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Appendix
Architecture and Hyperparameters

We considered multiple architectural variants for parame-
terizing an IQN. All of these build on the Q-network of a
regular DQN (Mnih et al., 2015), which can be seen as the
composition of a convolutional stack ψ : X → Rd and an
MLP f : Rd → R|A|, and extend it by an embedding of
the sample point, φ : [0, 1] → Rd, and a merging function
m : Rd × Rd → Rd, resulting in the function

IQN(x, τ) = f(m(ψ(x), φ(τ))).

For the embedding φ, we considered a number of variants: a
learned linear embedding, a learned MLP embedding with a
single hidden layer of size n, and a learned linear function of
n cosine basis functions of the form cos(πiτ), i = 1, . . . , n.
Each of those was followed by either a ReLU or sigmoid
nonlinearity.

For the merging function m, the simplest choice would
be a simple vector concatenation of ψ(x) and φ(τ). Note
however, that the MLP f which takes in the output of m and
outputs the action-value quantiles, only has a single hidden
layer in the DQN network. Therefore, to force a sufficiently
early interaction between the two representations, we also
considered a multiplicative function m(ψ, φ) = ψ � φ,
where � denotes the element-wise (Hadamard) product of
two vectors, as well as a ‘residual’ function m(ψ, φ) =
ψ � (1 + φ).

Early experiments showed that a simple linear embedding
of τ was insufficient to achieve good performance, and the
residual version of m didn’t show any marked difference
to the multiplicative variant, so we do not include results
for these here. For the other configurations, Figure 5 shows
pairwise comparisons between 1) a cosine basis function
embedding and a completely learned MLP embedding, 2)
an embedding size (hidden layer size or number of cosine
basis elements) 32 and 64, 3) ReLU and sigmoid nonlinear-
ity following the embedding, and 4) concatenation and a

Figure 5. Comparison of architectural variants.

multiplicative interaction between ψ(x) and φ(τ).

Each comparison ‘violin plot’ can be understood as a
marginalization over the other variants of the architecture,
with the human-normalized performance at the end of train-
ing, averaged across six Atari 2600 games, on the y-axis.
Each white dot corresponds to a configuration (each repre-
sented by two seeds), the black dots show the position of our
preferred configuration. The width of the colored regions
corresponds to a kernel density estimate of the number of
configurations at each performance level.

Our final choice is a multiplicative interaction with a linear
function of a cosine embedding, with n = 64 and a ReLU
nonlinearity (see Equation 4), as this configuration yielded
the highest performance consistently over multiple seeds.
Also noteworthy is the overall robustness of the approach to
these variations: most of the configurations consistently out-
perform the QR-DQN baseline shown as a grey horizontal
line for comparison.

We give pseudo-code for the IQN loss in Algorithm 1. All
other hyperparameters for this agent correspond to the ones
used by Dabney et al. (2018). In particular, the Bellman tar-
get is computed using a target network. Notice that IQN will
generally be more computationally expensive per-sample
than QR-DQN. However, in practice IQN requires many
fewer samples per update than QR-DQN so that the actual
running times are comparable.

Algorithm 1 Implicit Quantile Network Loss

Require: N,N ′,K, κ and functions β, Z
input x, a, r, x′, γ ∈ [0, 1)

# Compute greedy next action
a∗ ← arg maxa′

1
K

∑K
k Zτ̃k(x′, a′), τ̃k ∼ β(·)

# Sample quantile thresholds
τi, τ

′
j ∼ U([0, 1]), 1 ≤ i ≤ N, 1 ≤ j ≤ N ′

# Compute distributional temporal differences
δij ← r + γZτ ′j (x

′, a∗)− Zτi(x, a), ∀i, j
# Compute Huber quantile loss

output
∑N
i=1 Eτ ′

[
ρκτi(δij)

]



Implicit Quantile Networks for Distributional Reinforcement Learning

Evaluation

The human-normalized scores reported in this paper are
given by the formula (van Hasselt et al., 2016; Dabney et al.,
2018)

score =
agent− random
human− random,

where agent, human and random are the per-game raw
scores (undiscounted returns) for the given agent, a refer-
ence human player, and random agent baseline (Mnih et al.,
2015).

The ‘human-gap’ metric referred to at the end of Section 5
builds on the human-normalized score, but emphasizes the
remaining improvement for the agent to reach super-human
performance. It is given by gap = max(1− score, 0), with
a value of 1 corresponding to random play, and a value of
0 corresponding to super-human level of performance. To
avoid degeneracies in the case of human < random, the
quantity is being clipped above at 1.



