Learning a Mixture of Two Multinomial Logits Supplementary Material

Flavio Chierichetti*
Sapienza University
Rome, Italy
flavio@di.uniroma1.it

Ravi Kumar
Google
Mountain View, CA
ravi.k53@gmail.com

Andrew Tomkins
Google
Mountain View, CA
atomkins@gmail.com

A Approximate Oracles

In the main body of the paper, we have assumed to have access to the exact value of $D^{\mathcal{A}}(i)$. We now discuss how Theorem 14 can be used to derive algorithmic results based on an oracle that, given a slate T, can generate samples according to $D_{T}^{\mathcal{A}}(\cdot)$; we call these sample queries. For simplicity, we will assume that all the (unknown) weights of the 2-MNL are positive integers in the range [M] for some $M \geq 1$.

Our first claim is that, under the above assumption on the weights range, there exists an inverse polynomial separation between the possible values of $D_{T}^{\mathcal{A}}(i)$.

Lemma A.1. Let $a, a^{\prime}, b, b^{\prime}:[n] \rightarrow[M]$ be weight functions and let $\mathcal{A}=\left(a, b, \frac{1}{2}\right)$ and $\mathcal{A}^{\prime}=\left(a^{\prime}, b^{\prime}, \frac{1}{2}\right)$. Then, for $T \subseteq U,|T|=2,3$, if $i \in T$, then either $D_{T}^{\mathcal{A}}(i)=D_{T}^{\mathcal{A}^{\prime}}(i)$ or $\left|D_{T}^{\mathcal{A}}(i)-D_{T}^{\mathcal{A}^{\prime}}(i)\right| \geq \frac{1}{162 M^{4}}$.

Proof. Let $A=\sum_{j \in T} a_{j}, B=\sum_{j \in T} b_{j}, A^{\prime}=\sum_{j \in T} a_{j}^{\prime}$ and $B^{\prime}=\sum_{j \in T} b_{j}^{\prime}$. Then, $A, B, A^{\prime}, B^{\prime} \leq$ $3 M$.

We then have, $D_{T}^{\mathcal{A}}(i)=\frac{a(i)}{2 A}+\frac{b(i)}{2 B}=\frac{a(i) B+b(i) A}{2 A B}$ and $D_{T}^{\mathcal{A}^{\prime}}(i)=\frac{a^{\prime}(i)}{2 A^{\prime}}+\frac{b^{\prime}(i)}{2 B^{\prime}}=\frac{a^{\prime}(i) B^{\prime}+b^{\prime}(i) A^{\prime}}{2 A^{\prime} B^{\prime}}$. Moreover,
$D_{T}^{\mathcal{A}}(i)-D_{T}^{\mathcal{A}^{\prime}}(i)=\frac{a(i) B+b(i) A}{2 A B}-\frac{a^{\prime}(i) B^{\prime}+b^{\prime}(i) A^{\prime}}{2 A^{\prime} B^{\prime}}=\frac{a(i) A^{\prime} B B^{\prime}+b(i) A A^{\prime} B^{\prime}-a^{\prime}(i) A B B^{\prime}-b^{\prime}(i) A A^{\prime} B}{2 A A^{\prime} B B^{\prime}}$.
Now, if $D_{T}^{\mathcal{A}}(i) \neq D_{T}^{A^{\prime}}(i)$, then the numerator $a(i) A^{\prime} B B^{\prime}+b(i) A A^{\prime} B^{\prime}-a^{\prime}(i) A B B^{\prime}-b^{\prime}(i) A A^{\prime} B$ must be non-zero and since the numerator is obtained by adding, subtracting, and multiplying integers, it must evaluate to a non-zero integer. We then get $\left|D_{T}^{A}(i)-D_{T}^{A^{\prime}}(i)\right|=1 /\left(2 A A^{\prime} B B^{\prime}\right) \geq 1 /\left(162 M^{4}\right)$.

For a 2- or 3 -slate T and for a large enough constant $c>0$, using the sampling oracle $O\left(c M^{8} \ln (n / \delta)\right)$ times, we can reconstruct a value $\tilde{D}_{T}^{\mathcal{A}}(i)$ such that $\left|\tilde{D}_{T}^{\mathcal{A}}(i)-D_{T}^{\mathcal{A}}(i)\right| \leq \frac{1}{325 M^{4}}$, with probability at least $1-O\left(\delta n^{-2}\right)$. By looping through the possible values of a and b on the

[^0]items of T, we can obtain $D_{T}^{\mathcal{A}}(i)$, since by Lemma A.1, it will be the one value we can obtain that is within an additive distance of $\frac{1}{325 M^{4}}\left(<\frac{1}{2} \cdot \frac{1}{162 M^{4}}\right)$ from $\tilde{D}_{T}^{\mathcal{A}}(i)$. Using the algorithms in Theorem 5 and Theorem 6 , and a union bound, we obtain:

Theorem A.2. Let $a, b:[n] \rightarrow[M]$ be weight functions and let $\mathcal{A}=\left(a, b, \frac{1}{2}\right)$. Then, for each small enough $\delta>0$, with probability at least $1-O(\delta)$ we can reconstruct the weights a and b with $O\left(M^{8} n \ln (n / \delta)\right)$ adaptive or $O\left(M^{8} n^{2} \ln (n / \delta)\right)$ non-adaptive sample queries to 2- and 3-slates.

