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Figure 6: Simple example of the benefits of learning with abstention (Cortes et al., 2016a).

A. Further Related Work
Learning with abstention is a useful paradigm in applications where the cost of misclassifying a point is high. More
concretely, suppose the cost of abstention c is less than 1/2 and consider the set of points along the real line illustrated in
Figure 6 where + and � indicate their labels. The best threshold classifier is the hypothesis given by threshold ✓, since it
correctly classifies points to the right of ⌘, with an expected loss of (1/2)P[x 6 ⌘]. On the other hand, the best abstention
pair (h, r) would abstain on the region left of ⌘ and correctly classify the rest, with an expected loss of cP(x 6 ⌘). Since
c < 1/2, the abstention pair always admits a better loss then the best threshold classifier.

Within the online learning literature, work related to our scenario includes the KWIK (knows what it knows) framework
of Li et al. (2008) in which the learning algorithm is required to make only correct predictions but admits the option of
abstaining from making a prediction. The objective is then to learn a concept exactly with the fewest number of abstentions.
If in our framework we received the label at every round, KWIK could be seen as a special case of our framework for online
learning with abstention with an infinite misclassification cost and some finite abstention cost. A relaxed version of the
KWIK framework was introduced and analyzed by Sayedi et al. (2010) where a fixed number k of incorrect predictions
are allowed with a learning algorithm related to the solution of the ’mega-egg game puzzle’. A theoretical analysis of
learning in this framework was also recently given by Zhang & Chaudhuri (2016). Our framework does not strictly cover
this relaxed framework. However, for some choices of the misclassification cost depending on the horizon, the framework is
very close to ours. The analysis in these frameworks was given in terms of mistake bounds since the problem is assumed to
be realizable. We will not restrict ourselves to realizable problems and, instead, will provide regret guarantees.

B. Additional material for the adversarial setting
We first present the pseudocode and proofs for the finite arm setting and next analyze the infinite arm setting.

B.1. Finite arm setting

Algorithm 3 contains the pseudocode for EXP3-ABS, an algorithm for online learning with abstention under an adversarial
data model that guarantees small regret. The algorithm itself is a simple adaptation of the ideas in (Alon et al., 2014;
2015), where we incorporate the side information that the loss of an abstaining arm is always observed, while the loss of a
predicting arm is observed only if the algorithm actually plays a predicting arm. In the pseudocode and in the proof that
follows, Lt(⇠j) is a shorthand for L(⇠j , (xt, yt)).

Proof of Theorem 1.
Proof. By applying the standard regret bound of Hedge (e.g., (Bubeck & Cesa-Bianchi, 2012)) to distributions q1, . . . , qT

generated by EXP3-ABS and to the non-negative loss estimates bLt(⇠j), the following holds:
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For each t, we can split the nodes V of GABS
t into the two subsets Vabs,t and Vacc,t where if a node ⇠j is abstaining at time t
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ALGORITHM 3: EXP3-ABS

input Set of experts E = {⇠1, . . . , ⇠K}; learning rate ⌘ > 0 ;
Init: q1 is the uniform distribution over E ;
for t 1, 2, . . . do

RECEIVE(xt);
⇠It  SAMPLE(qt);
if rIt(xt) > 0 then

RECEIVE(yt);
end if
For all ⇠j = (hj , rj), set :

Pt(⇠j) 
(

1 if rj(xt) 6 0
P

⇠i2E : ri(xt)>0 qt(⇠i) if rj(xt) > 0 ,

bLt(⇠j) 
Lt(⇠j)

Pt(⇠j)

⇣
1rIt (xt)601rj(xt)60 + 1rIt (xt)>0

⌘
,

qt+1(⇠j) 
qt(⇠j) exp(�⌘bLt(⇠j))P

⇠i2E qt(⇠i) exp(�⌘bLt(⇠i))
.

end for

ALGORITHM 4: CONTEXP3-ABS.
input Ball radius " > 0, "-covering Y" of Y such that |Y"|  CY "�2;

for t = 1, 2, . . . do
RECEIVE(xt);
If xt does not belong to any existing ball, create new ball of radius " centered on xt, and allocate fresh instance of
EXP3-ABS;
Let “Active EXP3-ABS” be the instance allocated to the existing ball whose center xs is closest to xt;
Draw action ⇠It 2 Y" using Active EXP3-ABS;
Get loss feedback associated with ⇠It and use it to update state of “Active EXP3-ABS”.

