
Structured Evolution with Compact Architectures for Scalable Policy Optimization

Appendix

8. Proofs
8.1. Proof of Theorem 3.2

Proof. Unbiasedness follows immediately since the (ε′i)
N
i=1 each have the same marginal distribution as the (εi)

N
i=1. For

the MSE claim, we provide a proof for the case N ≤ d; the general case is analogous. Let (εi)
N
i=1 be iid N(0, I), and let

(ε′i)
N
i=1 be marginally N (0, I) and almost-surely orthogonal. Write

F (i) =
1

2σ
(F (θ + σεi)εi − F (θ − σεi)εi) ,

F ′(i) =
1

2σ
(F (θ + σε′i)ε

′
i − F (θ − σε′i)ε′i) ,

for each i = 1, . . . , N , and note that

MSE(∇̂AT,ort
N Fσ(θ)) =E

∥∥∥∥∥ 1

N

N∑
i=1

F ′(i) −∇Fσ(θ)

∥∥∥∥∥
2

2


=E

∥∥∥∥∥ 1

N

N∑
i=1

F ′(i)

∥∥∥∥∥
2

2

− ‖∇Fσ(θ)‖22

=
1

N2

 N∑
i=1

E
[
‖F ′(i)‖22

]
+
∑
i6=j

E
[
〈F ′(i), F ′(j)〉

]− ‖∇Fσ(θ)‖22 . (9)

By analogous reasoning, we have the following expression for the MSE of the iid estimator:

MSE(∇̂AT
N Fσ(θ)) =

1

N2

 N∑
i=1

E
[
‖F (i)‖22

]
+
∑
i 6=j

E
[
〈F (i), F (j)〉

]− ‖∇Fσ(θ)‖22. (10)

Since F (i) and F ′(i) are equal in distribution, we have E
[
‖F (i)‖22

]
= E

[
‖F ′(i)‖22

]
. Now note that 〈F ′(i), F ′(j)〉 = 0 almost

surely for i 6= j, so E
[
〈F ′(i), F ′(j)〉

]
= 0 in Equation (9). Note also that since F (i) and F (j) are independent for i 6= j, we

have E
[
〈F (i), F (j)〉

]
= 〈∇Fσ(θ),∇Fσ(θ)〉 = ‖∇Fσ(θ)‖22 ≥ 0 in Equation (10). Therefore, the stated result follows.

9. Implementation details
In this section, we give further information on the construction of exploration directions using Hadamard-Rademacher
random matrices and quasi-Monte Carlo strategies, as well as precise details of the Toeplitz parametrisations used for policy
networks in the experiments.

9.1. Exploration directions with Hadamard-Rademacher random matrices and quasi-Monte Carlo

Here, we provide precise algorithmic details as to how Hadamard-Rademacher random matrices and quasi-Monte Carlo
sequences can be used to construct exploration directions, complementing the discussion in Sections 3.2 and 3.3.

Algorithm 1 sets out the computation required to generate exploration directions from Hadamard-Rademacher random
matrices.

Algorithm 2 describes the computation required to generate exploration directions from a quasi-Monte Carlo sequence. The
first step of the algorithm is to draw a set of samples which resemble draws from Unif([0, 1]d). Rather than sampling i.i.d.
from this distribution, instead a call to a standard QMC sampler is used – these samples are designed to “fill the space” more
efficiently that i.i.d. samples from Unif([0, 1]d) typically would. There are many QMC sampling algorithms that may be
used; in our experiments, we use generalized Halton sequences (additional details are given in Section 11.1), but see (Dick &
Pillichshammer, 2010) for a extensive survey of commonly-used QMC sampling methods. The second step is to transform
these samples from occupying the unit hypercube [0, 1]d, to approximating a collection of multivariate Gaussian samples in
Rd; this is acheived by applying the Gaussian CDF coordinate-wise to the hypercube samples.



Structured Evolution with Compact Architectures for Scalable Policy Optimization

Algorithm 1 Hadamard-Rademacher exploration directions
1: Sample the matrices D1, . . . ,Dk by drawing i.i.d. Rademacher random variables for each diagonal entry.
2: Set G = I, the identity matrix
3: for j=1,. . . ,k do
4: Set G← DG
5: Compute G← HG via the Fast Walsh-Hadamard Transform.
6: end for
7: Compute G← d−

k−1
2 G

8: Use the resulting rows of G as exploration direction, in place of Gaussian vectors (εi)
N
i=1 in the estimators described in

Section 2.