B Lower Bounds for k-MNL

A $k-M N L$ is a mixture of k separate MNLs. Specifically, a k-MNL \mathcal{A} is given by a set $\left\{a^{(1)}, \ldots, a^{(k)}\right\}$ of weight functions and a mixing distribution μ on $[k]$. Given a slate $T \subseteq[n]$, the mixture model first chooses an index $\ell \in[k]$ according to μ and then invokes the MNL $a^{(\overline{\ell)}}$. As in 2-MNL, we only focus on uniform mixing distributions, i.e., μ is uniform on $[k]$. As before, we use $D_{T}^{\mathcal{A}}(i)$ to denote the probability that the mixture model \mathcal{A} chooses i, given the slate T.

While large parts of our proof structure for $k=2$ generalizes to $k>2$, there are significant technical challenges in extending our current methods to finding an algorithm for learning uniform k-MNLs. However, we can obtain some concrete slate and query lower bounds for learning uniform k-MNLs.

We first show some generalization of Theorem 2. Specifically, we show that $(k+1)$-slate queries are necessary to learn a uniform k-MNL by showing that there are instances of $1-\mathrm{MNL}$ and k-MNL that are indistinguishable to any algorithm that uses only k-slate queries.

Theorem B.1. Let $k \geq 2$ be given, and let $p(T, i)=1 /|T|$ for each $i \in T \subseteq[k]$. Then, there is a $1-M N L \mathcal{A}$ and an infinite family of uniform $k-M N L s\left\{\mathcal{A}^{(x)}\right\}$ such that $D_{T}^{\mathcal{A}^{(x)}}(i)=p(T, i)$.

Proof. Note that the definition of $p(T, i)$ says that each item in a slate (of size at most k) has the same chance of winning. Then trivially the 1-MNL with the constant weight function a satisfies $D_{T}^{a}(i)=1 /|T|$.

For each real number $x \in(0,1)$, we will construct a uniform k-MNL $\mathcal{A}^{(x)}$ such that $D_{T}^{\mathcal{A}^{(x)}}(i)=$ $1 /|T|$. For $i \in[k]$, let

$$
a_{j}^{(i, x)}=\left\{\begin{array}{cl}
x & \text { if } j=i \\
\frac{1-x}{k-1} & \text { if } j \in[k] \backslash\{i\}
\end{array}\right.
$$

and $\mathcal{A}^{(x)}$ is defined to choose uniformly across the weighting functions $a^{(1, x)}, \ldots, a^{(k, x)}$.
Now, consider any k-slate T and consider any item $i \in T$. Observe that each MNL $a^{(j, x)}$ in the mixture $\mathcal{A}^{(x)}$ when $j \notin T$, gives uniform weight to the items in T. Thus, conditioning on the MNL being chosen from the set $\left\{a^{(j, x)}\right\}_{j \notin T}$, we have that the probability that i wins is exactly $|T|^{-1}$.

On the other hand, each MNL $a^{(j, x)}$ in the mixture $\mathcal{A}^{(x)}$ when $j \in T$, will give a total weight to the items of T equal to $x+(|T|-1) \cdot \frac{1-x}{k-1}$. Moreover, if $j \in T$, then the MNL $a^{(j, x)}$ will give to item i a weight of x if $i=j$, and a weight of $\frac{1-x}{k-1}$ otherwise. Conditioning on the MNL to be chosen in the set $\left\{a^{(j, x)}\right\}_{j \in T}$, the probability of i winning is then

$$
\frac{1}{|T|}\left(1 \cdot \frac{x}{x+(|T|-1) \cdot \frac{1-x}{k-1}}+(|T|-1) \cdot \frac{\frac{1-x}{k-1}}{x+(|T|-1) \cdot \frac{1-x}{k-1}}\right)=\frac{1}{|T|}
$$

Therefore, for each i in a k-slate T, it holds $D_{T}^{\mathcal{A}^{(x)}}(i)=1 /|T|$.

Next, as in the 2-MNL case, we can show query lower bounds for adaptive and non-adaptive algorithms, generalizing Theorem 4.

Theorem B.2. Any algorithm for k-MNL that queries using c-slates needs $\Omega(n / c)$ queries to reconstruct the k-MNL; the query lower bound for non-adaptive algorithms is $\Omega\left(n^{2} / c^{2}\right)$.
Proof. Let i, j be two distinct items in $[n]$ chosen u.a.r. We will construct two different k-MNLs, $\mathcal{A}=\left(a^{(1)}, \ldots, a^{(k)}\right)$ and $\mathcal{B}=\left(b^{(1)}, \ldots, b^{(k)}\right)$, as follows. Let each MNL give a uniform weight of 1 to each item except for i and j. In \mathcal{A} and \mathcal{B}, let each MNL but the first two give a weight 1 to each of the items i and j. For \mathcal{A}, let $a_{i}^{(1)}=a_{j}^{(1)}=2$ and $a_{i}^{(2)}=a_{j}^{(2)}=1$. For \mathcal{B}, let $b_{i}^{(1)}=b_{j}^{(2)}=2$ and $b_{j}^{(1)}=b_{i}^{(2)}=1$.

If an algorithm performs no query containing both items i and j, then it cannot distinguish between \mathcal{A} and \mathcal{B}, and is therefore unable to learn the weights of the MNLs. Indeed, for any slate $S \subseteq[n] \backslash\{i, j\}$, we have that $D_{S}^{\mathcal{A}}=D_{S}^{\mathcal{B}}, D_{\{i\} \cup S}^{\mathcal{A}}=D_{\{i\} \cup S}^{\mathcal{B}}$, and $D_{\{j\} \cup S}^{\mathcal{A}}=D_{\{j\} \cup S}^{\mathcal{B}}$.

