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A Approximate Oracles

In the main body of the paper, we have assumed to have access to the exact value of DA(i). We now
discuss how Theorem 14 can be used to derive algorithmic results based on an oracle that, given a
slate T , can generate samples according to DAT (·); we call these sample queries. For simplicity, we
will assume that all the (unknown) weights of the 2-MNL are positive integers in the range [M ] for
some M ≥ 1.

Our first claim is that, under the above assumption on the weights range, there exists an inverse
polynomial separation between the possible values of DAT (i).

Lemma A.1. Let a, a′, b, b′ : [n]→ [M ] be weight functions and let A =
(
a, b, 1

2

)
and A′ =

(
a′, b′, 1

2

)
.

Then, for T ⊆ U, |T | = 2, 3, if i ∈ T , then either DAT (i) = DA
′

T (i) or
∣∣∣DAT (i)−DA′

T (i)
∣∣∣ ≥ 1

162M4 .

Proof. Let A =
∑

j∈T aj , B =
∑

j∈T bj , A
′ =

∑
j∈T a

′
j and B′ =

∑
j∈T b

′
j . Then, A,B,A′, B′ ≤

3M .
We then have, DAT (i) = a(i)

2A + b(i)
2B = a(i)B+b(i)A

2AB and DA
′

T (i) = a′(i)
2A′ + b′(i)

2B′ = a′(i)B′+b′(i)A′

2A′B′ .
Moreover,

DAT (i)−DA
′

T (i) =
a(i)B + b(i)A

2AB
−a
′(i)B′ + b′(i)A′

2A′B′
=
a(i)A′BB′ + b(i)AA′B′ − a′(i)ABB′ − b′(i)AA′B

2AA′BB′
.

Now, if DAT (i) 6= DA
′

T (i), then the numerator a(i)A′BB′+b(i)AA′B′−a′(i)ABB′−b′(i)AA′B must be
non-zero and since the numerator is obtained by adding, subtracting, and multiplying integers, it must

evaluate to a non-zero integer. We then get
∣∣∣DAT (i)−DA′

T (i)
∣∣∣ = 1/(2AA′BB′) ≥ 1/

(
162M4

)
.

For a 2- or 3-slate T and for a large enough constant c > 0, using the sampling oracle
O(cM8 ln(n/δ)) times, we can reconstruct a value D̃AT (i) such that |D̃AT (i) − DAT (i)| ≤ 1

325M4 ,
with probability at least 1−O

(
δn−2

)
. By looping through the possible values of a and b on the
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items of T , we can obtain DAT (i), since by Lemma A.1, it will be the one value we can obtain that is
within an additive distance of 1

325M4

(
< 1

2 ·
1

162M4

)
from D̃AT (i). Using the algorithms in Theorem 5

and Theorem 6, and a union bound, we obtain:

Theorem A.2. Let a, b : [n] → [M ] be weight functions and let A =
(
a, b, 1

2

)
. Then, for each

small enough δ > 0, with probability at least 1−O(δ) we can reconstruct the weights a and b with
O
(
M8n ln(n/δ)

)
adaptive or O

(
M8n2 ln(n/δ)

)
non-adaptive sample queries to 2- and 3-slates.

B Lower Bounds for k-MNL

A k-MNL is a mixture of k separate MNLs. Specifically, a k-MNL A is given by a set {a(1), . . . , a(k)}
of weight functions and a mixing distribution µ on [k]. Given a slate T ⊆ [n], the mixture model
first chooses an index ` ∈ [k] according to µ and then invokes the MNL a(`). As in 2-MNL, we only
focus on uniform mixing distributions, i.e., µ is uniform on [k]. As before, we use DAT (i) to denote
the probability that the mixture model A chooses i, given the slate T .

While large parts of our proof structure for k = 2 generalizes to k > 2, there are significant
technical challenges in extending our current methods to finding an algorithm for learning uniform
k-MNLs. However, we can obtain some concrete slate and query lower bounds for learning uniform
k-MNLs.