Algorithm 2 Quasi-Monte Carlo exploration directions
1: Generate a sequence of quasi-Monte Carlo samples (xi)

N
i=1 ⊂ [0, 1]d via a standard QMC algorithm.

2: For each sample xi (i = 1, . . . , N ), compute the transformed sample εi given by applying the standard Normal CDF to
each coordinate of xi.

3: Use the (εi)
N
i=1 as exploration directions in the estimators described in Section 2.

9.2. Toeplitz network structures

The Toeplitz structure is enforced by encoding this part of the network with vectors of size: m+ n− 1, where m stands
for the number of rows and n for the number of columns. The entire network is vectorized and in the inference phase
de-vectorized into a sequence of structured matrices. Note that we never explicitly backpropagate through the network, we
only run forward passes. To update parameters of the network, we always use vectorized representations.

10. Related work
In this section, we briefly mention other work related to our approach. Whilst our methods are focused on variance reduction
for isotropic Gaussian smoothings of an objective function F , there has been much work on adapting the smoothing online,
to reflect the local properties of F at the current set of parameters; a principal example of such an approach is CMA-ES
(Hansen et al., 2003). These adaptive approaches have been shown to yield considerable improvements in performance
versus isotropic baselines in certain circumstances. Here, we observe that these adaptive approaches are complementary
to our variance reduction techniques, and in principle these variance reduction techniques could be extended to methods
that invoke covariance adaptation (by, for example, enforcing that exploration directions are orthogonal under a whitening
transform with respect to the current covariance matrix). We leave it as an open question for future as to how such exploration
methods can be implemented in a computational efficient manner across a distributed system. These ES approaches differ
from other recent methods for continuous control, such as DDPG (Lillicrap et al., 2015), in that they do not take advantage of
any Markov structure in the environment. We remark, however, that exploration in DDPG is achieved by injecting Gaussian
noise into the actions of an agent, and there may be interesting further work in understanding whether the variance reduction
techniques studied here are applicable in these contexts too.

11. Experimental Details for Section 6.1
11.1. Further Experimental Details

We provide full details of the experimental setup for the optimsiation problems solved in Section 6.1. Gradient estimates
from each ES strategy were supplied to MATLAB’s built-in fminunc gradient-based optimisation function, using the
quasi-newton option. The final objective value reported for a given optimisation problem and exploration method was
given by the output of the fminunc method, and the number of function evaluations reported for a given optimsiation
problem and exploration method was the total number of function evaluations recorded during the call to fminunc. The
number of exploration directions was taken to be equal to the dimensionality of the optimisation problem in all circumstances,
unless otherwise stated.

For the QMC method described in the main paper, we MATLAB’s built-in haltonset function to generate a generalized
Halton sequence in the unit hypercube, apply a reverse-radix scrambling, and then apply coordinate-wise inverse Gaussian



Structured Evolution with Compact Architectures for Scalable Policy Optimization

A
v
e
ra
g
e
ra
n
k

1

1.5

2

2.5

3

3.5

4

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

objective value function evaluations

IID

ORT

HD

QMC

Figure 4. Average rankings across DFO tasks for the antithetic estimator (6) with a variety of exploration distributions. The standard
deviation of the exploration distribution was 10−6 for all methods. Rankings based on final objective value are given on the left-hand side
of the figure, whilst rankings based on function evaluations are given on the right-hand side. Lower ranks are better.

cumulative density functions to obtain multivariate Gaussian samples. The leap and skip parameters of haltonset
were set to 700 and 1000 respectively. The deterministic reverse-radix scrambling is applied to the quasi-Monte Carlo
stream to the stream of points via MATLAB’s built-in scramble function.

11.2. Ranking Comparison

Here, we give the comparison of the methods described in Section 6.1 based on rankings, as described in the main paper.
The results are broadly in line with the comparison based on normalized scores.

11.3. Further Experiment Results: Varying Exploration Noise

In this section, we study the effect of varying the exploration noise parameter σ on the findings of Section 6.1. In Section
6.1, σ was set to 10−6 in all experiments. Here, we give corresponding results with σ set to 10−7 (see Figures 5 and 6) and
10−5 (see Figures 7 and 8). Overall, the relative behaviour of the exploration methods remains similar as the exploration
noise is varied.