Any algorithm performing queries to slates of size at most c will need to perform at least $\Omega(n / c)$ queries to query at least once item i with constant probability. This proves the adaptive lower bound. In the non-adaptive case, observe that each query performed by the algorithm will cover at most $\binom{c}{2}$ different pairs. Since we need the algorithm to query i and j together to distinguish between \mathcal{A} and \mathcal{B}, and since there are $\binom{n}{2}$ many pairs of items, the algorithm will needs to perform at least $\Omega\left(n^{2} / c^{2}\right)$ to succeed with constant probability.

We now show a strong lower bound for reconstructing the winning probabilities.
Theorem B.3. For each $k \geq 1$, with non-adaptive queries to $O(k)$-slates, the number of queries needed to learn the winning probabilities of a $2^{k}-M N L$ on a ground set of n items is $\Omega\left(n^{k+1}\right)$.
Proof. Fix $k \geq 1$, let $K=2^{k}$, let the number of items n satisfy $n \geq K+1$. Choose $K+1$ items uniformly at random, say the ones having indices $1 \leq i_{1}<\cdots<i_{k+1} \leq n$. Moreover, choose a uniform at random bit $b \in\{0,1\}$.

The random K-MNL is constructed as follows. For each $i \in[n] \backslash\left\{i_{1}, \ldots, i_{k+1}\right\}$, each MNL will give weight 1 to i. Moreover, for $0 \leq t \leq K-1$,

- the $(t+1)$-st MNL will assign a weight of 2 (resp., 1) to item i_{j} if the j th bit of t is 1 (resp., 0), for each $1 \leq j \leq k$ and,
- the $(t+1)$-st MNL will assign a weight of 2 (resp., 1) to item i_{k+1} if the parity of b equals (resp., does not equal) the parity of the weight of the binary representation of t.
The K-MNL will choose uniformly at random among its K MNLs.
Now, observe that for any sequence of k indices out of $\left\{i_{1}, \ldots, i_{k+1}\right\}$, regardless of b, the projection of the 2^{k} MNLs on those k indices will be composed of exactly all the 2^{k} binary words of length k. Therefore, for each slate S of cardinality at most $k+1$, the winning probabilities of S will be uniform regardless of b.

On the other hand, any slate containing the items i_{1}, \ldots, i_{k+1} plus any other item, will have different winning probabilities in the two K-MNLs.

It follows that if one does not look at a slate containing all the items $\left\{i_{1}, \ldots, i_{k+1}\right\}$ plus any other item, one cannot learn the unknown K-MNL.

Since the indices i_{1}, \ldots, i_{k+1} are chosen u.a.r., in a non-adaptive environment, one has to look at at least $\Omega\left(n^{k+1}\right)=\Omega\left(n^{1+\lg K}\right.$) slates before being able to reconstruct the K-MNL (and/or its winning probabilities).

C Proofs

C. 1 Proof of Lemma 8

Proof. We first write a chain of predicates equivalent to $P_{x, z}$:

$$
\begin{aligned}
D_{\{x, z\}}(x) \cdot D_{\{x, y, z\}}(z)-D_{\{x, z\}}(z) \cdot D_{\{x, y, z\}}(x) & \geq 0 \Longleftrightarrow \\
\left(\frac{a_{x}}{1-a_{y}}+\frac{b_{x}}{1-b_{y}}\right)\left(a_{z}+b_{z}\right)-\left(\frac{a_{z}}{1-a_{y}}+\frac{b_{z}}{1-b_{y}}\right)\left(a_{x}+b_{x}\right) & \geq 0 \Longleftrightarrow \\
\frac{a_{x}\left(a_{z}+b_{z}\right)}{1-a_{y}}+\frac{b_{x}\left(a_{z}+b_{z}\right)}{1-b_{y}}-\frac{a_{z}\left(a_{x}+b_{x}\right)}{1-a_{y}}-\frac{b_{z}\left(a_{x}+b_{x}\right)}{1-b_{y}} & \geq 0 \Longleftrightarrow \\
\frac{a_{x} b_{z}-a_{z} b_{x}}{1-a_{y}}+\frac{b_{x} a_{z}-b_{z} a_{x}}{1-b_{y}} & \geq 0 \Longleftrightarrow \\
\left(a_{x} b_{z}-b_{x} a_{z}\right) \cdot\left(\frac{1}{1-a_{y}}-\frac{1}{1-b_{y}}\right) & \geq 0 \Longleftrightarrow \\
\left(a_{x} b_{z}-b_{x} a_{z}\right) \cdot\left(\left(1-b_{y}\right)-\left(1-a_{y}\right)\right) & \geq 0 \Longleftrightarrow \\
\left(a_{x} b_{z}-b_{x} a_{z}\right) \cdot\left(a_{y}-b_{y}\right) & \geq 0
\end{aligned}
$$

thus $P_{x, z} \Longleftrightarrow\left(a_{x} b_{z}-b_{x} a_{z}\right)\left(a_{y}-b_{y}\right) \geq 0$ and by symmetry $P_{y, z} \Longleftrightarrow\left(a_{y} b_{z}-b_{y} a_{z}\right)\left(a_{x}-b_{x}\right) \geq 0$.
Now, we prove that $P_{x, z} \wedge P_{y, z} \Longrightarrow\left(a_{x}-b_{x}\right) \cdot\left(a_{y}-b_{y}\right) \geq 0$. By contradiction,

- $a_{x}>b_{x}$ and $a_{y}<b_{y} \Longrightarrow b_{z}<a_{z}$ for $P_{x, z}$ to hold and $b_{z}>a_{z}$ for $P_{y, z}$ to hold; and
- $a_{x}<b_{x}$ and $a_{y}>b_{y} \Longrightarrow b_{z}>a_{z}$ for $P_{x, z}$ to hold and $b_{z}<a_{z}$ for $P_{y, z}$ to hold.