We first show some generalization of Theorem 2. Specifically, we show that (k + 1)-slate queries
are necessary to learn a uniform k-MNL by showing that there are instances of 1-MNL and k-MNL
that are indistinguishable to any algorithm that uses only k-slate queries.

Theorem B.1. Let k ≥ 2 be given, and let p(T, i) = 1/|T | for each i ∈ T ⊆ [k]. Then, there is a

1-MNL A and an infinite family of uniform k-MNLs {A(x)} such that DA
(x)

T (i) = p(T, i).

Proof. Note that the definition of p(T, i) says that each item in a slate (of size at most k) has the
same chance of winning. Then trivially the 1-MNL with the constant weight function a satisfies
Da

T (i) = 1/|T |.
For each real number x ∈ (0, 1), we will construct a uniform k-MNL A(x) such that DA

(x)

T (i) =
1/|T |. For i ∈ [k], let

a
(i,x)
j =

{
x if j = i,

1−x
k−1 if j ∈ [k] \ {i},

and A(x) is defined to choose uniformly across the weighting functions a(1,x), . . . , a(k,x).
Now, consider any k-slate T and consider any item i ∈ T . Observe that each MNL a(j,x) in the

mixture A(x) when j 6∈ T , gives uniform weight to the items in T . Thus, conditioning on the MNL
being chosen from the set {a(j,x)}j 6∈T , we have that the probability that i wins is exactly |T |−1.

On the other hand, each MNL a(j,x) in the mixture A(x) when j ∈ T , will give a total weight to
the items of T equal to x + (|T | − 1) · 1−x

k−1 . Moreover, if j ∈ T , then the MNL a(j,x) will give to

item i a weight of x if i = j, and a weight of 1−x
k−1 otherwise. Conditioning on the MNL to be chosen

in the set {a(j,x)}j∈T , the probability of i winning is then

1

|T |

(
1 · x

x+ (|T | − 1) · 1−x
k−1

+ (|T | − 1) ·
1−x
k−1

x+ (|T | − 1) · 1−x
k−1

)
=

1

|T |
.

Therefore, for each i in a k-slate T , it holds DA
(x)

T (i) = 1/|T |.
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Next, as in the 2-MNL case, we can show query lower bounds for adaptive and non-adaptive
algorithms, generalizing Theorem 4.

Theorem B.2. Any algorithm for k-MNL that queries using c-slates needs Ω(n/c) queries to
reconstruct the k-MNL; the query lower bound for non-adaptive algorithms is Ω(n2/c2).

Proof. Let i, j be two distinct items in [n] chosen u.a.r. We will construct two different k-MNLs,
A = (a(1), . . . , a(k)) and B = (b(1), . . . , b(k)), as follows. Let each MNL give a uniform weight of 1 to
each item except for i and j. In A and B, let each MNL but the first two give a weight 1 to each

of the items i and j. For A, let a
(1)
i = a

(1)
j = 2 and a

(2)
i = a

(2)
j = 1. For B, let b

(1)
i = b

(2)
j = 2 and

b
(1)
j = b

(2)
i = 1.

If an algorithm performs no query containing both items i and j, then it cannot distinguish
between A and B, and is therefore unable to learn the weights of the MNLs. Indeed, for any slate
S ⊆ [n] \ {i, j}, we have that DAS = DBS , DA{i}∪S = DB{i}∪S , and DA{j}∪S = DB{j}∪S .

Any algorithm performing queries to slates of size at most c will need to perform at least Ω(n/c)
queries to query at least once item i with constant probability. This proves the adaptive lower
bound. In the non-adaptive case, observe that each query performed by the algorithm will cover
at most

(
c
2

)
different pairs. Since we need the algorithm to query i and j together to distinguish

between A and B, and since there are
(
n
2

)
many pairs of items, the algorithm will needs to perform

at least Ω(n2/c2) to succeed with constant probability.

We now show a strong lower bound for reconstructing the winning probabilities.

