Appendix

Architecture and Hyperparameters

We considered multiple architectural variants for parameterizing an IQN. All of these build on the Q-network of a regular DQN (Mnih et al., 2015), which can be seen as the composition of a convolutional stack $\psi: \mathcal{X} \to \mathbb{R}^d$ and an MLP $f: \mathbb{R}^d \to \mathbb{R}^{|\mathcal{A}|}$, and extend it by an embedding of the sample point, $\phi: [0, 1] \to \mathbb{R}^d$, and a merging function $m: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$, resulting in the function

$$IQN(x,\tau) = f(m(\psi(x),\phi(\tau))).$$

For the embedding ϕ , we considered a number of variants: a learned linear embedding, a learned MLP embedding with a single hidden layer of size n, and a learned linear function of n cosine basis functions of the form $\cos(\pi i \tau)$, $i = 1, \ldots, n$. Each of those was followed by either a ReLU or sigmoid nonlinearity.

For the merging function m, the simplest choice would be a simple vector concatenation of $\psi(x)$ and $\phi(\tau)$. Note however, that the MLP f which takes in the output of m and outputs the action-value quantiles, only has a single hidden layer in the DQN network. Therefore, to force a sufficiently early interaction between the two representations, we also considered a multiplicative function $m(\psi, \phi) = \psi \odot \phi$, where \odot denotes the element-wise (Hadamard) product of two vectors, as well as a 'residual' function $m(\psi, \phi) = \psi \odot (1 + \phi)$.

Early experiments showed that a simple linear embedding of τ was insufficient to achieve good performance, and the residual version of m didn't show any marked difference to the multiplicative variant, so we do not include results for these here. For the other configurations, Figure 5 shows pairwise comparisons between 1) a cosine basis function embedding and a completely learned MLP embedding, 2) an embedding size (hidden layer size or number of cosine basis elements) 32 and 64, 3) ReLU and sigmoid nonlinearity following the embedding, and 4) concatenation and a multiplicative interaction between $\psi(x)$ and $\phi(\tau)$.

Each comparison 'violin plot' can be understood as a marginalization over the other variants of the architecture, with the human-normalized performance at the end of training, averaged across six Atari 2600 games, on the y-axis. Each white dot corresponds to a configuration (each represented by two seeds), the black dots show the position of our preferred configuration. The width of the colored regions corresponds to a kernel density estimate of the number of configurations at each performance level.

Our final choice is a multiplicative interaction with a linear function of a cosine embedding, with n = 64 and a ReLU nonlinearity (see Equation 4), as this configuration yielded the highest performance consistently over multiple seeds. Also noteworthy is the overall robustness of the approach to these variations: most of the configurations consistently outperform the QR-DQN baseline shown as a grey horizontal line for comparison.

We give pseudo-code for the IQN loss in Algorithm 1. All other hyperparameters for this agent correspond to the ones used by Dabney et al. (2018). In particular, the Bellman target is computed using a target network. Notice that IQN will generally be more computationally expensive per-sample than QR-DQN. However, in practice IQN requires many fewer samples per update than QR-DQN so that the actual running times are comparable.

Algorithm 1 Implicit Quantile Network Loss

 $\begin{array}{l} \textbf{Require: } N, N', K, \kappa \text{ and functions } \beta, Z \\ \textbf{input } x, a, r, x', \gamma \in [0, 1) \\ \# \text{ Compute greedy next action} \\ a^* \leftarrow \arg \max_{a'} \frac{1}{K} \sum_k^K Z_{\tilde{\tau}_k}(x', a'), \quad \tilde{\tau}_k \sim \beta(\cdot) \\ \# \text{ Sample quantile thresholds} \\ \tau_i, \tau_j' \sim U([0, 1]), \quad 1 \leq i \leq N, 1 \leq j \leq N' \\ \# \text{ Compute distributional temporal differences} \\ \delta_{ij} \leftarrow r + \gamma Z_{\tau_j'}(x', a^*) - Z_{\tau_i}(x, a), \quad \forall i, j \\ \# \text{ Compute Huber quantile loss} \\ \textbf{output } \sum_{i=1}^N \mathbb{E}_{\tau'} \left[\rho_{\tau_i}^\kappa(\delta_{ij}) \right] \end{array}$

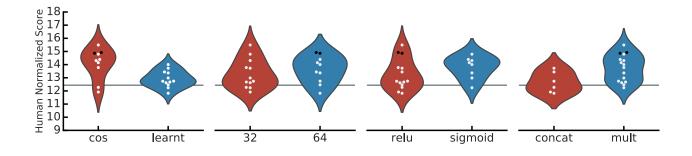


Figure 5. Comparison of architectural variants.

