
GEP-PG: Decoupling exploration and

exploitation in deep Reinforcement Learning

algorithms

Supplementary material

Cédric Colas1, Olivier Sigaud1,2 and Pierre-Yves Oudeyer1

1INRIA, Flowers team, Bordeaux, France
2Sorbonne Université, ISIR, Paris, France

A Study of DDPG variability

In this section we investigate performance variability in ddpg. The authors of
[1] showed that averaging the performance of two randomly selected splits of 5
runs with different random seeds can lead to statistically different distributions.
This considerably undermines previous results, as most of the community ([1]
included) has been using 5 seeds or less, see [1]. Here we use a larger statistical
sample of 20 random seeds and show that it is enough to counter the variance
effect. We run the baseline ddpg algorithm with OU(σ = 0.3) noise 40 times on
Continuous Mountain Car and Half-Cheetah. We randomly select two pairs of 20
sets and perform statistical tests to compare their performance. We repeat this
procedure 1000 times and report the percentages of tests showing a significant
difference between both sets (Table 1(b) and 1(a)). We report results for both
evaluation metrics and two tests: two-sample t-test (t-test) and bootstrapped
(bs) estimation of the 95% confidence interval for the mean difference (positive
if the interval does not contain 0).

Table 1: Percentage of tests showing differences between two sets of the same
algorithm: ddpg OU(0.3) on (a) CMC, (b) HC.

(a)

abs. metric final metric
t-test 0.0% 0.0%
bs 0.0% 5.1%

(b)

abs. metric final metric
t-test 0.0% 0.0%
bs 0.0% 0.0%

1



B Correlation between evaluation metrics

We use two performance metrics: (1) the absolute metric is the average perfor-
mance over 100 test episodes using the best controller over the whole learning
process; (2) the final metric, corresponding to the evaluation methodology of [1]
is the average over the 100 last test episodes of the learning process, 10 episodes
for each of the last 10 different controllers.

(a) (b)

Figure 1: Correlation of the two metrics of performance on (a) CMC and (b)
HC. The equations of the lines of best fit (in red), the Pearson coefficients r and
their associated p-values p are provided.

As highlighted in Appendix Figure 2 of Appendix C, ddpg performance
on CMC is highly unstable. The final metric only gives a measure of the final
performance, which might not represent the algorithm’s ability to find a good
policy. Figure ?? shows this problem for the gep-pg runs: even though the
Pearson correlation coefficient is found significant, the line slope is far from 1.
The final metric is highly variable whereas the absolute metric almost always
shows a good performance. On the opposite, Appendix Figure ?? shows that final
metrics and absolute metrics of ddpg performance on HC are highly correlated
with a slope close to 1. This can be seen on Figures 1(c) and 2(c) where all
learning curves are strictly increasing: the highest performance is always among
the last ones. As a result, it is better to report the absolute metric, representing
the performance of the best policy over a run. In the case of unstable learning
as in CMC, we find it informative to present different runs so as to get a better
sense of the learning dynamics. This is done in the next section.

2



C Individual runs on CMC

Figure 2 shows a representative example of 20 runs of ddpg with standard OU
noise (µ = 0, σ = 0.3). One can see that most runs never find the rewarding goal
and that the learning performance of those which do so is unstable. As a result,
the distribution of performances is not normal.

Figure 2: Twenty individual runs of ddpg OU(0.3) on CMC

D Performance comparisons

Below we present statistical comparisons of the performance of various pairs
of algorithms on HC. For comparisons, we use the 2-sample t-test (t-test) and
a measure of the 95% confidence interval computed by bootstrap (bs) using
104 samples. The Scipy implementations is used for t-test and the Facebook
Bootstrapped implementation for bs. For the t-test, we present the test value
with the p-value in brackets, the difference being significant when p ≤ 0.05. For
bs, we present the mean and bounds of the 95% confidence interval for the
difference between the two sets of performances. It is positive if the interval does
not contain 0.

Table 2: ddpg param. pert. versus ddpg action pert.

absolute metric final metric
t-test 3.74 (6.0×10−4) 3.5 (1.2×10−3)
bs 1502 (736, 2272) 1364 (641, 2120)

ddpg with parameter perturbation achieves a significantly higher final (2/2)
and absolute performance (2/2) than ddpg with action perturbation.

3



Table 3: ddpg OU(0.3) versus decreasing OU(0.6), action pert.

absolute metric final metric
t-test 1.1 (0.29) 1.4 (0.16)
bs 425 (-330, 1196) 534 (-151, 1257)

There is no statistical evidence that ddpg with OU(0.3) achieves higher final
or absolute performance than the decreasing OU(0.6) version.

Table 4: ddpg action pert. versus gep

absolute metric final metric
t-test 5.3 (7.6×10−6) 4.6 (4.9×10−5)
bs 1804 (1151, 2476) 1491 (893, 2115)

ddpg with action perturbation achieves significantly higher final and absolute
performance than gep, 2/2 tests for both metrics.

