that that ⌦init is the closed form solution for the following optimization problem.

min
⌦

k⌦k1,1, s.t. k⌦� (S+ ✏�I)
�1

k1,1  �⌦,
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where S = (Y �X�)>(Y �X�) is the sample covariance matrix. Let b⌦ denote that solution for the above optimization
problem. Following the similar proof as in Theorem 1 in Yang et al. (2014b), we can also show that

kb⌦�⌦
⇤
kF  4

p
ms⇤2�⌦, for �⌦ � k⌦

⇤
� (S+ ✏�I)

�1
k1,1. (B.31)

The remaining task is to find the upper bound for k⌦⇤
� (S+ ✏�I)�1

k1,1.

k⌦
⇤
� (S+ ✏�I)

�1
k1,1 

��(S+ ✏�I)
�1((S+ ✏�I)⌦

⇤
� I)

��
1,1

 k(S+ ✏�I)
�1

k1 ·

���⌦⇤�
S+ ✏�I)�⌦

⇤�1����
1,1

 k(S+ ✏�I)
�1

k1 · k⌦
⇤
k1 ·

���
�
S+ ✏�I)�⌦

⇤�1����
1,1

 Mk(S+ ✏�I)
�1

k1 ·
��(S+ ✏�I)�⌦

⇤�1��
1,1,

where the last inequality follows from the assumption that k⌦⇤
k1 = k⌦

⇤
k1  M . Following the similar proof and suppose

the same condition in Corollary 1 of Yang et al. (2014b) also holds, further we have

k⌦
⇤
� (S+ ✏�I)

�1
k1,1  CM

��(S+ ✏�I)�⌦
⇤�1��

1,1

 CM
�
kS�⌦

⇤�1
k1,1 + ✏�

�
,

By combining Lemma B.2 with the above result and choose ✏� as the upper bound for kS�⌦
⇤�1

k1,1 we have

k⌦
⇤
� (S+ ✏�I)

�1
k1,1  C 0M⌫

r
logm

n
+ C 00⌫

1
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log dm

n

◆ 5
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:= �⌦.

Submit the value for �⌦ back into (B.31) we have

kb⌦�⌦
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ms⇤2 · logm
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+ C 00⌫

1
2 ⌧
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The proof is completed.

C Proof of Auxiliary Lemmas in Section B

C.1 Proof of Lemma B.2

Proof. Let us denote ⌃
⇤ = ⌦

⇤�1. Since we have

S =
1

n
(Y �Xb�)>(Y �Xb�)

=
1

n
(Y �X�

⇤ +X�
⇤
�Xb�)>(Y �X�

⇤ +X�
⇤
�Xb�)

=
1

n
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1

n
(b�� �

⇤)>X>
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⇤) +
2
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⇤)>X(�⇤
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Thus,
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⇤)>⌃⇤
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. (C.1)
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For term I1, by Lemma D.6, we have

kb⌃�⌃
⇤
k1,1  C1�max(⌃

⇤)

r
logm

n
= C1⌫

r
logm

n
.

For term I2, using similar techniques as we do for term I3 in (B.21) we have
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For term I3, using similar technique as we do for term I4 in (B.21) and also since k�
⇤
� b�kF 

p
⌫/⌧ we have
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For term I4, we also have

k(b�� �
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 C4B,

where the first and second inequalities hold due to the matrix norm inequalities, and the third inequality follows from
Assumption 4.2 and also the conclusion from Lemma A.8. Combine the results for term I1, I2, I3 and I4, we obtain
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. (C.2)

This completes the proof.

D Additional Auxiliary Lemmas

Lemma D.1 (Rotation invariance (Vershynin, 2010)). For a set of independent centered sub-Gaussian random variables Xi,P
i aikXik

2
⌫2 is also a centered sub-Gaussian random variable, and further, we have

���
X

i

aiXi

���
2

 2

 C
X

i

a2i
��Xi

��2
 2
,

where C is an absolute constant.
Lemma D.2 (Product Property (Vershynin, 2010)). For any two sub-Gaussian random variables X and Y , we have

kXY k 1  2kXk 2 · kY k 2 .

Lemma D.3 (Centering (Vershynin, 2010)). For any sub-Exponential random variables X , we have

kX � EXk 1  2kXk 1 .

Theorem D.4 (Proposition 5.16 in (Vershynin, 2010)). Let X1, X2, . . . , Xn be independent centered sub-exponential
random variables, and let K = maxi kXik 1 . Then for every a = (a1, a2, . . . , an) 2 Rn and for every t > 0, we have

P
✓����

nX

i=1

aiXi

���� > t

◆
 2 exp

h
� Cmin

⇣ t2

K2kak22
,

t

Kkak1

⌘i
,

where C > 0 is a constant.
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Lemma D.5 ((Vershynin, 2010)). Suppose S ✓ Rd is an index set with |S| = s, we have with probability at least 1� 1/n2

that

kb⌃SS �⌃SSk2  C�max(⌃SS)

r
s

n
,

where C is some universal constant.

Lemma D.6 ((Loh & Wainwright, 2013)). Assume that x1, . . . ,xn are i.i.d. sub-Gaussian random vectors in Rd, and
⌃

⇤ = E[1/n
Pn

i=1 xix
>
i ]. We have with probability at least 1� C/d that

����
1

n

nX

i=1

xix
>
i �⌃

⇤
����
1,1

 C�max(⌃
⇤)

r
log d

n
,

where C is an absolute constant.

Lemma D.7. (Zhou, 2009) For any sub-Gaussian random design X 2 Rn⇥d with i.i.d. N(0,⌃) rows, there are strictly
positive constants (1,2), depending only on the positive definite matrix ⌃, such that for any v 2 Rd, we have

kXvk
2
2

n
� 1kvk

2
2 � 2

log d

n
kvk

2
1

holds with probability at least 1� C 0 exp(�Cn), where C,C 0 are positive constants.

E Additional Experimental Materials

Figures 6, 7, 8 show the gene networks recovered by Alt-NCD, MRCE and Capme respectively. Figure 9 shows the cell
cycle Saccharomyces cerevisiae pathway from KEGG database. It shows that our method can discover more meaningful
interactions.
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Figure 6. Gene network recovered by Alt-NCD for the 92 genes on the cell-cycle yeast pathway.
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Figure 7. Gene network recovered by MRCE for the 92 genes on the cell-cycle yeast pathway.
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Figure 8. Gene network recovered by Capme for the 92 genes on the cell-cycle yeast pathway.

Figure 9. Cell cycle Saccharomyces cerevisiae pathway from KEGG database