end for

then ⇠j 2 Vabs,t, and otherwise ⇠j 2 Vacc,t. Thus, for any round t, we can write
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The first inequality holds since if ⇠j is an abstaining expert at time t, we know that Lt(⇠j) = c and Pt(⇠j) = 1, while for the
accepting experts we know that Lt(⇠j) 6 1 anyway. The second inequality holds because if ⇠j is an accepting expert, we
have Pt(⇠j) =

P
⇠j2Vacc,t

qt(⇠j). Combining this inequality with (2) concludes the proof. ⇤

B.2. Infinite arm setting

Here, the input space X is assumed to be totally bounded, so that there exists a constant CX > 0 such that, for all 0 < " 6 1,
X can be covered with at most CX"�d balls of radius ". Let Y be a shorthand for [�1, 1]2, the range space of the pairs (h, r).
An "-covering Y" of Y with respect to the Euclidean distance on Y has size K" 6 CY"�2 for some constant CY.

The online learning scenario for the loss eL under the abstention setting’s feedback graphs is as follows. Given an unknown
sequence z1, z2, . . . of pairs zt = (xt, yt) 2 X⇥ {±1}, for every round t = 1, 2, . . . :
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1. The environment reveals input xt 2 X;

2. The learner selects an action ⇠It 2 Y and incurs loss eL(⇠It , zt);

3. The learner obtains feedback from the environment.

Our algorithm is described as Algorithm 4. The algorithm essentially works as follows. At each round t, if a new incoming
input xt 2 X is not contained in any existing ball generated so far, then a new ball centered at xt is created, and a new
instance of EXP3-ABS is allocated to handle xt. Otherwise, the EXP3-ABS instance associated with the closest input so far is
used. Each allocated EXP3-ABS instance operates on the discretized action space Y".

Consider the function
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where f� is the Lipschitz variant of the 0/1-loss mentioned in Section 3 of the main text (Figure 2 (a)). For any fixed a, the
function eL(a, r) is 1/�-Lipschitz when viewed as a function of r, and is 1/(2�)-Lipschitz for any fixed r when viewed as a
function of a. Hence
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so that eL is 2
� -Lipschitz w.r.t. the Euclidean distance on Y. Furthermore, a quick comparison to the abstention loss

L(a, r) = f�(a)1r>0 + c1r60

reveals that (recall Figure 2 (b) in the main text) :

• eL is an upper bound on L, i.e.,
eL(a, r) > L(a, r), 8 (a, r) 2 Y ;

• eL approximates L in that
eL(a, r) = L(a, r), 8 (a, r) 2 Y : |r| > � . (3)

With the above properties of eL at hand, we are ready to prove Theorem 2.

Proof of Theorem 2.
Proof. On each ball B ✓ X that CONTEXP3-ABS allocates during its online execution, Theorem 1 supplies the following
regret guarantee for the associated instance of EXP3-ABS:

log K"
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2
TB(c2 + 1) ,

where TB is the number of points xt falling into ball B. Now, taking into account that eL is 2
� -Lipschitz, and that the

functions h and r are assumed to be LE-Lipschitz on X, a direct adaptation of the proof of Theorem 1 in (Cesa-Bianchi
et al., 2017) gives the bound
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being NT 6 CX"�d the maximum number of balls created by CONTEXP3-ABS. Using c 6 1 and setting ⌘ =
q

NT log K"
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Finally, we are left with connecting the above bound on the regret with a bound on the regret for L. Now, observe that
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since eL(⇠, zt) is an upper bound on L(⇠, zt) for any ⇠ and zt. Moreover, if we assume for the sake of brevity that the minima
are reached (the general case is straightforward to handle in a similar way), we can define

⇠⇤ = (h⇤, r⇤) = argmin
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Combining with (4) and (5) gives the following regret bound
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thereby concluding the proof. ⇤

Remark 1 The reader should observe that, since the algorithm is competing against an uncountably infinite set of experts,
the standard regret guarantee of

p
T that one can achieve in the finite case cannot be obtained in general (see, e.g., the

lower bound on regret of T (d�1)/d by (Hazan & Megiddo, 2007), which holds in the easier full information setting). Notice
that, while our algorithm CONTEXP3-ABS admits a slightly worse bound of the form T (d+1)/(d+2), it has the advantage of
being computationally feasible. In particular, the covering of the input space X can be done adaptively, as the points xt

are observed. In doing so, the number of "-balls allocated can never exceed the total number of rounds T . Given a new
xt, the algorithm has to decide if a new ball needs to be created or an old ball can be used. Known data-structures exist
to efficiently implement this decision (e.g., (Clarkson, 2006)). The extra additive term M⇤

T (�) in Theorem 2 is due to the
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fact that the loss function L therein is not Lipschitz. In fact, one can further improve the term T
d+1
d+2 to T

d
d+1 by adopting a

hierarchical covering technique of the function space E, each layer of the hierarchy being a pool of experts for the layer
above it, see, e.g., (Cesa-Bianchi et al., 2017). However, the resulting algorithm would be of theoretical interest only, since
it would be computationally very costly.