Table 5: gep linear policy versus gep complex policy (64,64)

absolute metric final metric
ks 0.15 (0.96) 0.20 (0.77)

t-test 0.32 (0.75) 0.52 (0.60)
bs 787 (-404, 552) 128 (-350, 595)

The complexity of the gep policy is not found to make any difference in
absolute or final performance.

Table 6: gep-pg versus ddpg with action perturbation

absolute metric final metric
t-test 3.2 (2.7×10−3) 3.0 (4.6×10−3)
bs 1089 (448, 1726) 924 (334, 1503)

gep-pg achieves significantly higher absolute and final performance than
ddpg, both using action perturbation (2/2 tests for both performance metrics)

Table 7: gep-pg versus ddpg, parameter perturbation

absolute metric final metric
t-test 2.1 (4.8×10−2) 2.4 (2.3×10−2)
bs 672 (39, 1261) 780 (143, 1378)

gep-pg achieves significantly higher absolute and final performance than
ddpg, both using parameter perturbation (2/2 tests with both performance
metrics).

4



E Histograms of performance on HC

Here we show the histograms of the absolute metrics of HC (Figure 3). We can
see that the gep-pg versions of ddpg algorithms show a smaller variance.

(a) (b)

Figure 3: Absolute metric in HC for the various algorithms.(a) shows the
influence of undirected exploration with perturbations on performance. (b) show
the performances of gep, ddpg and their combination gep-pg on HC.

F Influence of policy complexity in gep

Using a linear or a more complex policy with gep does not impact the final gep
performances on CMC or HC (no test over 5 shows significance). However, in
the case of HC, the version of gep using a simple linear policy achieves higher
performance sooner. The statistical tests show significance at 2.105 steps with
p = 7.3 × 10−4 for ks, p = 2.3 × 10−4 for t-test and a bootstrapped confidence
interval of 738 (395, 1080). This is important in terms of sample efficiency and a
ddpg replay buffer of 2.105 samples filled by gep would probably be of higher
interest if the policy was linear. This supports the idea developed in Section 3.3
that a smaller policy parameter space might be faster to explore.

5



Figure 4: Performance of gep for a linear and a policy with two hidden layers
of (64,64) neurons.

G Influence of the initial replay buffer content

Here we study the influence of the content of the replay buffer filled by gep to
bootstrap ddpg on the performance of gep-pg. First, we found that the size of
this buffer does not influence gep-pg performance (from 100 to 2000 episodes),
although too few episodes harms gep-pg performance (< 100 episodes; Figure 5).
Second, we found that gep-pg performance correlates with the performance
of the best gep policy (p < 2 × 10−6) (Appendix-Figure 5) and the average
performance of all gep policies (p < 4 × 10−8). Third, we found correlations
between gep-pg performance and various measures of exploration diversity:
1) the standard deviation of gep policies performances (p < 3 × 10−10); 2)
the standard deviation of the observation vectors averaged across dimensions.
This quantifies the diversity of sensory inputs. (p < 3 × 10−8); 3) the outcome
diversity measured by the average distance to the k-nearest neighbors in outcome
space (for various k). This measure is normalized by the average distance to
the 1-nearest neighbor in the case of a uniform distribution, which makes it
insensitive to the sample size (p < 4 × 10−10), see Appendix-Figure 6; 4) the
percentage of cells filled when the outcome space is discretized (with various
number of cells). We also use a number of cells equal to the number of points,
which make the measure insensitive to this number (p < 4 × 10−5); 5) the
discretized entropy with various number of cells (p < 6 × 10−7).

6



Figure 5: gep-pg performance as a function of the gep buffer performance. The
gep performance is evaluated by replaying 100 times the best policy found by
gep. Color maps for the size of the replay buffer (the number of episodes played
by gep).

Figure 6: gep-pg performance as a function of the buffer’s diversity measure.
The diversity measure is computed as the average distance to the nearest neighbor
in outcome space. It is normalized by the expected value of this measure in
the case of a uniform distribution of outcomes. This normalization makes the
measure insensitive to the number of considered samples (here through the size
of the buffer).

7



H Sanity check

We could think of other exploration strategies to fill the replay buffer: a) using
ddpg exploration with action perturbations to fill the buffer during 500 episodes
(learning rate is zero); b) doing the same with ddpg parameter perturbations;
c) using samples collected from random policies (RP-PG). Appendix-Figure 7
compares these strategies to ddpg with parameter perturbations and its corre-
sponding gep-pg version. Filling the replay buffer with exploration performed
in the parameter space (b or c) seems not to impede ddpg performance and
even reduces variance. Finally, gep-pg still outperforms all versions of ddpg
combined with undirected exploration strategies (2/2 tests positive on final
metric, only bootstrap test on absolute metric).

Figure 7: Influence of various exploration strategies to initialize ddpg’s replay
buffer on gep-pg performance. The second and third curves corresponds to a
version of ddpg in which the networks are not updated during the exploration
phase. The exploration is directly implemented by ddpg.

References

[1] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters. arXiv
preprint arXiv:1709.06560, 2017.

8