Theorem B.3. For each k ≥ 1, with non-adaptive queries to O(k)-slates, the number of queries
needed to learn the winning probabilities of a 2k-MNL on a ground set of n items is Ω(nk+1).

Proof. Fix k ≥ 1, let K = 2k, let the number of items n satisfy n ≥ K + 1. Choose K + 1 items
uniformly at random, say the ones having indices 1 ≤ i1 < · · · < ik+1 ≤ n. Moreover, choose a
uniform at random bit b ∈ {0, 1}.

The random K-MNL is constructed as follows. For each i ∈ [n] \ {i1, . . . , ik+1}, each MNL will
give weight 1 to i. Moreover, for 0 ≤ t ≤ K − 1,

• the (t+ 1)-st MNL will assign a weight of 2 (resp., 1) to item ij if the jth bit of t is 1 (resp.,
0), for each 1 ≤ j ≤ k and,

• the (t+ 1)-st MNL will assign a weight of 2 (resp., 1) to item ik+1 if the parity of b equals
(resp., does not equal) the parity of the weight of the binary representation of t.

The K-MNL will choose uniformly at random among its K MNLs.
Now, observe that for any sequence of k indices out of {i1, . . . , ik+1}, regardless of b, the projection

of the 2k MNLs on those k indices will be composed of exactly all the 2k binary words of length
k. Therefore, for each slate S of cardinality at most k + 1, the winning probabilities of S will be
uniform regardless of b.

On the other hand, any slate containing the items i1, . . . , ik+1 plus any other item, will have
different winning probabilities in the two K-MNLs.

It follows that if one does not look at a slate containing all the items {i1, . . . , ik+1} plus any
other item, one cannot learn the unknown K-MNL.

Since the indices i1, . . . , ik+1 are chosen u.a.r., in a non-adaptive environment, one has to look
at at least Ω(nk+1) = Ω(n1+lg K) slates before being able to reconstruct the K-MNL (and/or its
winning probabilities).
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C Proofs

C.1 Proof of Lemma 8

Proof. We first write a chain of predicates equivalent to Px,z:

D{x,z}(x) ·D{x,y,z}(z)−D{x,z}(z) ·D{x,y,z}(x) ≥ 0⇐⇒(
ax

1− ay
+

bx
1− by

)
(az + bz)−

(
az

1− ay
+

bz
1− by

)
(ax + bx) ≥ 0⇐⇒

ax(az + bz)

1− ay
+
bx(az + bz)

1− by
− az(ax + bx)

1− ay
− bz(ax + bx)

1− by
≥ 0⇐⇒

axbz − azbx
1− ay

+
bxaz − bzax

1− by
≥ 0⇐⇒

(axbz − bxaz) ·
(

1

1− ay
− 1

1− by

)
≥ 0⇐⇒

(axbz − bxaz) · ((1− by)− (1− ay)) ≥ 0⇐⇒
(axbz − bxaz) · (ay − by) ≥ 0,

thus Px,z ⇐⇒ (axbz − bxaz) (ay − by) ≥ 0 and by symmetry Py,z ⇐⇒ (aybz − byaz) (ax − bx) ≥ 0.
Now, we prove that Px,z ∧ Py,z =⇒ (ax − bx) · (ay − by) ≥ 0. By contradiction,

• ax > bx and ay < by =⇒ bz < az for Px,z to hold and bz > az for Py,z to hold; and

• ax < bx and ay > by =⇒ bz > az for Px,z to hold and bz < az for Py,z to hold.

Then, if Px,z ∧ Py,z, either ax > bx and ay > by, or ax < bx and ay < by, or ax = bx, or ay = by.
Equivalently, (ax − bx)(ay − by) ≥ 0.

Now, suppose that (ax − bx)(ay − by) ≥ 0. We consider two cases:

• if ax − bx ≥ 0 and ay − by ≥ 0, then az − bz ≤ 0, therefore both Px,z and Py,z hold;

• if ax− bx ≤ 0 and ay − by ≤ 0, then az − bz ≥ 0, therefore, again, both Px,z and Py,z hold.