C. Additional material for the stochastic setting
In this section, we present the proofs of the theoretical guarantees for UCB-NT and UCB-GT, as well as the proof of
Proposition 1. The following theorems hold more generally with Sj,t =

q
2� log t

Qj,t
for � > 2, which implies slightly better

constants in the regret bound. However, for the sake of the simplicity of the presentation, below we set � = 5
2 . Moreover,

we prove Theorem 3 for the abstention loss L, but it holds for any general loss function.

C.1. Regret of UCB-NT

We now prove the theorem for UCB-NT based on the admissible p-partitioning of the time-varying feedback graphs.

Proof of Theorem 3.
Proof. Consider a sequence of graph realizations G1, . . . , Gt denoted by Gt. By conditioning on this quantity, the regret
can be decomposed according to each arm i:
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where, in the last step, we used the fact that L(·, zt)s are independent of Gt since, by assumption, Gt only depends on
information up t� 1. Next, we focus on bounding

PT
t=1 E[1It=i|Gt] for each arm i.

We split the expectation according to the events Qi,t�1 > si and Qi,t�1 6 si, where si is a quantity determined later:

TX

t=1

E[1It=i|Gt] =
TX

t=1

E[1It=i(1Qi,t�16si + 1Qi,t�1>si)|Gt]

6 si +
TX

t=1

E[1It=i1Qi,t�1>si |Gt].

We wish to choose si sufficiently large so that the second term is bounded but so that it admits a mild dependence on T .
Now, whenever It = i, by the design of the algorithm, it must be the case that the upper confidence bound of i is smaller
than that of any other expert. Thus,

E[1It=i1Qi,t�1>si |Gt] = P[It = i, Qi,t�1 > si|Gt] 6 P[bµi,t�1 � Si,t�1 6 bµ⇤,t�1 � S⇤,t�1, Qi,t�1 > si|Gt],

where ⇤ denotes the best-in-class expert. We now use the terms µ⇤, µi and Si,t�1 to reorder the first event in the probability
on the right-hand side of the last expression as follows:

0 6 bµ⇤,t�1 � S⇤,t�1 � bµi,t�1 + Si,t�1

, 0 6 (bµ⇤,t�1 � S⇤,t�1 � µ⇤) + (µi � bµi,t�1 + Si,t�1 � 2Si,t�1) + (µ⇤ � µi + 2Si,t�1) .

If we can show that the third term is negative, then the first and second term must be positive. Moreover, we will further
show that the first and second terms can only be positive with an extremely low probability that is bounded by a constant
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independent of T . Furthermore, the third term will be negative whenever the slack term in the upper confidence bound is
small enough, which amounts to choosing si large enough.

In particular, by setting si = 20 log(T )
�2

i
, we ensure that the event Qi,t�1 > si implies that

Qi,t�1 >
20 log(t)

�2
i

, µ⇤ � µi + 2Si,t�1 < 0.

As explained above, it then follows that

P[bµi,t�1 � Si,t�1 6 bµ⇤,t�1 � S⇤,t�1, Qi,t�1 > si|Gt]

6 P[bµ⇤,t�1 � S⇤,t�1 � µ⇤ > 0|Gt] + P[µi � bµi,t�1 + Si,t�1 � 2Si,t�1 > 0|Gt].

We can bound these last probabilities using the union bound and a concentration inequality such as Hoeffding’s Inequality:

P[µi � bµi,t�1 + Si,t�1 � 2Si,t�1 > 0|Gt]
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Now, the estimate bµi,t�1 is an average of i.i.d. realizations of the random variable L(⇠i, z), with z ⇠ D, since the
out-neighborhood of the chosen expert only depends on previous observations. That is,
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Hence, bµi,t�1 can be turned into an empirical estimate of µi using the union bound as follows:
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where bµn
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s=1 L(⇠i, zs). By the same reasoning, we can also bound the probability of the best arm :
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By assumption, for each Ct,k, 8i, j 2 Ct,k, it is the case that i 2 Nt(j). Moreover, for any i 2 [K], it must be the case that
for every s 2 [t], i 2 Cs,k for some k 2 [p]. With these clusters Cs,k, we can write
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which implies that
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Combining the above calculations, applying our definition for si, and using the fact that the above analysis holds for any
such partition shows that
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which implies the bound of the theorem. ⇤

C.2. Regret of UCB-GT

Next, we prove the regret bound for UCB-GT, which demonstrates how one can exploit the bias and feedback structure in the
problem.