Then, if $P_{x, z} \wedge P_{y, z}$, either $a_{x}>b_{x}$ and $a_{y}>b_{y}$, or $a_{x}<b_{x}$ and $a_{y}<b_{y}$, or $a_{x}=b_{x}$, or $a_{y}=b_{y}$. Equivalently, $\left(a_{x}-b_{x}\right)\left(a_{y}-b_{y}\right) \geq 0$.

Now, suppose that $\left(a_{x}-b_{x}\right)\left(a_{y}-b_{y}\right) \geq 0$. We consider two cases:

- if $a_{x}-b_{x} \geq 0$ and $a_{y}-b_{y} \geq 0$, then $a_{z}-b_{z} \leq 0$, therefore both $P_{x, z}$ and $P_{y, z}$ hold;
- if $a_{x}-b_{x} \leq 0$ and $a_{y}-b_{y} \leq 0$, then $a_{z}-b_{z} \geq 0$, therefore, again, both $P_{x, z}$ and $P_{y, z}$ hold.

C. 2 Proof of Lemma 9

Proof. For simplicity, let $Q_{x, y}$ denote $P_{x, y} \wedge P_{y, x}$. In a manner analogous to the proof of Lemma 8, we can prove that $Q_{x, y} \Longleftrightarrow\left[D_{\{x, y\}}(x) \cdot D_{\{x, y, z\}}(y)-D_{\{x, y\}}(y) \cdot D_{\{x, y, z\}}(x)=0\right]$ and $Q_{x, y} \Longleftrightarrow$ $\left[a_{x} b_{y}=b_{x} a_{y} \vee a_{z}=b_{z}\right]$. Recall that $P_{z, x} \Longleftrightarrow\left[\left(a_{z} b_{x}-b_{z} a_{x}\right)\left(a_{y}-b_{y}\right) \geq 0\right]$ and $P_{z, y} \Longleftrightarrow$ $\left[\left(a_{z} b_{y}-b_{z} a_{y}\right)\left(a_{x}-b_{x}\right) \geq 0\right]$. We now prove the two implications.
(i) Suppose that $Q_{x, y}, P_{z, x}, P_{y, x}$ hold but by contradiction, $a_{z} \neq b_{z}$. Then, $a_{x} b_{y}=b_{x} a_{y} \triangleq \gamma$. Summing up the two inequalities induced by $P_{z, x}$ and $P_{y, x}$, we get

$$
\begin{aligned}
\left(a_{z} b_{x}-b_{z} a_{x}\right) \cdot\left(a_{y}-b_{y}\right)+\left(a_{z} b_{y}-b_{z} a_{y}\right) \cdot\left(a_{x}-b_{x}\right) & \geq 0 \Longleftrightarrow \\
a_{y} a_{z} b_{x}-a_{z} b_{x} b_{y}-a_{x} a_{y} b_{z}+a_{x} b_{y} b_{z}+a_{x} a_{z} b_{y}-a_{z} b_{x} b_{y}-a_{x} a_{y} b_{z}+a_{y} b_{x} b_{z} & \geq 0 \Longleftrightarrow \\
a_{y} b_{x}\left(a_{z}+b_{z}\right)+a_{x} b_{y}\left(a_{z}+b_{z}\right)-2\left(a_{z} b_{x} b_{y}+a_{x} a_{y} b_{z}\right) & \geq 0 \Longleftrightarrow \\
2 \gamma\left(a_{z}+b_{z}\right)-2\left(a_{z} b_{x} b_{y}+a_{x} a_{y} b_{z}\right) & \geq 0,
\end{aligned}
$$

thus,

$$
\begin{equation*}
a_{z}+b_{z} \geq \frac{a_{z} b_{x} b_{y}}{\gamma}+\frac{a_{x} a_{y} b_{z}}{\gamma} \tag{1}
\end{equation*}
$$

Now, if we substitute $a_{x} b_{y}$ for the first occurrence of γ and $a_{y} b_{x}$ for the second in (1), we get

$$
\begin{equation*}
a_{z}+b_{z} \geq a_{z} \frac{b_{x}}{a_{x}}+b_{z} \frac{a_{x}}{b_{x}} \tag{2}
\end{equation*}
$$

while if we substitute $a_{y} b_{x}$ for the first occurrence of γ and $a_{x} b_{y}$ for the second in (1), we get

$$
\begin{equation*}
a_{z}+b_{z} \geq a_{z} \frac{b_{y}}{a_{y}}+b_{z} \frac{a_{y}}{b_{y}} \tag{3}
\end{equation*}
$$

We consider the following two cases.