Implicit Quantile Networks for Distributional Reinforcement Learning

DQNIQN

QR-DQN-1Rainbow

Figure 6. Complete Atari-57 training curves.
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GAMES RANDOM HUMAN DQN PRIOR. DUEL. QR-DQN IQN
Alien 227.8 7,127.7 1,620.0 3,941.0 4,871 7,022
Amidar 5.8 1,719.5 978.0 2,296.8 1,641 2,946
Assault 222.4 742.0 4,280.4 11,477.0 22,012 29,091
Asterix 210.0 8,503.3 4,359.0 375,080.0 261,025 342,016
Asteroids 719.1 47,388.7 1,364.5 1,192.7 4,226 2,898
Atlantis 12,850.0 29,028.1 279,987.0 395,762.0 971,850 978,200
Bank Heist 14.2 753.1 455.0 1,503.1 1,249 1,416
Battle Zone 2,360.0 37,187.5 29,900.0 35,520.0 39,268 42,244
Beam Rider 363.9 16,926.5 8,627.5 30,276.5 34,821 42,776
Berzerk 123.7 2,630.4 585.6 3,409.0 3,117 1,053
Bowling 23.1 160.7 50.4 46.7 77.2 86.5
Boxing 0.1 12.1 88.0 98.9 99.9 99.8
Breakout 1.7 30.5 385.5 366.0 742 734
Centipede 2,090.9 12,017.0 4,657.7 7,687.5 12,447 11,561
Chopper Command 811.0 7,387.8 6,126.0 13,185.0 14,667 16,836
Crazy Climber 10,780.5 35,829.4 110,763.0 162,224.0 161,196 179,082
Defender 2,874.5 18,688.9 23,633.0 41,324.5 47,887 53,537
Demon Attack 152.1 1,971.0 12,149.4 72,878.6 121,551 128,580
Double Dunk -18.6 -16.4 -6.6 -12.5 21.9 5.6
Enduro 0.0 860.5 729.0 2,306.4 2,355 2,359
Fishing Derby -91.7 -38.7 -4.9 41.3 39.0 33.8
Freeway 0.0 29.6 30.8 33.0 34.0 34.0
Frostbite 65.2 4,334.7 797.4 7,413.0 4,384 4,324
Gopher 257.6 2,412.5 8,777.4 104,368.2 113,585 118,365
Gravitar 173.0 3,351.4 473.0 238.0 995 911
H.E.R.O. 1,027.0 30,826.4 20,437.8 21,036.5 21,395 28,386
Ice Hockey -11.2 0.9 -1.9 -0.4 -1.7 0.2
James Bond 29.0 302.8 768.5 812.0 4,703 35,108
Kangaroo 52.0 3,035.0 7,259.0 1,792.0 15,356 15,487
Krull 1,598.0 2,665.5 8,422.3 10,374.4 11,447 10,707
Kung-Fu Master 258.5 22,736.3 26,059.0 48,375.0 76,642 73,512
Montezumas Revenge 0.0 4,753.3 0.0 0.0 0.0 0.0
Ms. Pac-Man 307.3 6,951.6 3,085.6 3,327.3 5,821 6,349
Name This Game 2,292.3 8,049.0 8,207.8 15,572.5 21,890 22,682
Phoenix 761.4 7,242.6 8,485.2 70,324.3 16,585 56,599
Pitfall! -229.4 6,463.7 -286.1 0.0 0.0 0.0
Pong -20.7 14.6 19.5 20.9 21.0 21.0
Private Eye 24.9 69,571.3 146.7 206.0 350 200
Q*Bert 163.9 13,455.0 13,117.3 18,760.3 572,510 25,750
River Raid 1,338.5 17,118.0 7,377.6 20,607.6 17,571 17,765
Road Runner 11.5 7,845.0 39,544.0 62,151.0 64,262 57,900
Robotank 2.2 11.9 63.9 27.5 59.4 62.5
Seaquest 68.4 42,054.7 5,860.6 931.6 8,268 30,140
Skiing -17,098.1 -4,336.9 -13,062.3 -19,949.9 -9,324 -9,289
Solaris 1,236.3 12,326.7 3,482.8 133.4 6,740 8,007
Space Invaders 148.0 1,668.7 1,692.3 15,311.5 20,972 28,888
Star Gunner 664.0 10,250.0 54,282.0 125,117.0 77,495 74,677
Surround -10.0 6.5 -5.6 1.2 8.2 9.4
Tennis -23.8 -8.3 12.2 0.0 23.6 23.6
Time Pilot 3,568.0 5,229.2 4,870.0 7,553.0 10,345 12,236
Tutankham 11.4 167.6 68.1 245.9 297 293
Up and Down 533.4 11,693.2 9,989.9 33,879.1 71,260 88,148
Venture 0.0 1,187.5 163.0 48.0 43.9 1,318
Video Pinball 16,256.9 17,667.9 196,760.4 479,197.0 705,662 698,045
Wizard Of Wor 563.5 4,756.5 2,704.0 12,352.0 25,061 31,190
Yars Revenge 3,092.9 54,576.9 18,098.9 69,618.1 26,447 28,379
Zaxxon 32.5 9,173.3 5,363.0 13,886.0 13,112 21,772

Figure 7. Raw scores for a single seed across all games, starting with 30 no-op actions. Reference values from (Wang et al., 2016).