Proof of Theorem 4.
Proof. As in the previous proof, we focus on bounding

PT
t=1 E[1It=i|Gt] for each arm i. We again split the expectation

according to the events based on Qi,t�1 as follows:

TX

t=1

E[1It=i1Qi,t�16si |Gt] + E[1It=i1Qi,t�1>si |Gt],

where si is to be determined later. We then bound the second term using the algorithm’s choice of arm, It:

E[1It=i1Qi,t�1>si |Gt] = P[It = i, Qi,t�1 > si|Gt] 6 P[bµi,t�1 � Si,t�1 6 bµ⇤,t�1 � S⇤,t�1, Qi,t�1 > si|Gt].

bµi,t�1 is a biased estimate of µi. This is because whenever xs falls in the region {x : ri(x) > 0 ^ rIs(x) 6 0} and the
condition bps�1

Is,i 6 �i,s�1 holds, the label ys is not accessible. In this case, the UCB-GT algorithm updates the average loss of
expert i optimistically, as if the expert were correct at that time step.

We can decompose this biased estimate bµi,t�1 into two terms: bµi,t�1 = eµi,t�1 � "i,t�1. The first term, eµi,t�1, is an
unbiased estimate of arm i and similar to the estimates in Theorem 3. The second term is the misclassification rate
"i,t�1 over {s 2 [t � 1] : ri(xs) > 0 \ rIs(xs) 6 0} whenever the condition bps�1

Is,i 6 �i,s�1 holds, that is, "i,t�1 =
1

Qi,t�1

Pt�1
s=1 1yshi(xs)601ri(xs)>0,rIs (xs)601bps�1

Is,i6�i,s�1
.

Now, by the design of the UCB-GT, if arm i is chosen at time t, it must be the case that bµi,t�1 � Si,t�1 6 bµ⇤,t�1 � S⇤,t�1.
We can expand and rewrite this expression as follows:

0 6 bµ⇤,t�1 + "i⇤,t�1 � "i⇤,t�1 � S⇤,t�1 � bµi,t�1 � "i,t�1 + "i,t�1 + Si,t�1

, 0 6 (eµ⇤,t�1 � S⇤,t�1 � µ⇤) + (µi � eµi,t�1 + Si,t�1 � 2Si,t�1) + (µ⇤ � µi + (2 + C)Si,t�1) ,
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where we used the fact that �"i⇤,t�1 6 0, and where we bounded "i,t�1 as follows:
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1yshi(x)601ri(xs)>0,rIs (xs)601bps�1
Is,i6�i,s�1

6 1

Qi,t�1

t�1X

s=1

1ri(xs)>0,rIs (xs)601bps�1
Is,i6�i,s�1

=
1

Qi,t�1

t�1X

s=1

X

⇠j2E�⇠i

1ri(xs)>0,rj(xs)601bps�1
Is,i6�i,s�1

1Is=j

6 1

Qi,t�1

X

⇠j2E�⇠i

t�1X

s=1

1ri(xs)>0,rj(xs)601bps�1
Is,i6�i,s�1

.

The condition bps�1
j,i 6 �i,s�1 is equivalent to

Ps�1
k=1 1ri(xk)>0,rj(xk)60 6 (s� 1)�i,s�1. Since the sum above is non-zero

only when this condition holds, there exists sj 2 [1, t�1] such that
Pt�1

s=1 1ri(xs)>0,rj(xs)601bps
j,i6�i,s 6 (sj�1)�i,sj�1+1.