- If $a_{z}>b_{z}$, then there must exist some $w \in\{x, y\}$ such that $b_{w}>a_{w}$ (since $a_{x}+a_{y}+a_{z}=$ $1=b_{x}+b_{y}+b_{z}$). By choosing the appropriate inequality among (2) and (3), we get

$$
\begin{aligned}
a_{z}+b_{z} & \geq a_{z} \frac{b_{w}}{a_{w}}+b_{z} \frac{a_{w}}{b_{w}}=\frac{a_{w}}{b_{w}}\left(a_{z}+b_{z}\right)+\left(\frac{b_{w}}{a_{w}}-\frac{a_{w}}{b_{w}}\right) a_{z} \\
& >\frac{a_{w}}{b_{w}}\left(a_{z}+b_{z}\right)+\left(\frac{b_{w}}{a_{w}}-\frac{a_{w}}{b_{w}}\right) \frac{a_{z}+b_{z}}{2}=\frac{1}{2}\left(\frac{b_{w}}{a_{w}}+\frac{a_{w}}{b_{w}}\right)\left(a_{z}+b_{z}\right) .
\end{aligned}
$$

- If $a_{z}<b_{z}$, then there is some $w \in\{x, y\}$ such that $b_{w}<a_{w}$. Again, choosing the appropriate inequality among (2) and (3), we get

$$
\begin{aligned}
a_{z}+b_{z} & \geq a_{z} \frac{b_{w}}{a_{w}}+b_{z} \frac{a_{w}}{b_{w}}=\frac{b_{w}}{a_{w}}\left(a_{z}+b_{z}\right)+\left(\frac{a_{w}}{b_{w}}-\frac{b_{w}}{a_{w}}\right) b_{z} \\
& >\frac{b_{w}}{a_{w}}\left(a_{z}+b_{z}\right)+\left(\frac{a_{w}}{b_{w}}-\frac{b_{w}}{a_{w}}\right) \frac{a_{z}+b_{z}}{2}=\frac{1}{2}\left(\frac{a_{w}}{b_{w}}+\frac{b_{w}}{a_{w}}\right)\left(a_{z}+b_{z}\right) .
\end{aligned}
$$

Therefore, there is always some $w \in\{x, y\}$ such that $a_{z}+b_{z}>\frac{1}{2}\left(\frac{a_{w}}{b_{w}}+\frac{b_{w}}{a_{w}}\right)\left(a_{z}+b_{z}\right)$. However, since $a_{w} \neq b_{w}$, by the AM-GM inequality, $\frac{a_{w}}{b_{w}}+\frac{b_{w}}{a_{w}} \geq 2$, thus obtaining the contradiction $a_{z}+b_{z}>a_{z}+b_{z}$.
(ii) Suppose that $a_{z}=b_{z}$. Then, $Q_{x, y}$ trivially holds. Consider the generic $P_{z, w}$ for $\left\{w, w^{\prime}\right\}=$ $\{x, y\}$. We have shown that $P_{z, w} \Longleftrightarrow\left[\left(a_{z} b_{w}-b_{z} a_{w}\right)\left(a_{w^{\prime}}-b_{w^{\prime}}\right) \geq 0\right]$. By assumption, we have $a_{z}=b_{z}$, therefore $P_{z, w} \Longleftrightarrow\left[a_{z}\left(b_{w}-a_{w}\right)\left(a_{w^{\prime}}-b_{w^{\prime}}\right) \geq 0\right]$. Observe that if $b_{w}>a_{w}$ it must hold that $b_{w^{\prime}}<a_{w^{\prime}}$ (resp., if $b_{w}<a_{w}$ then $b_{w^{\prime}}>a_{w^{\prime}}$). Thus $a_{z}\left(b_{w}-a_{w}\right)\left(a_{w^{\prime}}-b_{w^{\prime}}\right) \geq 0$ and $P_{z, w}$ holds.

C. 3 Proof of Lemma 10

Proof. We proceed by contradiction. Assume that there exist two distinct 2-MNLs $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right) \neq$ $\left(\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right),\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right)\right)$ that are both consistent with the functions in \mathcal{D}. We show that they will be "flipped", i.e., $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right)=\left(\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right),\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right)\right)$.

By assumptions we have that $a_{j}^{\prime} \neq b_{j}^{\prime}, a_{k}^{\prime} \neq b_{k}^{\prime}, a_{j}^{\prime \prime} \neq b_{j}^{\prime \prime}$ and $a_{k}^{\prime \prime} \neq b_{k}^{\prime \prime}$. Moreover, by Lemma 9, we have that $a_{i}^{\prime}=b_{i}^{\prime}=a_{i}^{\prime \prime}=b_{i}^{\prime \prime}=D_{\{i, j, k\}}(i) \triangleq x$.

Each of the two sets of weights must give the same probability to the event i wins in the slate $\{i, j\}$, i.e.,

$$
\frac{1}{2} \cdot \frac{a_{i}^{\prime}}{a_{i}^{\prime}+a_{j}^{\prime}}+\frac{1}{2} \cdot \frac{b_{i}^{\prime}}{b_{i}^{\prime}+b_{j}^{\prime}}=D_{\{i, j\}}(i)=\frac{1}{2} \cdot \frac{a_{i}^{\prime \prime}}{a_{i}^{\prime \prime}+a_{j}^{\prime \prime}}+\frac{1}{2} \cdot \frac{b_{i}^{\prime \prime}}{b_{i}^{\prime \prime}+b_{j}^{\prime \prime}}
$$