C.2 Proof of Lemma 9

Proof. For simplicity, let Qx,y denote Px,y ∧ Py,x. In a manner analogous to the proof of Lemma 8,
we can prove that Qx,y ⇐⇒ [D{x,y}(x) · D{x,y,z}(y) − D{x,y}(y) · D{x,y,z}(x) = 0] and Qx,y ⇐⇒
[axby = bxay ∨ az = bz]. Recall that Pz,x ⇐⇒ [(azbx − bzax)(ay − by) ≥ 0] and Pz,y ⇐⇒
[(azby − bzay)(ax − bx) ≥ 0]. We now prove the two implications.

(i) Suppose that Qx,y, Pz,x, Py,x hold but by contradiction, az 6= bz. Then, axby = bxay
∆
= γ.

Summing up the two inequalities induced by Pz,x and Py,x, we get

(azbx − bzax) · (ay − by) + (azby − bzay) · (ax − bx) ≥ 0⇐⇒
ayazbx − azbxby − axaybz + axbybz + axazby − azbxby − axaybz + aybxbz ≥ 0⇐⇒

aybx(az + bz) + axby(az + bz)− 2(azbxby + axaybz) ≥ 0⇐⇒
2γ(az + bz)− 2(azbxby + axaybz) ≥ 0,
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thus,

az + bz ≥ azbxby
γ

+
axaybz
γ

. (1)

Now, if we substitute axby for the first occurrence of γ and aybx for the second in (1), we get

az + bz ≥ az
bx
ax

+ bz
ax
bx
, (2)

while if we substitute aybx for the first occurrence of γ and axby for the second in (1), we get

az + bz ≥ az
by
ay

+ bz
ay
by
. (3)

We consider the following two cases.

• If az > bz, then there must exist some w ∈ {x, y} such that bw > aw (since ax + ay + az =
1 = bx + by + bz). By choosing the appropriate inequality among (2) and (3), we get

az + bz ≥ az
bw
aw

+ bz
aw
bw

=
aw
bw

(az + bz) +

(
bw
aw
− aw
bw

)
az

>
aw
bw

(az + bz) +

(
bw
aw
− aw
bw

)
az + bz

2
=

1

2

(
bw
aw

+
aw
bw

)
(az + bz).

• If az < bz, then there is some w ∈ {x, y} such that bw < aw. Again, choosing the appropriate
inequality among (2) and (3), we get

az + bz ≥ az
bw
aw

+ bz
aw
bw

=
bw
aw

(az + bz) +

(
aw
bw
− bw
aw

)
bz

>
bw
aw

(az + bz) +

(
aw
bw
− bw
aw

)
az + bz

2
=

1

2

(
aw
bw

+
bw
aw

)
(az + bz).

Therefore, there is always some w ∈ {x, y} such that az +bz >
1
2

(
aw

bw
+ bw

aw

)
(az +bz). However, since

aw 6= bw, by the AM–GM inequality, aw

bw
+ bw

aw

 2, thus obtaining the contradiction az + bz > az + bz.

(ii) Suppose that az = bz. Then, Qx,y trivially holds. Consider the generic Pz,w for {w,w′} =
{x, y}. We have shown that Pz,w ⇐⇒ [(azbw − bzaw)(aw′ − bw′) ≥ 0]. By assumption, we have
az = bz, therefore Pz,w ⇐⇒ [az(bw − aw)(aw′ − bw′) ≥ 0]. Observe that if bw > aw it must hold that
bw′ < aw′ (resp., if bw < aw then bw′ > aw′). Thus az(bw − aw)(aw′ − bw′) ≥ 0 and Pz,w holds.