Moreover, using the fact that (sj � 1)�i,sj�1 =
p

5Qi,sj�1 log(sj)/(K � 1) 6
p

5Qi,t�1 log(t� 1)/(K � 1), we can
conclude that

"i,t�1 6 1

Qi,t�1

X

⇠j2E�⇠i

t�1X

s=1

1ri(xs)>0,rj(xs)601bps�1
j,i 6�i,s�1

6 K � 1

Qi,t�1

"p
5Qi,t�1 log(t� 1)

K � 1
+ 1

#
6 C

s
5 log(t� 1)

Qi,t�1

for some constant C > 0. The rest of the proof now follows by similar arguments as in the proof of Theorem 3. Specifically,
we can choose si such that the term µ⇤ � µi + (2 + C)Si,t�1 is negative, and since now eµ⇤,t�1 and eµi,t�1 are unbiased
estimates, we can bound the probabilities P[eµ⇤,t�1 � S⇤,t�1 � µ⇤ > 0|Gt] and P[µi � eµi,t�1 � Si,t�1 > 0|Gt] using
standard concentration inequalities. ⇤

C.3. Linear regret without the subset property

In this section, we prove Proposition 1, which shows that when the subset property does not hold for a feedback graph, then
it is possible to incur linear regret.

Proof of Proposition 1.
Proof. Let p⇤ 2 (0, 1). We design a setting in which with probability at least p⇤, the UCB-NT algorithm incurs linear regret.

Since the family of abstention functions induces a feedback graph that violates the subset property, there exist pairs (hi, ri)
and (hj , rj) and points x⇤, ex for which x⇤ 2 Ai \Aj , ex 2 Ai \Aj , where Ai and Aj are the acceptance regions associated
with ri and rj , respectively, and the feedback graph is designed such that the algorithm updates the pair (hi, ri) when the
pair (hj , rj) is selected.

Now, for some p 2 (0, 1) to be determined later, consider a distribution with probability p on (ex, ey) and (1� p) on (x⇤, y⇤).

We choose the set of hypothesis functions H = {hi, hj}, the loss function ` in (1), and the labels y⇤ and ey in such a way
that `(ey, hi(ex)) = c� �, `(ey, hj(ex)) = c�↵, and `(y⇤, hi(x⇤)) = 0, where ↵, � are values that will be later specified. For
instance, we can consider the hinge loss `(y, by) = (1� yby)+, and hi, hj such that hi(ex) = 1�c+�

ey , hj(ex) = 1�c+↵
ey , and

hi(x⇤) = 1
y⇤ . Note that, since rj(x⇤) < 0, `(y⇤, hj(x⇤)) may admit any value.

Now, by construction, µi = (c� �)p and µj = (c� ↵)p + c(1� p) = c� ↵p. We claim that we can choose ↵, � and p
such that (1) ↵ > �; (2) µi < µj ; (3) µj < `(ey, hi(ex)).

The first condition is immediate. The second condition is equivalent to cp � �p < c � ↵p, which is itself equivalent to
↵ � � < c(1�p)

p . By continuity, we can choose ↵ and � close enough such that this is true for any p 2 (0, 1). The third
condition is equivalent to c� ↵p < c� �, which is itself equivalent to � < ↵p. This is true for p close enough to 1.

Now let n 2 N be large enough such that µj < `(ey, hi(ex))�
q

5 log(n)
n . By continuity, we can choose p large enough such

that p > (p⇤)1/n, and for this choice of p, we can choose ↵ and � such that ↵ > �, ↵, � < c, ↵� � < c(1�p)
p , and � < ↵p.

For instance, if we, without loss of generality, assume that p > 1
2 , then we can choose, ↵ = c(1�p)

2p and � = c(1�p)
4 .

Then, with probability pn > p⇤, the point ex will be sampled n times at the start of the game, such that the pair (hj , rj) will
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Dataset Number of features
covtype 54
ijcnn 22
skin 3
HIGGS 28
guide 4

phishing 68
cod 8
eye 14

CIFAR 25

Table 1: Table shows the number of features of each dataset.

have a lower confidence bound than the pair (hi, ri) at all time steps. Thus, UCB-NT will choose the pair (hj , rj) throughout
the entire game, even though µi < µj . Consequently, the regret of the algorithm will be at least T (µj � µi). ⇤

D. Additional experimental results
In this section, we present several figures showing our experimental results. Figure 7 and Figure 8 show the regret for
different abstention costs c 2 {0.1, 0.2, 0.3} for all our datasets. We observe that, in general, UCB-GT outperforms UCB-NT
and UCB for all datasets and is even within the standard deviation of the FS’s regret for some of datasets. The figures also
indicate that the regret of UCB decreases slowly. This is expected, since there are 2,100 experts, 10,000 time steps, and the
algorithm only updates a single expert per time step.