Using the definition of x, this yields the cubic equation

$$
\begin{equation*}
\left(a_{j}^{\prime}+b_{j}^{\prime}-a_{j}^{\prime \prime}-b_{j}^{\prime \prime}\right) x^{3}+2\left(a_{j}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{j}^{\prime \prime}\right) x^{2}+\left(a_{j}^{\prime} a_{j}^{\prime \prime} b_{j}^{\prime}+a_{j}^{\prime} b_{j}^{\prime} b_{j}^{\prime \prime}-a_{j}^{\prime} a_{j}^{\prime \prime} b_{j}^{\prime \prime}-a_{j}^{\prime \prime} b_{j}^{\prime} b_{j}^{\prime \prime}\right) x=0 \tag{4}
\end{equation*}
$$

Now since $\frac{1}{2}\left(a_{j}^{\prime}+b_{j}^{\prime}\right)=D_{\{i, j, k\}}(j)=\frac{1}{2}\left(a_{j}^{\prime \prime}+b_{j}^{\prime \prime}\right)$, we have that $a_{j}^{\prime}+b_{j}^{\prime}-a_{j}^{\prime \prime}-b_{j}^{\prime \prime}=0$; we can thus drop the highest-degree term of (4). Moreover, by our boundary conditions, we can assume $0<D_{\{i, j, k\}}(i)=x<1$ and thus we can drop the $x=0$ solution as well. After these, (4) becomes

$$
\begin{equation*}
2\left(a_{j}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{j}^{\prime \prime}\right) \cdot x+a_{j}^{\prime} b_{j}^{\prime}\left(a_{j}^{\prime \prime}+b_{j}^{\prime \prime}\right)-a_{j}^{\prime \prime} b_{j}^{\prime \prime}\left(a_{j}^{\prime}+b_{j}^{\prime}\right)=0 \tag{5}
\end{equation*}
$$

Once again we use $a_{j}^{\prime}+b_{j}^{\prime}=a_{j}^{\prime \prime}+b_{j}^{\prime \prime}=2 D_{\{i, j, k\}}(j)$ to simplify (5) to

$$
\begin{equation*}
\left(a_{j}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{j}^{\prime \prime}\right) \cdot x+\left(a_{j}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{j}^{\prime \prime}\right) D_{\{i, j, k\}}(j)=0 \tag{6}
\end{equation*}
$$

Now, for (6) to be satisfied, we must either have $x=-D_{\{i, j, k\}}(j)<0$ or $a_{j}^{\prime} b_{j}^{\prime}=a_{j}^{\prime \prime} b_{j}^{\prime \prime}$. The former is impossible since $x=a_{i}^{\prime}>0$. Therefore we consider the latter, i.e., $a_{j}^{\prime}=\frac{a_{j}^{\prime \prime} b_{j}^{\prime \prime}}{b_{j}^{\prime}}$ and apply $a_{j}^{\prime}+b_{j}^{\prime}=a_{j}^{\prime \prime}+b_{j}^{\prime \prime}$ again to (6), to get

$$
\begin{equation*}
a_{j}^{\prime \prime} \cdot \frac{b_{j}^{\prime \prime}-b_{j}^{\prime}}{b_{j}^{\prime}}=b_{j}^{\prime \prime}-b_{j}^{\prime} \tag{7}
\end{equation*}
$$

Examining (7), if $b_{j}^{\prime \prime}=b_{j}^{\prime}$, it must also hold $a_{j}^{\prime \prime}=a_{j}^{\prime}$. However, since $a_{i}^{\prime}=b_{i}^{\prime}=a_{i}^{\prime \prime}=b_{i}^{\prime \prime}$, it must also be that $a_{k}^{\prime}=a_{k}^{\prime \prime}$ and $b_{k}^{\prime}=b_{k}^{\prime \prime}$, i.e., we get the desired contradiction $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right)=$ $\left(\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right),\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right)\right)$. On the other hand, if $b_{j}^{\prime \prime} \neq b_{j}^{\prime}$, we can divide (7) by $b_{j}^{\prime \prime}-b_{j}^{\prime}$ to get $a_{j}^{\prime \prime}=b_{j}^{\prime}$. This implies, by $a_{j}^{\prime}+b_{j}^{\prime}=a_{j}^{\prime \prime}+b_{j}^{\prime \prime}$, that $a_{j}^{\prime}=b_{j}^{\prime \prime}$. But, if $a_{i}^{\prime \prime}+a_{j}^{\prime \prime}=x+a_{j}^{\prime \prime}=x+b_{j}^{\prime}=b_{i}^{\prime}+b_{j}^{\prime}$, it must be that $a_{k}^{\prime \prime}=b_{k}^{\prime}$. Therefore, if $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right) \neq\left(\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right),\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right)\right)$, it must hold that $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right)=\left(\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right),\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right)\right)$, which is again a contradiction.