C.3 Proof of Lemma 10

Proof. We proceed by contradiction. Assume that there exist two distinct 2-MNLs ((a′i, a
′
j , a
′
k), (b′i, b

′
j , b
′
k)) 6=

((a′′i , a
′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)) that are both consistent with the functions in D. We show that they will

be “flipped”, i.e., ((a′i, a
′
j , a
′
k), (b′i, b

′
j , b
′
k)) = ((b′′i , b

′′
j , b
′′
k), (a′′i , a

′′
j , a
′′
k)).

By assumptions we have that a′j 6= b′j , a
′
k 6= b′k, a′′j 6= b′′j and a′′k 6= b′′k . Moreover, by Lemma 9,

we have that a′i = b′i = a′′i = b′′i = D{i,j,k}(i)
∆
= x.
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Each of the two sets of weights must give the same probability to the event i wins in the slate
{i, j}, i.e.,

1

2
· a′i
a′i + a′j

+
1

2
· b′i
b′i + b′j

= D{i,j}(i) =
1

2
· a′′i
a′′i + a′′j

+
1

2
· b′′i
b′′i + b′′j

.

Using the definition of x, this yields the cubic equation

(a′j + b′j − a′′j − b′′j )x3 + 2(a′jb
′
j − a′′j b′′j )x2 + (a′ja

′′
j b
′
j + a′jb

′
jb
′′
j − a′ja′′j b′′j − a′′j b′jb′′j )x = 0. (4)

Now since 1
2 (a′j + b′j) = D{i,j,k}(j) = 1

2 (a′′j + b′′j ), we have that a′j + b′j − a′′j − b′′j = 0; we can
thus drop the highest-degree term of (4). Moreover, by our boundary conditions, we can assume
0 < D{i,j,k}(i) = x < 1 and thus we can drop the x = 0 solution as well. After these, (4) becomes

2(a′jb
′
j − a′′j b′′j ) · x+ a′jb

′
j(a
′′
j + b′′j )− a′′j b′′j (a′j + b′j) = 0. (5)

Once again we use a′j + b′j = a′′j + b′′j = 2D{i,j,k}(j) to simplify (5) to

(a′jb
′
j − a′′j b′′j ) · x+ (a′jb

′
j − a′′j b′′j )D{i,j,k}(j) = 0. (6)

Now, for (6) to be satisfied, we must either have x = −D{i,j,k}(j) < 0 or a′jb
′
j = a′′j b

′′
j . The

former is impossible since x = a′i > 0. Therefore we consider the latter, i.e., a′j =
a′′
j b

′′
j

b′j
and apply

a′j + b′j = a′′j + b′′j again to (6), to get

a′′j ·
b′′j − b′j
b′j

= b′′j − b′j . (7)

Examining (7), if b′′j = b′j , it must also hold a′′j = a′j . However, since a′i = b′i = a′′i = b′′i , it must
also be that a′k = a′′k and b′k = b′′k , i.e., we get the desired contradiction ((a′i, a

′
j , a
′
k), (b′i, b

′
j , b
′
k)) =

((a′′i , a
′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)). On the other hand, if b′′j 6= b′j , we can divide (7) by b′′j − b′j to get a′′j = b′j .

This implies, by a′j + b′j = a′′j + b′′j , that a′j = b′′j . But, if a′′i + a′′j = x + a′′j = x + b′j = b′i + b′j , it
must be that a′′k = b′k. Therefore, if ((a′i, a

′
j , a
′
k), (b′i, b

′
j , b
′
k)) 6= ((a′′i , a

′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)), it must hold

that ((a′i, a
′
j , a
′
k), (b′i, b

′
j , b
′
k)) = ((b′′i , b

′′
j , b
′′
k), (a′′i , a

′′
j , a
′′
k)), which is again a contradiction.