Figure 9 and Figure 10 show the fraction of abstained points for all the datasets. Figure 11 also shows how the fraction of
abstained points varies with abstention cost for two extreme values c 2 {0.001, 0.9}. Again UCB-GT admits a lower regret
than UCB-NT and UCB and, as expected, the fraction of points decreases as the cost of abstention increases. Figure 12 shows
the effect of using confidence-based experts and suggests that the choice of experts does not affect the relative performance
of the algorithms. We also tested the effect of varying the number of experts: Figure 13 shows the regret of three datasets
when the number of experts is K = 500 and T = 5,000. For this set of experts, we find a similar pattern of performance as
above.

Next, we describe in more detail the datasets and how they were processed. In Table 1, we show the number of features for
each dataset. For all datasets, we normalized the features to be in the interval [�1, 1]. Note that the reason for choosing
abstention functions with radius range (0,

p
d) is to cover the entire hypercube [�1, 1]d with our concentric annuli. For

the CIFAR dataset, we extracted the first twenty-five principal components of the horse and boat images, projected the
images on these components, and normalized the range of the projections to [�1, 1]. The features of the synthetic dataset
are drawn from the uniform distribution over [�1, 1]2 and the label is determined by the sign of the projection of a point
onto the normal of the diagonal hyperplane y = �x.

The confidence-based abstention function has the form r(x) = |h(x)|� ✓. In our experiments (Figure 12), we generated
twenty abstention functions with thresholds ✓ 2 (0, . . . , 0.25), which are paired with each predictor. The predictors are
axis-aligned planes along each feature of the dataset. For each dataset, the number of predictors is b100/dc where d is the
dimension of the dataset. We chose twenty abstention functions and about 100 prediction functions in order to match the
experimental setup of the randomly drawn experts. The total number of experts is then b100/dc · 20 · d. Note that we only
tested some of our datasets since for larger dimensions d, the number of experts per feature was too small.
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D.1. Average regret for different abstention costs and datasets

Figure 7: A graph of the averaged regret Rt(·)/t with standard deviations as a function of t (log scale) for UCB-GT, UCB-NT,
UCB, and FS for different values of abstention costs. Each row is a dataset, starting from the top row we have: CIFAR,
ijcnn, HIGGS, phishing, and covtype.
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Figure 8: A graph of the averaged regret Rt(·)/t with standard deviations as a function of t (log scale) for UCB-GT, UCB-NT,
UCB, and FS for different values of abstention costs. Each row is a dataset, starting from the top row we have: eye,
cod-ran, synthetic, skin, and guide.
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D.2. Average fraction of abstention points for different abstention costs and datasets

Figure 9: A graph of the averaged fraction of abstained points with standard deviations as a function of t (log scale) for
UCB-GT, UCB-NT, UCB, and FS for different values of abstention costs. Each row is a dataset, starting from the top row we
have: CIFAR, ijcnn, HIGGS, phishing, and covtype.
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Figure 10: A graph of the averaged fraction of abstained points with standard deviations as a function of t (log scale) for
UCB-GT, UCB-NT, UCB, and FS for different values of abstention costs. Each row is a dataset, starting from the top row we
have: eye, cod-ran, synthetic, skin, and guide.
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D.3. Average regret and fraction of abstention points for extreme abstention costs

Figure 11: A graph of the averaged regret Rt(·)/t and fraction of points rejected with standard deviations as a function of t
(log scale) for UCB-GT, UCB-NT, UCB, and FS for different values of abstention costs. The fraction of points decreases as
the cost of abstention increases. The UCB-GT outperforms UCB-NT and UCB while approaching the performance of FS even
at these extreme values of c. Each row is a dataset, starting from the top row we have: CIFAR, ijcnn, phishing, and
covtype.
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D.4. Average regret for confidence-based experts

Figure 12: A graph of the averaged regret Rt(·)/t with standard deviations as a function of t (log scale) when using the
confidence based experts for UCB-GT, UCB-NT, UCB, and FS. Each row is a dataset, starting from the top row we have:
synthetic, skin, guide, ijcnn and CIFAR.



Online Learning with Abstention

D.5. Average regret for a smaller set of experts

Figure 13: A graph of the averaged regret Rt(·)/t of abstained points with standard deviations as a function of t (log scale)
for UCB-GT, UCB-NT, UCB, and FS for different values of abstention costs. Each row is a dataset, starting from the top row
we have: guide, synthetic, and skin. We used K = 500 experts and T = 5,000 rounds in order to see the effect
when changing the number of experts used.