C. 4 Proof of Theorem 13

Proof. The assumptions on \mathcal{D} guarantee, wlog, that in any (properly reordered) pair of weights $\left(\left(a_{i}, a_{j}, a_{k}\right),\left(b_{i}, b_{j}, b_{k}\right)\right)$, it holds $a_{j}>b_{j}, a_{k}>b_{k}$. We now create a system with (1) and (2) of Lemma 11:

$$
\left\{\begin{array}{l}
a_{j}=\left(1-a_{k}\right)\left(D_{\{i, j\}}(j)+\frac{D_{\{i, j\}}(j) D_{\{i, j, k\}}(i)-D_{\{i, j\}}(i) D_{\{i, j, k\}}(j)}{a_{k}-D_{\{i, j, k\}}(k)}\right) \tag{8}\\
a_{k}=\left(1-a_{j}\right)\left(D_{\{i, k\}}(k)+\frac{D_{\{i, k\}}(k) D_{\{i, j, k\}}(i)-D_{\{i, k\}}(i) D_{\{i, j, k\}}(k)}{\left.a_{j}-D_{\{i, j, k\}}\right\}}\right)
\end{array} .\right.
$$

We will show that (8) has a unique solution.
For simplicity of exposition, we rewrite (8) using $t_{j}=D_{\{i, j, k\}}(j), t_{k}=D_{\{i, j, k\}}(k), d_{j}=D_{\{i, j\}}(j)$, and $d_{k}=D_{\{i, k\}}(k)$ to obtain

$$
\left\{\begin{aligned}
2 d_{j} \cdot a_{k} b_{k}+a_{j} b_{k}+a_{k} b_{j} & =4 d_{j} t_{k}-2 d_{j}+2 t_{j} \\
2 d_{k} \cdot a_{j} b_{j}+a_{j} b_{k}+a_{k} b_{j} & =4 d_{k} t_{j}-2 d_{k}+2 t_{k},
\end{aligned}\right.
$$

where $b_{j}=2 t_{j}-a_{j}$ and $b_{k}=2 t_{k}-a_{k}$. Now, suppose by contradiction that there exist two distinct solutions $\left(a_{j}^{\prime}, a_{k}^{\prime}\right)$ and $\left(a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right)$. Then, the following system in the variable x must have, as solutions, $x=0$ and $x=1$:

$$
\left\{\begin{array}{rr}
2 d_{j} \cdot\left(x\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)+a_{k}^{\prime}\right)\left(x\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+b_{k}^{\prime}\right) \\
+\left(x\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)+a_{j}^{\prime}\right)\left(x\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+b_{k}^{\prime}\right)+\left(x\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)+a_{k}^{\prime}\right)\left(x\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+b_{j}^{\prime}\right) & =4 d_{j} t_{k}-2 d_{j}+2 t_{j} \\
2 d_{k} \cdot\left(x\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)+a_{j}^{\prime}\right)\left(x\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+b_{j}^{\prime}\right) \\
+\left(x\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)+a_{j}^{\prime}\right)\left(x\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+b_{k}^{\prime}\right)+\left(x\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)+a_{k}^{\prime}\right)\left(x\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+b_{j}^{\prime}\right) & =4 d_{k} t_{j}-2 d_{k}+2 t_{k} \\
0 \leq x & \leq 1
\end{array}\right.
$$

By assumption we know that the system is feasible at $x=0$ and at $x=1$. We collect the x 's:

$$
\left\{\begin{array}{r}
x^{2} \cdot\left(2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)\right) \\
+x \cdot\left(2 d_{j} a_{k}^{\prime}\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}\right) \\
-\left(4 d_{j} t_{k}-2 d_{j}+2 t_{j}\right) \\
=0 \\
x^{2} \cdot\left(2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)\right) \\
+x \cdot\left(2 d_{k} a_{j}^{\prime}\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}\right) \\
-\left(4 d_{k} t_{j}-2 d_{k}+2 t_{k}\right) \\
=0 \\
0 \leq x \leq 1
\end{array}\right.
$$

Both the quadratics need to have $\{0,1\}$ as their set of solutions. Therefore, the two quadratics have to have their axis of symmetry at $x=\frac{1}{2}$. In other words, the derivatives of the two quadratics have to evaluate to 0 at $x=\frac{1}{2}$. We take the derivatives of the two quadratics, to get two linear equations:

$$
\left\{\begin{array}{r}
2 x \cdot\left(2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)\right) \\
+\left(2 d_{j} a_{k}^{\prime}\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}\right)= \\
2 x \cdot\left(2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)\right) \\
+\left(2 d_{k} a_{j}^{\prime}\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}\right)=
\end{array}\right.
$$

Since the axes of symmetry of the two quadratics were both at $x=\frac{1}{2}$, substituting $\frac{1}{2}$ for x in the two derivatives should guarantee feasibility:

$$
\left\{\begin{array}{r}
\left(2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)\right) \\
+\left(2 d_{j} a_{k}^{\prime}\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)+2 d_{j}\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}\right) \\
\left(2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right)\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right)\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right)\right) \\
+\left(2 d_{k} a_{j}^{\prime}\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right)+2 d_{k}\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{j}^{\prime}+\left(b_{j}^{\prime \prime}-b_{j}^{\prime}\right) a_{k}^{\prime}+\left(a_{k}^{\prime \prime}-a_{k}^{\prime}\right) b_{j}^{\prime}+\left(a_{j}^{\prime \prime}-a_{j}^{\prime}\right) b_{k}^{\prime}+\left(b_{k}^{\prime \prime}-b_{k}^{\prime}\right) a_{j}^{\prime}\right)
\end{array}=0 .\right.
$$