C.4 Proof of Theorem 13

Proof. The assumptions on D guarantee, wlog, that in any (properly reordered) pair of weights
((ai, aj , ak), (bi, bj , bk)), it holds aj > bj , ak > bk. We now create a system with (1) and (2) of
Lemma 11:  aj = (1− ak)

(
D{i,j}(j) +

D{i,j}(j)D{i,j,k}(i)−D{i,j}(i)D{i,j,k}(j)

ak−D{i,j,k}(k)

)
ak = (1− aj)

(
D{i,k}(k) +

D{i,k}(k)D{i,j,k}(i)−D{i,k}(i)D{i,j,k}(k)

aj−D{i,j,k}(j)

)
.

(8)

We will show that (8) has a unique solution.
For simplicity of exposition, we rewrite (8) using tj = D{i,j,k}(j), tk = D{i,j,k}(k), dj = D{i,j}(j),

and dk = D{i,k}(k) to obtain{
2dj · akbk + ajbk + akbj = 4djtk − 2dj + 2tj
2dk · ajbj + ajbk + akbj = 4dktj − 2dk + 2tk,
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where bj = 2tj − aj and bk = 2tk − ak. Now, suppose by contradiction that there exist two distinct
solutions (a′j , a

′
k) and (a′′j , a

′′
k). Then, the following system in the variable x must have, as solutions,

x = 0 and x = 1:
2dj · (x(a′′k − a′k) + a′k)(x(b′′k − b′k) + b′k)

+(x(a′′j − a′j) + a′j)(x(b′′k − b′k) + b′k) + (x(a′′k − a′k) + a′k)(x(b′′j − b′j) + b′j) = 4djtk − 2dj + 2tj
2dk · (x(a′′j − a′j) + a′j)(x(b′′j − b′j) + b′j)

+(x(a′′j − a′j) + a′j)(x(b′′k − b′k) + b′k) + (x(a′′k − a′k) + a′k)(x(b′′j − b′j) + b′j) = 4dktj − 2dk + 2tk
0 ≤ x ≤ 1

By assumption we know that the system is feasible at x = 0 and at x = 1. We collect the x’s:

x2 · (2dj(a′′k − a′k)(b′′k − b′k) + (a′′j − a′j)(b′′k − b′k) + (a′′k − a′k)(b′′j − b′j))
+x · (2dja′k(b′′k − b′k) + 2dj(a

′′
k − a′k)b′k + (b′′k − b′k)a′j + (a′′j − a′j)b′k + (a′′k − a′k)b′j + (b′′j − b′j)a′k)

−(4djtk − 2dj + 2tj)
= 0

x2 · (2dk(a′′j − a′j)(b′′j − b′j) + (a′′k − a′k)(b′′j − b′j) + (a′′j − a′j)(b′′k − b′k))
+x · (2dka′j(b′′j − b′j) + 2dk(a′′j − a′j)b′j + (b′′j − b′j)a′k + (a′′k − a′k)b′j + (a′′j − a′j)b′k + (b′′k − b′k)a′j)

−(4dktj − 2dk + 2tk)
= 0

0 ≤ x ≤ 1

Both the quadratics need to have {0, 1} as their set of solutions. Therefore, the two quadratics have
to have their axis of symmetry at x = 1

2 . In other words, the derivatives of the two quadratics have
to evaluate to 0 at x = 1

2 . We take the derivatives of the two quadratics, to get two linear equations:
2x · (2dj(a′′k − a′k)(b′′k − b′k) + (a′′j − a′j)(b′′k − b′k) + (a′′k − a′k)(b′′j − b′j))

+(2dja
′
k(b′′k − b′k) + 2dj(a

′′
k − a′k)b′k + (b′′k − b′k)a′j + (a′′j − a′j)b′k + (a′′k − a′k)b′j + (b′′j − b′j)a′k) = 0

2x · (2dk(a′′j − a′j)(b′′j − b′j) + (a′′k − a′k)(b′′j − b′j) + (a′′j − a′j)(b′′k − b′k))
+(2dka

′
j(b
′′
j − b′j) + 2dk(a′′j − a′j)b′j + (b′′j − b′j)a′k + (a′′k − a′k)b′j + (a′′j − a′j)b′k + (b′′k − b′k)a′j) = 0.