Structured Evolution with Compact Architectures for Scalable Policy Optimization

A
v
er
a
g
e
ra
n
k

1

1.5

2

2.5

3

3.5

4

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

objective value function evaluations

IID

ORT

HD

QMC

Figure 5. σ = 10−7, average ranks.

A
v
er
a
g
e
sc
o
re

0

0.2

0.4

0.6

0.8

1

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

objective value function evaluations

IID

ORT

HD

QMC

Figure 6. σ = 10−7, average scores.

A
v
er
a
g
e
ra
n
k

1

1.5

2

2.5

3

3.5

4

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

objective value function evaluations

IID

ORT

HD

QMC

Figure 7. σ = 10−5, average ranks.

A
v
er
a
g
e
sc
o
re

0

0.2

0.4

0.6

0.8

1

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

no
is
y3

w
ild
3

no
nd
iff

sm
oo
th

objective value function evaluations

IID

ORT

HD

QMC

Figure 8. σ = 10−5, average scores.

12. Additional OpenAI Gym Learning Curves
In this section, we provide learning curves for all environments and algorithms described in Section 6.2. We also run
experiments on more (20 random seeds), computing the mean reward and standard deviation as well as and add comparison
to a standard finite difference method. For the standard finite difference method (FD) all runs are the same since the
environment and exploration is completely deterministic, thus standard deviation is 0. The termination of the training
procedure is dictated by how much the total reward changed over a specific time interval (if the changes are sufficiently
small the optimization procedure terminates).



Structured Evolution with Compact Architectures for Scalable Policy Optimization

CP:ST(Gort) CP:ST(H) CP:UN FP:UN CP:FD FP:FD
AN 514.7/0.2 1150.23/2.6 563.78/0.3 -13.11/1.2 505.00 -10.23

SW 370.0/0.1 371.0/0.1 367.1/1.2 151.1/5.2 313.22 174.48

HC 3623.56/2.3 3277.11/3.3 1942.55/1.4 2656.39/2.7 1672.65 3011.22

HO 99888.11/4.2 99893.21/2.7 99460.36/1.8 1536.00/2.2 94032.65 10032.69

HU 1849.3/2.2 88.13/1.9 1430.01/2.8 511.93/5.2 1325.79 624.78

WA 10001.05/2.8 9980.63/3.2 9754.48/3.2 459.33/4.2 9003.11 531.20

PU -49.68/0.2 -43.33/0.3 -35.25/0.1 -47.37/0.3 -49.57 -51.42

RE -4.11/0.24 -12.31/0.44 -74.31/0.67 -149.63/1.2 -85.62 -181.57

ST -113.62/1.3 -88.77/0.3 -49.43/2.3 -66.61/0.2 -51.06 -90.94

TH -361.55/5.2 -241.55/1.1 -267.32/3.4 -190.51/1.8 -415.49 -382.12

CMC 91.89/0.2 94.11/0.1 90.03/0.4 -0.11/0.1 90.79 -0.11

PE -128.55/0.1 -125.38/0.82 -3290.22/5.4 -5088.34/4.3 -3582.62 -6627.83

Table 4. Mean total rewards obtained from 20 random seeds on different robotics OpenAI Gym tasks and corresponding standard
deviations (mean/std) for different neural network architectures and exploration strategies. Additional columns: CP:FD corresponds
to the structured neural network and standard finite difference method for gradient approximation; and FP:FD corresponds to the
unstructured neural network with standard finite difference method for gradient approximation. For the FD method all runs are the
same (see: comment in the main text) thus standard deviation is 0 and we do not report it. Highest rewards are shown in bold
(AN:Ant, SW:Swimmer, HC:HalfCheetah, HO:Hopper, HU:Humanoid, WA:Walker2d, PU:Pusher, RE:Reacher, ST:Striker,
TH:Thrower, CMC:Continuous Mountain Car, PE:Pendulum).

(a) Ant (b) Continuous Mountain Car

Figure 9. Learning curves for different OpenAI Gym envs.



Structured Evolution with Compact Architectures for Scalable Policy Optimization

(a) Half Cheetah (b) Swimmer

(c) Humanoid (d) Hopper

Figure 10. Learning curves for different OpenAI Gym envs.



Structured Evolution with Compact Architectures for Scalable Policy Optimization

(a) Pendulum (b) Pusher

(c) Reacher (d) Striker

Figure 11. Learning curves for different OpenAI Gym envs.

(a) Thrower (b) Walker2d

Figure 12. Learning curves for different OpenAI Gym envs.