Evaluation

The human-normalized scores reported in this paper are given by the formula (van Hasselt et al., 2016; Dabney et al., 2018)

$$score = \frac{agent - random}{human - random},$$

where *agent*, *human* and *random* are the per-game raw scores (undiscounted returns) for the given agent, a reference human player, and random agent baseline (Mnih et al., 2015).

The 'human-gap' metric referred to at the end of Section 5 builds on the human-normalized score, but emphasizes the remaining improvement for the agent to reach super-human performance. It is given by $gap = \max(1 - score, 0)$, with a value of 1 corresponding to random play, and a value of 0 corresponding to super-human level of performance. To avoid degeneracies in the case of human < random, the quantity is being clipped above at 1.

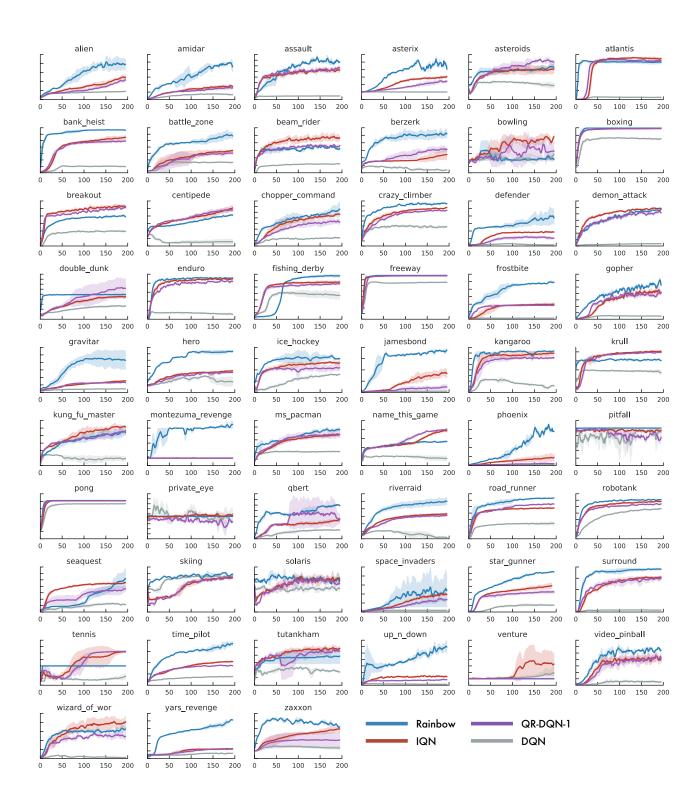


Figure 6. Complete Atari-57 training curves.