Simplifying, we get

$$
\left\{\begin{aligned}
2 d_{j}\left(a_{k}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime} b_{k}^{\prime}\right) & =a_{j}^{\prime} b_{k}^{\prime}+a_{k}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime \prime} b_{j}^{\prime \prime} \\
2 d_{k}\left(a_{j}^{\prime \prime} b_{j}^{\prime \prime}-a_{j}^{\prime} b_{j}^{\prime}\right) & =a_{j}^{\prime} b_{k}^{\prime}+a_{k}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime \prime} b_{j}^{\prime \prime},
\end{aligned}\right.
$$

and thus:

$$
\left\{\begin{aligned}
d_{j} & =\frac{1}{2} \frac{a_{b}^{\prime} b_{k}^{\prime}+a_{k}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime \prime} b_{j}^{\prime \prime}}{a_{k}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime} b_{k}^{\prime}} \\
d_{k} & =\frac{1}{2} \frac{a_{j}^{\prime} b_{k}^{\prime}+a_{k} b_{j}^{\prime}-a_{j}^{\prime} b_{k}^{\prime}-a_{k}^{\prime \prime} b_{j}^{\prime \prime}}{a_{j}^{\prime} b_{j}^{\prime \prime}-a_{j}^{\prime} b_{j}^{\prime}}
\end{aligned}\right.
$$

Observe that the numerators on the RHSs are equal to $y=a_{j}^{\prime} b_{k}^{\prime}+a_{k}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime \prime} b_{j}^{\prime \prime}$. Let us consider the two denominators of the RHSs: $a_{k}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime} b_{k}^{\prime}$ and $a_{j}^{\prime \prime} b_{j}^{\prime \prime}-a_{j}^{\prime} b_{j}^{\prime}$. We will use a form of the well-known geometric principle that relates the areas of rectangles with the same perimeter. (In other words, we are going to apply a simple form of the AM-GM inequality.)

Lemma C.1. For $x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime} \geq 0$, if $x^{\prime}+y^{\prime}=x^{\prime \prime}+y^{\prime \prime}$ and $\left|x^{\prime \prime}-y^{\prime \prime}\right|>\left|x^{\prime}-y^{\prime}\right|$, then $x^{\prime} y^{\prime}>x^{\prime \prime} y^{\prime \prime}$.
Proof. Observe that $x y=\left((x+y)^{2}-(x-y)^{2}\right) / 4$ and $x^{\prime} y^{\prime}=\left(\left(x^{\prime}+y^{\prime}\right)^{2}-\left(x^{\prime}-y^{\prime}\right)^{2}\right) / 4=\left((x+y)^{2}-\right.$ $\left.\left(x^{\prime}-y^{\prime}\right)^{2}\right) / 4$. Thus,

$$
x y-x^{\prime} y^{\prime}=\frac{\left(x^{\prime}-y^{\prime}\right)^{2}-(x-y)^{2}}{4}=\frac{\left|x^{\prime}-y^{\prime}\right|^{2}-|x-y|^{2}}{4}>0
$$

Recall that, we have $a_{j}^{\prime}+b_{j}^{\prime}=a_{j}^{\prime \prime}+b_{j}^{\prime \prime}$ and $a_{k}^{\prime}+b_{k}^{\prime}=a_{k}^{\prime \prime}+b_{k}^{\prime \prime}$. By the assumptions and by Corollary 12, we can assume that one of the following two alternatives holds:

- If $a_{j}^{\prime}>a_{j}^{\prime \prime}>b_{j}^{\prime \prime}>b_{j}^{\prime}$ and $a_{k}^{\prime \prime}>a_{k}^{\prime}>b_{k}^{\prime}>b_{k}^{\prime \prime}$, then by Lemma C.1, we must have $a_{j}^{\prime \prime} b_{j}^{\prime \prime}-a_{j}^{\prime} b_{j}^{\prime}>0$, and $a_{k}^{\prime} b_{k}^{\prime}-a_{k}^{\prime \prime} b_{k}^{\prime \prime}>0$. Thus, if the numerator y is positive then $d_{j}<0$, if y is negative, then $d_{k}<0$, and if $y=0$ then $d_{j}=d_{k}=0$. Since both d_{j} and d_{k} have to be positive, we have reached a contradiction.
- If $a_{j}^{\prime \prime}>a_{j}^{\prime}>b_{j}^{\prime}>b_{j}^{\prime \prime}$ and $a_{k}^{\prime}>a_{k}^{\prime \prime}>b_{k}^{\prime \prime}>b_{k}^{\prime}$, then $a_{j}^{\prime} b_{j}^{\prime}-a_{j}^{\prime \prime} b_{j}^{\prime \prime}>0$ and $a_{k}^{\prime \prime} b_{k}^{\prime \prime}-a_{k}^{\prime} b_{k}^{\prime}>0$. Thus, if $y>0$ then $d_{k}<0$, if $y<0$ then $d_{j}<0$, and if $y=0$ then $d_{j}=d_{k}=0$, again, a contradiction.

Hence, two distinct solutions $\left(\left(a_{i}^{\prime}, a_{j}^{\prime}, a_{k}^{\prime}\right),\left(b_{i}^{\prime}, b_{j}^{\prime}, b_{k}^{\prime}\right)\right) \neq\left(\left(a_{i}^{\prime \prime}, a_{j}^{\prime \prime}, a_{k}^{\prime \prime}\right),\left(b_{i}^{\prime \prime}, b_{j}^{\prime \prime}, b_{k}^{\prime \prime}\right)\right)$ cannot exist.

[^0]: ${ }^{*}$ Work done in part while visiting Google. Supported in part by a Google Focused Research Award, by the ERC Starting Grant DMAP 680153, by the SIR Grant RBSI14Q743, and by the "Dipartimenti di Eccellenza 2018-2022" grant awarded to the Dipartimento di Informatica at Sapienza.