Since the axes of symmetry of the two quadratics were both at x = 1
2 , substituting 1

2 for x in the
two derivatives should guarantee feasibility:

(2dj(a
′′
k − a′k)(b′′k − b′k) + (a′′j − a′j)(b′′k − b′k) + (a′′k − a′k)(b′′j − b′j))

+(2dja
′
k(b′′k − b′k) + 2dj(a

′′
k − a′k)b′k + (b′′k − b′k)a′j + (a′′j − a′j)b′k + (a′′k − a′k)b′j + (b′′j − b′j)a′k) = 0

(2dk(a′′j − a′j)(b′′j − b′j) + (a′′k − a′k)(b′′j − b′j) + (a′′j − a′j)(b′′k − b′k))
+(2dka

′
j(b
′′
j − b′j) + 2dk(a′′j − a′j)b′j + (b′′j − b′j)a′k + (a′′k − a′k)b′j + (a′′j − a′j)b′k + (b′′k − b′k)a′j) = 0.

Simplifying, we get {
2dj(a

′′
kb
′′
k − a′kb′k) = a′jb

′
k + a′kb

′
j − a′′j b′′k − a′′kb′′j

2dk(a′′j b
′′
j − a′jb′j) = a′jb

′
k + a′kb

′
j − a′′j b′′k − a′′kb′′j ,

and thus:  dj = 1
2

a′
jb

′
k+a′

kb
′
j−a

′′
j b

′′
k−a

′′
k b

′′
j

a′′
k b

′′
k−a

′
kb

′
k

dk = 1
2

a′
jb

′
k+a′

kb
′
j−a

′′
j b

′′
k−a

′′
k b

′′
j

a′′
j b

′′
j −a′

jb
′
j

.
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Observe that the numerators on the RHSs are equal to y = a′jb
′
k + a′kb

′
j − a′′j b′′k − a′′kb′′j . Let us

consider the two denominators of the RHSs: a′′kb
′′
k − a′kb′k and a′′j b

′′
j − a′jb′j . We will use a form of the

well-known geometric principle that relates the areas of rectangles with the same perimeter. (In
other words, we are going to apply a simple form of the AM-GM inequality.)

Lemma C.1. For x′, y′, x′′, y′′ ≥ 0, if x′+ y′ = x′′+ y′′ and |x′′− y′′| > |x′− y′|, then x′y′ > x′′y′′.

Proof. Observe that xy = ((x+ y)2− (x− y)2)/4 and x′y′ = ((x′+ y′)2− (x′− y′)2)/4 = ((x+ y)2−
(x′ − y′)2)/4. Thus,

xy − x′y′ =
(x′ − y′)2 − (x− y)2

4
=
|x′ − y′|2 − |x− y|2

4
> 0.

Recall that, we have a′j + b′j = a′′j + b′′j and a′k + b′k = a′′k + b′′k . By the assumptions and by
Corollary 12, we can assume that one of the following two alternatives holds:

• If a′j > a′′j > b′′j > b′j and a′′k > a′k > b′k > b′′k , then by Lemma C.1, we must have a′′j b
′′
j−a′jb′j > 0,

and a′kb
′
k − a′′kb′′k > 0. Thus, if the numerator y is positive then dj < 0, if y is negative, then

dk < 0, and if y = 0 then dj = dk = 0. Since both dj and dk have to be positive, we have
reached a contradiction.

• If a′′j > a′j > b′j > b′′j and a′k > a′′k > b′′k > b′k, then a′jb
′
j − a′′j b′′j > 0 and a′′kb

′′
k − a′kb′k > 0.

Thus, if y > 0 then dk < 0, if y < 0 then dj < 0, and if y = 0 then dj = dk = 0, again, a
contradiction.

Hence, two distinct solutions ((a′i, a
′
j , a
′
k), (b′i, b

′
j , b
′
k)) 6= ((a′′i , a

′′
j , a
′′
k), (b′′i , b

′′
j , b
′′
k)) cannot exist.
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