GAMES	RANDOM	HUMAN	DQN	PRIOR. DUEL.	QR-DQN	IQN
Alien	227.8	7,127.7	1,620.0	3,941.0	4,871	7,022
Amidar	5.8	1,719.5	978.0	2,296.8	1,641	2,94
Assault	222.4	742.0	4,280.4	11,477.0	22,012	29,091
Asterix	210.0	8,503.3	4,359.0	375,080.0	261,025	342,010
Asteroids	719.1	47,388.7	1,364.5	1,192.7	4,226	2,898
Atlantis	12,850.0	29,028.1	279,987.0	395,762.0	971,850	978,20
Bank Heist	14.2	753.1	455.0	1,503.1	1,249	1,410
Battle Zone	2,360.0	37,187.5	29,900.0	35,520.0	39,268	42,244
Beam Rider	363.9	16,926.5	8,627.5	30,276.5	34,821	42,77
Berzerk	123.7	2,630.4	585.6	3,409.0	3,117	1,05
Bowling	23.1	160.7	50.4	46.7	77.2	86.
Boxing	0.1	12.1	88.0	98.9	99.9	99.
Breakout	1.7	30.5	385.5	366.0	742	734
Centipede	2,090.9	12,017.0	4,657.7	7,687.5	12,447	11,56
Chopper Command	811.0	7,387.8	6,126.0	13,185.0	14,667	16,83
Crazy Climber	10,780.5	35,829.4	110,763.0	162,224.0	161,196	179,08
Defender	2,874.5	18,688.9	23,633.0	41,324.5	47,887	53,53
Demon Attack	152.1	1,971.0	12,149.4	72,878.6	121,551	128,58
Double Dunk	-18.6	-16.4	-6.6	-12.5	21.9	5.
Enduro	0.0	860.5	729.0	2,306.4	2,355	2,35
Fishing Derby	-91.7	-38.7	-4.9	41.3	39.0	33.
Freeway	0.0	29.6	30.8	33.0	34.0	34.
Frostbite	65.2	4,334.7	797.4	7,413.0	4,384	4,32
Gopher	257.6	2,412.5	8,777.4	104,368.2	113,585	118,36
Gravitar	173.0	3,351.4	473.0	238.0	995	91
H.E.R.O.	1,027.0	30,826.4	20,437.8	21,036.5	21,395	28,38
Ice Hockey	-11.2	0.9	-1.9	-0.4	-1.7	0.
James Bond	29.0	302.8	768.5	812.0	4,703	35,10
Kangaroo	52.0	3,035.0	7,259.0	1,792.0	15,356	15,48
Krull	1,598.0	2,665.5	8,422.3	10,374.4	11,447	10,70
Kung-Fu Master	258.5	22,736.3	26,059.0	48,375.0	76,642	73,51
Montezumas Revenge	0.0	4,753.3	0.0	0.0	0.0	0.
Ms. Pac-Man	307.3	6,951.6	3,085.6	3,327.3	5,821	6,34
Name This Game	2,292.3	8,049.0	8,207.8	15,572.5	21,890	22,68
Phoenix	761.4	7,242.6	8,485.2	70,324.3	16,585	56,59
Pitfall!	-229.4	6,463.7	-286.1	0.0	0.0	0.
Pong	-20.7	14.6	19.5	20.9	21.0	21.
Private Eye	24.9	69,571.3	146.7	206.0	350	20
Q*Bert	163.9	13,455.0	13,117.3	18,760.3	572,510	25,75
River Raid	1,338.5	17,118.0	7,377.6	20,607.6	17,571	17,76
Road Runner	11.5	7,845.0	39,544.0	62,151.0	64,262	57,90
Robotank	2.2	11.9	63.9	27.5	59.4	62.
Seaquest	68.4	42,054.7	5,860.6	931.6	8,268	30,14
Skiing	-17,098.1	-4,336.9	-13,062.3	-19,949.9	-9,324	-9,28
Solaris	1,236.3	12,326.7	3,482.8	133.4	6,740	8,00
Space Invaders	148.0	1,668.7	1,692.3	15,311.5	20,972	28,88
Star Gunner	664.0	10,250.0	54,282.0	125,117.0	77,495	74,67
Surround	-10.0	6.5	-5.6	1.2	8.2	9.
Tennis	-23.8	-8.3	12.2	0.0	23.6	23.
Time Pilot	3,568.0	5,229.2	4,870.0	7,553.0	10,345	12,23
Tutankham	11.4	167.6	68.1	245.9	297	29
Up and Down	533.4	11,693.2	9,989.9	33,879.1	71,260	88,14
Venture	0.0	1,187.5	163.0	48.0	43.9	1,31
Video Pinball	16,256.9	17,667.9	196,760.4	479,197.0	705,662	698,04
Wizard Of Wor	563.5	4,756.5	2,704.0	12,352.0	25,061	31,19
Yars Revenge	3,092.9	54,576.9	18,098.9	69,618.1	26,447	28,37

Figure 7. Raw scores for a single seed across all games, starting with 30 no-op actions. Reference values from (Wang et al., 2016).